Contributors: 28
Author Tokens Token Proportion Commits Commit Proportion
Antonino A. Daplas 7787 89.69% 30 44.12%
Benjamin Herrenschmidt 306 3.52% 3 4.41%
Dave Airlie 166 1.91% 1 1.47%
Vaibhav Gupta 111 1.28% 1 1.47%
Paul Mundt 58 0.67% 1 1.47%
Paul Mackerras 47 0.54% 1 1.47%
Thomas Zimmermann 45 0.52% 4 5.88%
David Brownell 25 0.29% 1 1.47%
Jani Nikula 19 0.22% 1 1.47%
Linus Torvalds (pre-git) 18 0.21% 4 5.88%
James Simmons 17 0.20% 3 4.41%
Richard Purdie 14 0.16% 1 1.47%
Wink Saville 12 0.14% 1 1.47%
Wei Chen 11 0.13% 1 1.47%
Luis R. Rodriguez 5 0.06% 1 1.47%
Geert Uytterhoeven 5 0.06% 1 1.47%
Linus Torvalds 5 0.06% 1 1.47%
Al Viro 4 0.05% 1 1.47%
Torben Hohn 4 0.05% 1 1.47%
Andrew Morton 4 0.05% 1 1.47%
Michael Hanselmann 4 0.05% 1 1.47%
Joe Perches 4 0.05% 1 1.47%
Harvey Harrison 3 0.03% 1 1.47%
Rafael J. Wysocki 2 0.02% 1 1.47%
Colin Ian King 2 0.02% 2 2.94%
Kees Cook 2 0.02% 1 1.47%
Jiri Slaby 1 0.01% 1 1.47%
Arvind Yadav 1 0.01% 1 1.47%
Total 8682 68


/*
 * linux/drivers/video/nvidia/nvidia.c - nVidia fb driver
 *
 * Copyright 2004 Antonino Daplas <adaplas@pol.net>
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file COPYING in the main directory of this archive
 * for more details.
 *
 */

#include <linux/aperture.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/console.h>
#include <linux/backlight.h>
#ifdef CONFIG_BOOTX_TEXT
#include <asm/btext.h>
#endif

#include "nv_local.h"
#include "nv_type.h"
#include "nv_proto.h"
#include "nv_dma.h"

#ifdef CONFIG_FB_NVIDIA_DEBUG
#define NVTRACE          printk
#else
#define NVTRACE          if (0) printk
#endif

#define NVTRACE_ENTER(...)  NVTRACE("%s START\n", __func__)
#define NVTRACE_LEAVE(...)  NVTRACE("%s END\n", __func__)

#ifdef CONFIG_FB_NVIDIA_DEBUG
#define assert(expr) \
	if (!(expr)) { \
	printk( "Assertion failed! %s,%s,%s,line=%d\n",\
	#expr,__FILE__,__func__,__LINE__); \
	BUG(); \
	}
#else
#define assert(expr)
#endif

#define PFX "nvidiafb: "

/* HW cursor parameters */
#define MAX_CURS		32

static const struct pci_device_id nvidiafb_pci_tbl[] = {
	{PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
	 PCI_BASE_CLASS_DISPLAY << 16, 0xff0000, 0},
	{ 0, }
};
MODULE_DEVICE_TABLE(pci, nvidiafb_pci_tbl);

/* command line data, set in nvidiafb_setup() */
static int flatpanel = -1;	/* Autodetect later */
static int fpdither = -1;
static int forceCRTC = -1;
static int hwcur = 0;
static int noaccel = 0;
static int noscale = 0;
static int paneltweak = 0;
static int vram = 0;
static int bpp = 8;
static int reverse_i2c;
static bool nomtrr = false;
static int backlight = IS_BUILTIN(CONFIG_PMAC_BACKLIGHT);

static char *mode_option = NULL;

static struct fb_fix_screeninfo nvidiafb_fix = {
	.type = FB_TYPE_PACKED_PIXELS,
	.xpanstep = 8,
	.ypanstep = 1,
};

static struct fb_var_screeninfo nvidiafb_default_var = {
	.xres = 640,
	.yres = 480,
	.xres_virtual = 640,
	.yres_virtual = 480,
	.bits_per_pixel = 8,
	.red = {0, 8, 0},
	.green = {0, 8, 0},
	.blue = {0, 8, 0},
	.transp = {0, 0, 0},
	.activate = FB_ACTIVATE_NOW,
	.height = -1,
	.width = -1,
	.pixclock = 39721,
	.left_margin = 40,
	.right_margin = 24,
	.upper_margin = 32,
	.lower_margin = 11,
	.hsync_len = 96,
	.vsync_len = 2,
	.vmode = FB_VMODE_NONINTERLACED
};

static void nvidiafb_load_cursor_image(struct nvidia_par *par, u8 * data8,
				       u16 bg, u16 fg, u32 w, u32 h)
{
	u32 *data = (u32 *) data8;
	int i, j, k = 0;
	u32 b, tmp;

	w = (w + 1) & ~1;

	for (i = 0; i < h; i++) {
		b = *data++;
		reverse_order(&b);

		for (j = 0; j < w / 2; j++) {
			tmp = 0;
#if defined (__BIG_ENDIAN)
			tmp = (b & (1 << 31)) ? fg << 16 : bg << 16;
			b <<= 1;
			tmp |= (b & (1 << 31)) ? fg : bg;
			b <<= 1;
#else
			tmp = (b & 1) ? fg : bg;
			b >>= 1;
			tmp |= (b & 1) ? fg << 16 : bg << 16;
			b >>= 1;
#endif
			NV_WR32(&par->CURSOR[k++], 0, tmp);
		}
		k += (MAX_CURS - w) / 2;
	}
}

static void nvidia_write_clut(struct nvidia_par *par,
			      u8 regnum, u8 red, u8 green, u8 blue)
{
	NVWriteDacMask(par, 0xff);
	NVWriteDacWriteAddr(par, regnum);
	NVWriteDacData(par, red);
	NVWriteDacData(par, green);
	NVWriteDacData(par, blue);
}

static void nvidia_read_clut(struct nvidia_par *par,
			     u8 regnum, u8 * red, u8 * green, u8 * blue)
{
	NVWriteDacMask(par, 0xff);
	NVWriteDacReadAddr(par, regnum);
	*red = NVReadDacData(par);
	*green = NVReadDacData(par);
	*blue = NVReadDacData(par);
}

static int nvidia_panel_tweak(struct nvidia_par *par,
			      struct _riva_hw_state *state)
{
	int tweak = 0;

	if (par->paneltweak) {
		tweak = par->paneltweak;
	} else {
		/* Begin flat panel hacks.
		 * This is unfortunate, but some chips need this register
		 * tweaked or else you get artifacts where adjacent pixels are
		 * swapped.  There are no hard rules for what to set here so all
		 * we can do is experiment and apply hacks.
		 */
		if (((par->Chipset & 0xffff) == 0x0328) && (state->bpp == 32)) {
			/* At least one NV34 laptop needs this workaround. */
			tweak = -1;
		}

		if ((par->Chipset & 0xfff0) == 0x0310)
			tweak = 1;
		/* end flat panel hacks */
	}

	return tweak;
}

static void nvidia_screen_off(struct nvidia_par *par, int on)
{
	unsigned char tmp;

	if (on) {
		/*
		 * Turn off screen and disable sequencer.
		 */
		tmp = NVReadSeq(par, 0x01);

		NVWriteSeq(par, 0x00, 0x01);		/* Synchronous Reset */
		NVWriteSeq(par, 0x01, tmp | 0x20);	/* disable the display */
	} else {
		/*
		 * Reenable sequencer, then turn on screen.
		 */

		tmp = NVReadSeq(par, 0x01);

		NVWriteSeq(par, 0x01, tmp & ~0x20);	/* reenable display */
		NVWriteSeq(par, 0x00, 0x03);		/* End Reset */
	}
}

static void nvidia_save_vga(struct nvidia_par *par,
			    struct _riva_hw_state *state)
{
	int i;

	NVTRACE_ENTER();
	NVLockUnlock(par, 0);

	NVUnloadStateExt(par, state);

	state->misc_output = NVReadMiscOut(par);

	for (i = 0; i < NUM_CRT_REGS; i++)
		state->crtc[i] = NVReadCrtc(par, i);

	for (i = 0; i < NUM_ATC_REGS; i++)
		state->attr[i] = NVReadAttr(par, i);

	for (i = 0; i < NUM_GRC_REGS; i++)
		state->gra[i] = NVReadGr(par, i);

	for (i = 0; i < NUM_SEQ_REGS; i++)
		state->seq[i] = NVReadSeq(par, i);
	NVTRACE_LEAVE();
}

#undef DUMP_REG

static void nvidia_write_regs(struct nvidia_par *par,
			      struct _riva_hw_state *state)
{
	int i;

	NVTRACE_ENTER();

	NVLoadStateExt(par, state);

	NVWriteMiscOut(par, state->misc_output);

	for (i = 1; i < NUM_SEQ_REGS; i++) {
#ifdef DUMP_REG
		printk(" SEQ[%02x] = %08x\n", i, state->seq[i]);
#endif
		NVWriteSeq(par, i, state->seq[i]);
	}

	/* Ensure CRTC registers 0-7 are unlocked by clearing bit 7 of CRTC[17] */
	NVWriteCrtc(par, 0x11, state->crtc[0x11] & ~0x80);

	for (i = 0; i < NUM_CRT_REGS; i++) {
		switch (i) {
		case 0x19:
		case 0x20 ... 0x40:
			break;
		default:
#ifdef DUMP_REG
			printk("CRTC[%02x] = %08x\n", i, state->crtc[i]);
#endif
			NVWriteCrtc(par, i, state->crtc[i]);
		}
	}

	for (i = 0; i < NUM_GRC_REGS; i++) {
#ifdef DUMP_REG
		printk(" GRA[%02x] = %08x\n", i, state->gra[i]);
#endif
		NVWriteGr(par, i, state->gra[i]);
	}

	for (i = 0; i < NUM_ATC_REGS; i++) {
#ifdef DUMP_REG
		printk("ATTR[%02x] = %08x\n", i, state->attr[i]);
#endif
		NVWriteAttr(par, i, state->attr[i]);
	}

	NVTRACE_LEAVE();
}

static int nvidia_calc_regs(struct fb_info *info)
{
	struct nvidia_par *par = info->par;
	struct _riva_hw_state *state = &par->ModeReg;
	int i, depth = fb_get_color_depth(&info->var, &info->fix);
	int h_display = info->var.xres / 8 - 1;
	int h_start = (info->var.xres + info->var.right_margin) / 8 - 1;
	int h_end = (info->var.xres + info->var.right_margin +
		     info->var.hsync_len) / 8 - 1;
	int h_total = (info->var.xres + info->var.right_margin +
		       info->var.hsync_len + info->var.left_margin) / 8 - 5;
	int h_blank_s = h_display;
	int h_blank_e = h_total + 4;
	int v_display = info->var.yres - 1;
	int v_start = info->var.yres + info->var.lower_margin - 1;
	int v_end = (info->var.yres + info->var.lower_margin +
		     info->var.vsync_len) - 1;
	int v_total = (info->var.yres + info->var.lower_margin +
		       info->var.vsync_len + info->var.upper_margin) - 2;
	int v_blank_s = v_display;
	int v_blank_e = v_total + 1;

	/*
	 * Set all CRTC values.
	 */

	if (info->var.vmode & FB_VMODE_INTERLACED)
		v_total |= 1;

	if (par->FlatPanel == 1) {
		v_start = v_total - 3;
		v_end = v_total - 2;
		v_blank_s = v_start;
		h_start = h_total - 5;
		h_end = h_total - 2;
		h_blank_e = h_total + 4;
	}

	state->crtc[0x0] = Set8Bits(h_total);
	state->crtc[0x1] = Set8Bits(h_display);
	state->crtc[0x2] = Set8Bits(h_blank_s);
	state->crtc[0x3] = SetBitField(h_blank_e, 4: 0, 4:0)
		| SetBit(7);
	state->crtc[0x4] = Set8Bits(h_start);
	state->crtc[0x5] = SetBitField(h_blank_e, 5: 5, 7:7)
		| SetBitField(h_end, 4: 0, 4:0);
	state->crtc[0x6] = SetBitField(v_total, 7: 0, 7:0);
	state->crtc[0x7] = SetBitField(v_total, 8: 8, 0:0)
		| SetBitField(v_display, 8: 8, 1:1)
		| SetBitField(v_start, 8: 8, 2:2)
		| SetBitField(v_blank_s, 8: 8, 3:3)
		| SetBit(4)
		| SetBitField(v_total, 9: 9, 5:5)
		| SetBitField(v_display, 9: 9, 6:6)
		| SetBitField(v_start, 9: 9, 7:7);
	state->crtc[0x9] = SetBitField(v_blank_s, 9: 9, 5:5)
		| SetBit(6)
		| ((info->var.vmode & FB_VMODE_DOUBLE) ? 0x80 : 0x00);
	state->crtc[0x10] = Set8Bits(v_start);
	state->crtc[0x11] = SetBitField(v_end, 3: 0, 3:0) | SetBit(5);
	state->crtc[0x12] = Set8Bits(v_display);
	state->crtc[0x13] = ((info->var.xres_virtual / 8) *
			     (info->var.bits_per_pixel / 8));
	state->crtc[0x15] = Set8Bits(v_blank_s);
	state->crtc[0x16] = Set8Bits(v_blank_e);

	state->attr[0x10] = 0x01;

	if (par->Television)
		state->attr[0x11] = 0x00;

	state->screen = SetBitField(h_blank_e, 6: 6, 4:4)
		| SetBitField(v_blank_s, 10: 10, 3:3)
		| SetBitField(v_start, 10: 10, 2:2)
		| SetBitField(v_display, 10: 10, 1:1)
		| SetBitField(v_total, 10: 10, 0:0);

	state->horiz = SetBitField(h_total, 8: 8, 0:0)
		| SetBitField(h_display, 8: 8, 1:1)
		| SetBitField(h_blank_s, 8: 8, 2:2)
		| SetBitField(h_start, 8: 8, 3:3);

	state->extra = SetBitField(v_total, 11: 11, 0:0)
		| SetBitField(v_display, 11: 11, 2:2)
		| SetBitField(v_start, 11: 11, 4:4)
		| SetBitField(v_blank_s, 11: 11, 6:6);

	if (info->var.vmode & FB_VMODE_INTERLACED) {
		h_total = (h_total >> 1) & ~1;
		state->interlace = Set8Bits(h_total);
		state->horiz |= SetBitField(h_total, 8: 8, 4:4);
	} else {
		state->interlace = 0xff;	/* interlace off */
	}

	/*
	 * Calculate the extended registers.
	 */

	if (depth < 24)
		i = depth;
	else
		i = 32;

	if (par->Architecture >= NV_ARCH_10)
		par->CURSOR = (volatile u32 __iomem *)(info->screen_base +
						       par->CursorStart);

	if (info->var.sync & FB_SYNC_HOR_HIGH_ACT)
		state->misc_output &= ~0x40;
	else
		state->misc_output |= 0x40;
	if (info->var.sync & FB_SYNC_VERT_HIGH_ACT)
		state->misc_output &= ~0x80;
	else
		state->misc_output |= 0x80;

	NVCalcStateExt(par, state, i, info->var.xres_virtual,
		       info->var.xres, info->var.yres_virtual,
		       1000000000 / info->var.pixclock, info->var.vmode);

	state->scale = NV_RD32(par->PRAMDAC, 0x00000848) & 0xfff000ff;
	if (par->FlatPanel == 1) {
		state->pixel |= (1 << 7);

		if (!par->fpScaler || (par->fpWidth <= info->var.xres)
		    || (par->fpHeight <= info->var.yres)) {
			state->scale |= (1 << 8);
		}

		if (!par->crtcSync_read) {
			state->crtcSync = NV_RD32(par->PRAMDAC, 0x0828);
			par->crtcSync_read = 1;
		}

		par->PanelTweak = nvidia_panel_tweak(par, state);
	}

	state->vpll = state->pll;
	state->vpll2 = state->pll;
	state->vpllB = state->pllB;
	state->vpll2B = state->pllB;

	VGA_WR08(par->PCIO, 0x03D4, 0x1C);
	state->fifo = VGA_RD08(par->PCIO, 0x03D5) & ~(1<<5);

	if (par->CRTCnumber) {
		state->head = NV_RD32(par->PCRTC0, 0x00000860) & ~0x00001000;
		state->head2 = NV_RD32(par->PCRTC0, 0x00002860) | 0x00001000;
		state->crtcOwner = 3;
		state->pllsel |= 0x20000800;
		state->vpll = NV_RD32(par->PRAMDAC0, 0x00000508);
		if (par->twoStagePLL)
			state->vpllB = NV_RD32(par->PRAMDAC0, 0x00000578);
	} else if (par->twoHeads) {
		state->head = NV_RD32(par->PCRTC0, 0x00000860) | 0x00001000;
		state->head2 = NV_RD32(par->PCRTC0, 0x00002860) & ~0x00001000;
		state->crtcOwner = 0;
		state->vpll2 = NV_RD32(par->PRAMDAC0, 0x0520);
		if (par->twoStagePLL)
			state->vpll2B = NV_RD32(par->PRAMDAC0, 0x057C);
	}

	state->cursorConfig = 0x00000100;

	if (info->var.vmode & FB_VMODE_DOUBLE)
		state->cursorConfig |= (1 << 4);

	if (par->alphaCursor) {
		if ((par->Chipset & 0x0ff0) != 0x0110)
			state->cursorConfig |= 0x04011000;
		else
			state->cursorConfig |= 0x14011000;
		state->general |= (1 << 29);
	} else
		state->cursorConfig |= 0x02000000;

	if (par->twoHeads) {
		if ((par->Chipset & 0x0ff0) == 0x0110) {
			state->dither = NV_RD32(par->PRAMDAC, 0x0528) &
			    ~0x00010000;
			if (par->FPDither)
				state->dither |= 0x00010000;
		} else {
			state->dither = NV_RD32(par->PRAMDAC, 0x083C) & ~1;
			if (par->FPDither)
				state->dither |= 1;
		}
	}

	state->timingH = 0;
	state->timingV = 0;
	state->displayV = info->var.xres;

	return 0;
}

static void nvidia_init_vga(struct fb_info *info)
{
	struct nvidia_par *par = info->par;
	struct _riva_hw_state *state = &par->ModeReg;
	int i;

	for (i = 0; i < 0x10; i++)
		state->attr[i] = i;
	state->attr[0x10] = 0x41;
	state->attr[0x11] = 0xff;
	state->attr[0x12] = 0x0f;
	state->attr[0x13] = 0x00;
	state->attr[0x14] = 0x00;

	memset(state->crtc, 0x00, NUM_CRT_REGS);
	state->crtc[0x0a] = 0x20;
	state->crtc[0x17] = 0xe3;
	state->crtc[0x18] = 0xff;
	state->crtc[0x28] = 0x40;

	memset(state->gra, 0x00, NUM_GRC_REGS);
	state->gra[0x05] = 0x40;
	state->gra[0x06] = 0x05;
	state->gra[0x07] = 0x0f;
	state->gra[0x08] = 0xff;

	state->seq[0x00] = 0x03;
	state->seq[0x01] = 0x01;
	state->seq[0x02] = 0x0f;
	state->seq[0x03] = 0x00;
	state->seq[0x04] = 0x0e;

	state->misc_output = 0xeb;
}

static int nvidiafb_cursor(struct fb_info *info, struct fb_cursor *cursor)
{
	struct nvidia_par *par = info->par;
	u8 data[MAX_CURS * MAX_CURS / 8];
	int i, set = cursor->set;
	u16 fg, bg;

	if (cursor->image.width > MAX_CURS || cursor->image.height > MAX_CURS)
		return -ENXIO;

	NVShowHideCursor(par, 0);

	if (par->cursor_reset) {
		set = FB_CUR_SETALL;
		par->cursor_reset = 0;
	}

	if (set & FB_CUR_SETSIZE)
		memset_io(par->CURSOR, 0, MAX_CURS * MAX_CURS * 2);

	if (set & FB_CUR_SETPOS) {
		u32 xx, yy, temp;

		yy = cursor->image.dy - info->var.yoffset;
		xx = cursor->image.dx - info->var.xoffset;
		temp = xx & 0xFFFF;
		temp |= yy << 16;

		NV_WR32(par->PRAMDAC, 0x0000300, temp);
	}

	if (set & (FB_CUR_SETSHAPE | FB_CUR_SETCMAP | FB_CUR_SETIMAGE)) {
		u32 bg_idx = cursor->image.bg_color;
		u32 fg_idx = cursor->image.fg_color;
		u32 s_pitch = (cursor->image.width + 7) >> 3;
		u32 d_pitch = MAX_CURS / 8;
		u8 *dat = (u8 *) cursor->image.data;
		u8 *msk = (u8 *) cursor->mask;
		u8 *src;

		src = kmalloc_array(s_pitch, cursor->image.height, GFP_ATOMIC);

		if (src) {
			switch (cursor->rop) {
			case ROP_XOR:
				for (i = 0; i < s_pitch * cursor->image.height; i++)
					src[i] = dat[i] ^ msk[i];
				break;
			case ROP_COPY:
			default:
				for (i = 0; i < s_pitch * cursor->image.height; i++)
					src[i] = dat[i] & msk[i];
				break;
			}

			fb_pad_aligned_buffer(data, d_pitch, src, s_pitch,
						cursor->image.height);

			bg = ((info->cmap.red[bg_idx] & 0xf8) << 7) |
			    ((info->cmap.green[bg_idx] & 0xf8) << 2) |
			    ((info->cmap.blue[bg_idx] & 0xf8) >> 3) | 1 << 15;

			fg = ((info->cmap.red[fg_idx] & 0xf8) << 7) |
			    ((info->cmap.green[fg_idx] & 0xf8) << 2) |
			    ((info->cmap.blue[fg_idx] & 0xf8) >> 3) | 1 << 15;

			NVLockUnlock(par, 0);

			nvidiafb_load_cursor_image(par, data, bg, fg,
						   cursor->image.width,
						   cursor->image.height);
			kfree(src);
		}
	}

	if (cursor->enable)
		NVShowHideCursor(par, 1);

	return 0;
}

static struct fb_ops nvidia_fb_ops;

static int nvidiafb_set_par(struct fb_info *info)
{
	struct nvidia_par *par = info->par;

	NVTRACE_ENTER();

	NVLockUnlock(par, 1);
	if (!par->FlatPanel || !par->twoHeads)
		par->FPDither = 0;

	if (par->FPDither < 0) {
		if ((par->Chipset & 0x0ff0) == 0x0110)
			par->FPDither = !!(NV_RD32(par->PRAMDAC, 0x0528)
					   & 0x00010000);
		else
			par->FPDither = !!(NV_RD32(par->PRAMDAC, 0x083C) & 1);
		printk(KERN_INFO PFX "Flat panel dithering %s\n",
		       par->FPDither ? "enabled" : "disabled");
	}

	info->fix.visual = (info->var.bits_per_pixel == 8) ?
	    FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_DIRECTCOLOR;

	nvidia_init_vga(info);
	nvidia_calc_regs(info);

	NVLockUnlock(par, 0);
	if (par->twoHeads) {
		VGA_WR08(par->PCIO, 0x03D4, 0x44);
		VGA_WR08(par->PCIO, 0x03D5, par->ModeReg.crtcOwner);
		NVLockUnlock(par, 0);
	}

	nvidia_screen_off(par, 1);

	nvidia_write_regs(par, &par->ModeReg);
	NVSetStartAddress(par, 0);

#if defined (__BIG_ENDIAN)
	/* turn on LFB swapping */
	{
		unsigned char tmp;

		VGA_WR08(par->PCIO, 0x3d4, 0x46);
		tmp = VGA_RD08(par->PCIO, 0x3d5);
		tmp |= (1 << 7);
		VGA_WR08(par->PCIO, 0x3d5, tmp);
    }
#endif

	info->fix.line_length = (info->var.xres_virtual *
				 info->var.bits_per_pixel) >> 3;
	if (info->var.accel_flags) {
		nvidia_fb_ops.fb_imageblit = nvidiafb_imageblit;
		nvidia_fb_ops.fb_fillrect = nvidiafb_fillrect;
		nvidia_fb_ops.fb_copyarea = nvidiafb_copyarea;
		nvidia_fb_ops.fb_sync = nvidiafb_sync;
		info->pixmap.scan_align = 4;
		info->flags &= ~FBINFO_HWACCEL_DISABLED;
		info->flags |= FBINFO_READS_FAST;
		NVResetGraphics(info);
	} else {
		nvidia_fb_ops.fb_imageblit = cfb_imageblit;
		nvidia_fb_ops.fb_fillrect = cfb_fillrect;
		nvidia_fb_ops.fb_copyarea = cfb_copyarea;
		nvidia_fb_ops.fb_sync = NULL;
		info->pixmap.scan_align = 1;
		info->flags |= FBINFO_HWACCEL_DISABLED;
		info->flags &= ~FBINFO_READS_FAST;
	}

	par->cursor_reset = 1;

	nvidia_screen_off(par, 0);

#ifdef CONFIG_BOOTX_TEXT
	/* Update debug text engine */
	btext_update_display(info->fix.smem_start,
			     info->var.xres, info->var.yres,
			     info->var.bits_per_pixel, info->fix.line_length);
#endif

	NVLockUnlock(par, 0);
	NVTRACE_LEAVE();
	return 0;
}

static int nvidiafb_setcolreg(unsigned regno, unsigned red, unsigned green,
			      unsigned blue, unsigned transp,
			      struct fb_info *info)
{
	struct nvidia_par *par = info->par;
	int i;

	NVTRACE_ENTER();
	if (regno >= (1 << info->var.green.length))
		return -EINVAL;

	if (info->var.grayscale) {
		/* gray = 0.30*R + 0.59*G + 0.11*B */
		red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8;
	}

	if (regno < 16 && info->fix.visual == FB_VISUAL_DIRECTCOLOR) {
		((u32 *) info->pseudo_palette)[regno] =
		    (regno << info->var.red.offset) |
		    (regno << info->var.green.offset) |
		    (regno << info->var.blue.offset);
	}

	switch (info->var.bits_per_pixel) {
	case 8:
		/* "transparent" stuff is completely ignored. */
		nvidia_write_clut(par, regno, red >> 8, green >> 8, blue >> 8);
		break;
	case 16:
		if (info->var.green.length == 5) {
			for (i = 0; i < 8; i++) {
				nvidia_write_clut(par, regno * 8 + i, red >> 8,
						  green >> 8, blue >> 8);
			}
		} else {
			u8 r, g, b;

			if (regno < 32) {
				for (i = 0; i < 8; i++) {
					nvidia_write_clut(par, regno * 8 + i,
							  red >> 8, green >> 8,
							  blue >> 8);
				}
			}

			nvidia_read_clut(par, regno * 4, &r, &g, &b);

			for (i = 0; i < 4; i++)
				nvidia_write_clut(par, regno * 4 + i, r,
						  green >> 8, b);
		}
		break;
	case 32:
		nvidia_write_clut(par, regno, red >> 8, green >> 8, blue >> 8);
		break;
	default:
		/* do nothing */
		break;
	}

	NVTRACE_LEAVE();
	return 0;
}

static int nvidiafb_check_var(struct fb_var_screeninfo *var,
			      struct fb_info *info)
{
	struct nvidia_par *par = info->par;
	int memlen, vramlen, mode_valid = 0;
	int pitch, err = 0;

	NVTRACE_ENTER();
	if (!var->pixclock)
		return -EINVAL;

	var->transp.offset = 0;
	var->transp.length = 0;

	var->xres &= ~7;

	if (var->bits_per_pixel <= 8)
		var->bits_per_pixel = 8;
	else if (var->bits_per_pixel <= 16)
		var->bits_per_pixel = 16;
	else
		var->bits_per_pixel = 32;

	switch (var->bits_per_pixel) {
	case 8:
		var->red.offset = 0;
		var->red.length = 8;
		var->green.offset = 0;
		var->green.length = 8;
		var->blue.offset = 0;
		var->blue.length = 8;
		var->transp.offset = 0;
		var->transp.length = 0;
		break;
	case 16:
		var->green.length = (var->green.length < 6) ? 5 : 6;
		var->red.length = 5;
		var->blue.length = 5;
		var->transp.length = 6 - var->green.length;
		var->blue.offset = 0;
		var->green.offset = 5;
		var->red.offset = 5 + var->green.length;
		var->transp.offset = (5 + var->red.offset) & 15;
		break;
	case 32:		/* RGBA 8888 */
		var->red.offset = 16;
		var->red.length = 8;
		var->green.offset = 8;
		var->green.length = 8;
		var->blue.offset = 0;
		var->blue.length = 8;
		var->transp.length = 8;
		var->transp.offset = 24;
		break;
	}

	var->red.msb_right = 0;
	var->green.msb_right = 0;
	var->blue.msb_right = 0;
	var->transp.msb_right = 0;

	if (!info->monspecs.hfmax || !info->monspecs.vfmax ||
	    !info->monspecs.dclkmax || !fb_validate_mode(var, info))
		mode_valid = 1;

	/* calculate modeline if supported by monitor */
	if (!mode_valid && info->monspecs.gtf) {
		if (!fb_get_mode(FB_MAXTIMINGS, 0, var, info))
			mode_valid = 1;
	}

	if (!mode_valid) {
		const struct fb_videomode *mode;

		mode = fb_find_best_mode(var, &info->modelist);
		if (mode) {
			fb_videomode_to_var(var, mode);
			mode_valid = 1;
		}
	}

	if (!mode_valid && info->monspecs.modedb_len)
		return -EINVAL;

	/*
	 * If we're on a flat panel, check if the mode is outside of the
	 * panel dimensions. If so, cap it and try for the next best mode
	 * before bailing out.
	 */
	if (par->fpWidth && par->fpHeight && (par->fpWidth < var->xres ||
					      par->fpHeight < var->yres)) {
		const struct fb_videomode *mode;

		var->xres = par->fpWidth;
		var->yres = par->fpHeight;

		mode = fb_find_best_mode(var, &info->modelist);
		if (!mode) {
			printk(KERN_ERR PFX "mode out of range of flat "
			       "panel dimensions\n");
			return -EINVAL;
		}

		fb_videomode_to_var(var, mode);
	}

	if (var->yres_virtual < var->yres)
		var->yres_virtual = var->yres;

	if (var->xres_virtual < var->xres)
		var->xres_virtual = var->xres;

	var->xres_virtual = (var->xres_virtual + 63) & ~63;

	vramlen = info->screen_size;
	pitch = ((var->xres_virtual * var->bits_per_pixel) + 7) / 8;
	memlen = pitch * var->yres_virtual;

	if (memlen > vramlen) {
		var->yres_virtual = vramlen / pitch;

		if (var->yres_virtual < var->yres) {
			var->yres_virtual = var->yres;
			var->xres_virtual = vramlen / var->yres_virtual;
			var->xres_virtual /= var->bits_per_pixel / 8;
			var->xres_virtual &= ~63;
			pitch = (var->xres_virtual *
				 var->bits_per_pixel + 7) / 8;
			memlen = pitch * var->yres;

			if (var->xres_virtual < var->xres) {
				printk("nvidiafb: required video memory, "
				       "%d bytes, for %dx%d-%d (virtual) "
				       "is out of range\n",
				       memlen, var->xres_virtual,
				       var->yres_virtual, var->bits_per_pixel);
				err = -ENOMEM;
			}
		}
	}

	if (var->accel_flags) {
		if (var->yres_virtual > 0x7fff)
			var->yres_virtual = 0x7fff;
		if (var->xres_virtual > 0x7fff)
			var->xres_virtual = 0x7fff;
	}

	var->xres_virtual &= ~63;

	NVTRACE_LEAVE();

	return err;
}

static int nvidiafb_pan_display(struct fb_var_screeninfo *var,
				struct fb_info *info)
{
	struct nvidia_par *par = info->par;
	u32 total;

	total = var->yoffset * info->fix.line_length + var->xoffset;

	NVSetStartAddress(par, total);

	return 0;
}

static int nvidiafb_blank(int blank, struct fb_info *info)
{
	struct nvidia_par *par = info->par;
	unsigned char tmp, vesa;

	tmp = NVReadSeq(par, 0x01) & ~0x20;	/* screen on/off */
	vesa = NVReadCrtc(par, 0x1a) & ~0xc0;	/* sync on/off */

	NVTRACE_ENTER();

	if (blank)
		tmp |= 0x20;

	switch (blank) {
	case FB_BLANK_UNBLANK:
	case FB_BLANK_NORMAL:
		break;
	case FB_BLANK_VSYNC_SUSPEND:
		vesa |= 0x80;
		break;
	case FB_BLANK_HSYNC_SUSPEND:
		vesa |= 0x40;
		break;
	case FB_BLANK_POWERDOWN:
		vesa |= 0xc0;
		break;
	}

	NVWriteSeq(par, 0x01, tmp);
	NVWriteCrtc(par, 0x1a, vesa);

	NVTRACE_LEAVE();

	return 0;
}

/*
 * Because the VGA registers are not mapped linearly in its MMIO space,
 * restrict VGA register saving and restore to x86 only, where legacy VGA IO
 * access is legal. Consequently, we must also check if the device is the
 * primary display.
 */
#ifdef CONFIG_X86
static void save_vga_x86(struct nvidia_par *par)
{
	struct resource *res= &par->pci_dev->resource[PCI_ROM_RESOURCE];

	if (res && res->flags & IORESOURCE_ROM_SHADOW) {
		memset(&par->vgastate, 0, sizeof(par->vgastate));
		par->vgastate.flags = VGA_SAVE_MODE | VGA_SAVE_FONTS |
			VGA_SAVE_CMAP;
		save_vga(&par->vgastate);
	}
}

static void restore_vga_x86(struct nvidia_par *par)
{
	struct resource *res= &par->pci_dev->resource[PCI_ROM_RESOURCE];

	if (res && res->flags & IORESOURCE_ROM_SHADOW)
		restore_vga(&par->vgastate);
}
#else
#define save_vga_x86(x) do {} while (0)
#define restore_vga_x86(x) do {} while (0)
#endif /* X86 */

static int nvidiafb_open(struct fb_info *info, int user)
{
	struct nvidia_par *par = info->par;

	if (!par->open_count) {
		save_vga_x86(par);
		nvidia_save_vga(par, &par->initial_state);
	}

	par->open_count++;
	return 0;
}

static int nvidiafb_release(struct fb_info *info, int user)
{
	struct nvidia_par *par = info->par;
	int err = 0;

	if (!par->open_count) {
		err = -EINVAL;
		goto done;
	}

	if (par->open_count == 1) {
		nvidia_write_regs(par, &par->initial_state);
		restore_vga_x86(par);
	}

	par->open_count--;
done:
	return err;
}

static struct fb_ops nvidia_fb_ops = {
	.owner          = THIS_MODULE,
	.fb_open        = nvidiafb_open,
	.fb_release     = nvidiafb_release,
	__FB_DEFAULT_IOMEM_OPS_RDWR,
	.fb_check_var   = nvidiafb_check_var,
	.fb_set_par     = nvidiafb_set_par,
	.fb_setcolreg   = nvidiafb_setcolreg,
	.fb_pan_display = nvidiafb_pan_display,
	.fb_blank       = nvidiafb_blank,
	.fb_fillrect    = nvidiafb_fillrect,
	.fb_copyarea    = nvidiafb_copyarea,
	.fb_imageblit   = nvidiafb_imageblit,
	.fb_cursor      = nvidiafb_cursor,
	.fb_sync        = nvidiafb_sync,
	__FB_DEFAULT_IOMEM_OPS_MMAP,
};

static int nvidiafb_suspend_late(struct device *dev, pm_message_t mesg)
{
	struct fb_info *info = dev_get_drvdata(dev);
	struct nvidia_par *par = info->par;

	if (mesg.event == PM_EVENT_PRETHAW)
		mesg.event = PM_EVENT_FREEZE;
	console_lock();
	par->pm_state = mesg.event;

	if (mesg.event & PM_EVENT_SLEEP) {
		fb_set_suspend(info, 1);
		nvidiafb_blank(FB_BLANK_POWERDOWN, info);
		nvidia_write_regs(par, &par->SavedReg);
	}
	dev->power.power_state = mesg;

	console_unlock();
	return 0;
}

static int __maybe_unused nvidiafb_suspend(struct device *dev)
{
	return nvidiafb_suspend_late(dev, PMSG_SUSPEND);
}

static int __maybe_unused nvidiafb_hibernate(struct device *dev)
{
	return nvidiafb_suspend_late(dev, PMSG_HIBERNATE);
}

static int __maybe_unused nvidiafb_freeze(struct device *dev)
{
	return nvidiafb_suspend_late(dev, PMSG_FREEZE);
}

static int __maybe_unused nvidiafb_resume(struct device *dev)
{
	struct fb_info *info = dev_get_drvdata(dev);
	struct nvidia_par *par = info->par;

	console_lock();

	par->pm_state = PM_EVENT_ON;
	nvidiafb_set_par(info);
	fb_set_suspend (info, 0);
	nvidiafb_blank(FB_BLANK_UNBLANK, info);

	console_unlock();
	return 0;
}

static const struct dev_pm_ops nvidiafb_pm_ops = {
#ifdef CONFIG_PM_SLEEP
	.suspend	= nvidiafb_suspend,
	.resume		= nvidiafb_resume,
	.freeze		= nvidiafb_freeze,
	.thaw		= nvidiafb_resume,
	.poweroff	= nvidiafb_hibernate,
	.restore	= nvidiafb_resume,
#endif /* CONFIG_PM_SLEEP */
};

static int nvidia_set_fbinfo(struct fb_info *info)
{
	struct fb_monspecs *specs = &info->monspecs;
	struct fb_videomode modedb;
	struct nvidia_par *par = info->par;
	int lpitch;

	NVTRACE_ENTER();
	info->flags =
	      FBINFO_HWACCEL_IMAGEBLIT
	    | FBINFO_HWACCEL_FILLRECT
	    | FBINFO_HWACCEL_COPYAREA
	    | FBINFO_HWACCEL_YPAN;

	fb_videomode_to_modelist(info->monspecs.modedb,
				 info->monspecs.modedb_len, &info->modelist);
	fb_var_to_videomode(&modedb, &nvidiafb_default_var);

	switch (bpp) {
	case 0 ... 8:
		bpp = 8;
		break;
	case 9 ... 16:
		bpp = 16;
		break;
	default:
		bpp = 32;
		break;
	}

	if (specs->modedb != NULL) {
		const struct fb_videomode *mode;

		mode = fb_find_best_display(specs, &info->modelist);
		fb_videomode_to_var(&nvidiafb_default_var, mode);
		nvidiafb_default_var.bits_per_pixel = bpp;
	} else if (par->fpWidth && par->fpHeight) {
		char buf[16];

		memset(buf, 0, 16);
		snprintf(buf, 15, "%dx%dMR", par->fpWidth, par->fpHeight);
		fb_find_mode(&nvidiafb_default_var, info, buf, specs->modedb,
			     specs->modedb_len, &modedb, bpp);
	}

	if (mode_option)
		fb_find_mode(&nvidiafb_default_var, info, mode_option,
			     specs->modedb, specs->modedb_len, &modedb, bpp);

	info->var = nvidiafb_default_var;
	info->fix.visual = (info->var.bits_per_pixel == 8) ?
		FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_DIRECTCOLOR;
	info->pseudo_palette = par->pseudo_palette;
	fb_alloc_cmap(&info->cmap, 256, 0);
	fb_destroy_modedb(info->monspecs.modedb);
	info->monspecs.modedb = NULL;

	/* maximize virtual vertical length */
	lpitch = info->var.xres_virtual *
		((info->var.bits_per_pixel + 7) >> 3);
	info->var.yres_virtual = info->screen_size / lpitch;

	info->pixmap.scan_align = 4;
	info->pixmap.buf_align = 4;
	info->pixmap.access_align = 32;
	info->pixmap.size = 8 * 1024;
	info->pixmap.flags = FB_PIXMAP_SYSTEM;

	if (!hwcur)
	    nvidia_fb_ops.fb_cursor = NULL;

	info->var.accel_flags = (!noaccel);

	switch (par->Architecture) {
	case NV_ARCH_04:
		info->fix.accel = FB_ACCEL_NV4;
		break;
	case NV_ARCH_10:
		info->fix.accel = FB_ACCEL_NV_10;
		break;
	case NV_ARCH_20:
		info->fix.accel = FB_ACCEL_NV_20;
		break;
	case NV_ARCH_30:
		info->fix.accel = FB_ACCEL_NV_30;
		break;
	case NV_ARCH_40:
		info->fix.accel = FB_ACCEL_NV_40;
		break;
	}

	NVTRACE_LEAVE();

	return nvidiafb_check_var(&info->var, info);
}

static u32 nvidia_get_chipset(struct pci_dev *pci_dev,
			      volatile u32 __iomem *REGS)
{
	u32 id = (pci_dev->vendor << 16) | pci_dev->device;

	printk(KERN_INFO PFX "Device ID: %x \n", id);

	if ((id & 0xfff0) == 0x00f0 ||
	    (id & 0xfff0) == 0x02e0) {
		/* pci-e */
		id = NV_RD32(REGS, 0x1800);

		if ((id & 0x0000ffff) == 0x000010DE)
			id = 0x10DE0000 | (id >> 16);
		else if ((id & 0xffff0000) == 0xDE100000) /* wrong endian */
			id = 0x10DE0000 | ((id << 8) & 0x0000ff00) |
                            ((id >> 8) & 0x000000ff);
		printk(KERN_INFO PFX "Subsystem ID: %x \n", id);
	}

	return id;
}

static u32 nvidia_get_arch(u32 Chipset)
{
	u32 arch = 0;

	switch (Chipset & 0x0ff0) {
	case 0x0100:		/* GeForce 256 */
	case 0x0110:		/* GeForce2 MX */
	case 0x0150:		/* GeForce2 */
	case 0x0170:		/* GeForce4 MX */
	case 0x0180:		/* GeForce4 MX (8x AGP) */
	case 0x01A0:		/* nForce */
	case 0x01F0:		/* nForce2 */
		arch = NV_ARCH_10;
		break;
	case 0x0200:		/* GeForce3 */
	case 0x0250:		/* GeForce4 Ti */
	case 0x0280:		/* GeForce4 Ti (8x AGP) */
		arch = NV_ARCH_20;
		break;
	case 0x0300:		/* GeForceFX 5800 */
	case 0x0310:		/* GeForceFX 5600 */
	case 0x0320:		/* GeForceFX 5200 */
	case 0x0330:		/* GeForceFX 5900 */
	case 0x0340:		/* GeForceFX 5700 */
		arch = NV_ARCH_30;
		break;
	case 0x0040:		/* GeForce 6800 */
	case 0x00C0:		/* GeForce 6800 */
	case 0x0120:		/* GeForce 6800 */
	case 0x0140:		/* GeForce 6600 */
	case 0x0160:		/* GeForce 6200 */
	case 0x01D0:		/* GeForce 7200, 7300, 7400 */
	case 0x0090:		/* GeForce 7800 */
	case 0x0210:		/* GeForce 6800 */
	case 0x0220:		/* GeForce 6200 */
	case 0x0240:		/* GeForce 6100 */
	case 0x0290:		/* GeForce 7900 */
	case 0x0390:		/* GeForce 7600 */
	case 0x03D0:
		arch = NV_ARCH_40;
		break;
	case 0x0020:		/* TNT, TNT2 */
		arch = NV_ARCH_04;
		break;
	default:		/* unknown architecture */
		break;
	}

	return arch;
}

static int nvidiafb_probe(struct pci_dev *pd, const struct pci_device_id *ent)
{
	struct nvidia_par *par;
	struct fb_info *info;
	unsigned short cmd;
	int ret;
	volatile u32 __iomem *REGS;
	int Chipset;
	u32 Architecture;

	NVTRACE_ENTER();
	assert(pd != NULL);

	if (pci_enable_device(pd)) {
		printk(KERN_ERR PFX "cannot enable PCI device\n");
		return -ENODEV;
	}

	/* enable IO and mem if not already done */
	pci_read_config_word(pd, PCI_COMMAND, &cmd);
	cmd |= (PCI_COMMAND_IO | PCI_COMMAND_MEMORY);
	pci_write_config_word(pd, PCI_COMMAND, cmd);

	nvidiafb_fix.mmio_start = pci_resource_start(pd, 0);
	nvidiafb_fix.mmio_len = pci_resource_len(pd, 0);

	REGS = ioremap(nvidiafb_fix.mmio_start, nvidiafb_fix.mmio_len);
	if (!REGS) {
		printk(KERN_ERR PFX "cannot ioremap MMIO base\n");
		return -ENODEV;
	}

	Chipset = nvidia_get_chipset(pd, REGS);
	Architecture = nvidia_get_arch(Chipset);
	if (Architecture == 0) {
		printk(KERN_ERR PFX "unknown NV_ARCH\n");
		goto err_out;
	}

	ret = aperture_remove_conflicting_pci_devices(pd, "nvidiafb");
	if (ret)
		goto err_out;

	info = framebuffer_alloc(sizeof(struct nvidia_par), &pd->dev);
	if (!info)
		goto err_out;

	par = info->par;
	par->pci_dev = pd;
	info->pixmap.addr = kzalloc(8 * 1024, GFP_KERNEL);

	if (info->pixmap.addr == NULL)
		goto err_out_kfree;

	if (pci_request_regions(pd, "nvidiafb")) {
		printk(KERN_ERR PFX "cannot request PCI regions\n");
		goto err_out_enable;
	}

	par->FlatPanel = flatpanel;
	if (flatpanel == 1)
		printk(KERN_INFO PFX "flatpanel support enabled\n");
	par->FPDither = fpdither;

	par->CRTCnumber = forceCRTC;
	par->FpScale = (!noscale);
	par->paneltweak = paneltweak;
	par->reverse_i2c = reverse_i2c;

	nvidiafb_fix.smem_start = pci_resource_start(pd, 1);

	par->REGS = REGS;

	par->Chipset = Chipset;
	par->Architecture = Architecture;

	sprintf(nvidiafb_fix.id, "NV%x", (pd->device & 0x0ff0) >> 4);

	if (NVCommonSetup(info))
		goto err_out_free_base0;

	par->FbAddress = nvidiafb_fix.smem_start;
	par->FbMapSize = par->RamAmountKBytes * 1024;
	if (vram && vram * 1024 * 1024 < par->FbMapSize)
		par->FbMapSize = vram * 1024 * 1024;

	/* Limit amount of vram to 64 MB */
	if (par->FbMapSize > 64 * 1024 * 1024)
		par->FbMapSize = 64 * 1024 * 1024;

	if(par->Architecture >= NV_ARCH_40)
  	        par->FbUsableSize = par->FbMapSize - (560 * 1024);
	else
		par->FbUsableSize = par->FbMapSize - (128 * 1024);
	par->ScratchBufferSize = (par->Architecture < NV_ARCH_10) ? 8 * 1024 :
	    16 * 1024;
	par->ScratchBufferStart = par->FbUsableSize - par->ScratchBufferSize;
	par->CursorStart = par->FbUsableSize + (32 * 1024);

	info->screen_base = ioremap_wc(nvidiafb_fix.smem_start,
				       par->FbMapSize);
	info->screen_size = par->FbUsableSize;
	nvidiafb_fix.smem_len = par->RamAmountKBytes * 1024;

	if (!info->screen_base) {
		printk(KERN_ERR PFX "cannot ioremap FB base\n");
		goto err_out_free_base1;
	}

	par->FbStart = info->screen_base;

	if (!nomtrr)
		par->wc_cookie = arch_phys_wc_add(nvidiafb_fix.smem_start,
						  par->RamAmountKBytes * 1024);

	info->fbops = &nvidia_fb_ops;
	info->fix = nvidiafb_fix;

	if (nvidia_set_fbinfo(info) < 0) {
		printk(KERN_ERR PFX "error setting initial video mode\n");
		goto err_out_iounmap_fb;
	}

	nvidia_save_vga(par, &par->SavedReg);

	pci_set_drvdata(pd, info);

	if (register_framebuffer(info) < 0) {
		printk(KERN_ERR PFX "error registering nVidia framebuffer\n");
		goto err_out_iounmap_fb;
	}

	if (backlight)
		nvidia_bl_init(par);

	printk(KERN_INFO PFX
	       "PCI nVidia %s framebuffer (%dMB @ 0x%lX)\n",
	       info->fix.id,
	       par->FbMapSize / (1024 * 1024), info->fix.smem_start);

	NVTRACE_LEAVE();
	return 0;

err_out_iounmap_fb:
	iounmap(info->screen_base);
err_out_free_base1:
	fb_destroy_modedb(info->monspecs.modedb);
	nvidia_delete_i2c_busses(par);
err_out_free_base0:
	pci_release_regions(pd);
err_out_enable:
	kfree(info->pixmap.addr);
err_out_kfree:
	framebuffer_release(info);
err_out:
	iounmap(REGS);
	return -ENODEV;
}

static void nvidiafb_remove(struct pci_dev *pd)
{
	struct fb_info *info = pci_get_drvdata(pd);
	struct nvidia_par *par = info->par;

	NVTRACE_ENTER();

	nvidia_bl_exit(par);
	unregister_framebuffer(info);

	arch_phys_wc_del(par->wc_cookie);
	iounmap(info->screen_base);
	fb_destroy_modedb(info->monspecs.modedb);
	nvidia_delete_i2c_busses(par);
	iounmap(par->REGS);
	pci_release_regions(pd);
	kfree(info->pixmap.addr);
	framebuffer_release(info);
	NVTRACE_LEAVE();
}

/* ------------------------------------------------------------------------- *
 *
 * initialization
 *
 * ------------------------------------------------------------------------- */

#ifndef MODULE
static int nvidiafb_setup(char *options)
{
	char *this_opt;

	NVTRACE_ENTER();
	if (!options || !*options)
		return 0;

	while ((this_opt = strsep(&options, ",")) != NULL) {
		if (!strncmp(this_opt, "forceCRTC", 9)) {
			char *p;

			p = this_opt + 9;
			if (!*p || !*(++p))
				continue;
			forceCRTC = *p - '0';
			if (forceCRTC < 0 || forceCRTC > 1)
				forceCRTC = -1;
		} else if (!strncmp(this_opt, "flatpanel", 9)) {
			flatpanel = 1;
		} else if (!strncmp(this_opt, "hwcur", 5)) {
			hwcur = 1;
		} else if (!strncmp(this_opt, "noaccel", 6)) {
			noaccel = 1;
		} else if (!strncmp(this_opt, "noscale", 7)) {
			noscale = 1;
		} else if (!strncmp(this_opt, "reverse_i2c", 11)) {
			reverse_i2c = 1;
		} else if (!strncmp(this_opt, "paneltweak:", 11)) {
			paneltweak = simple_strtoul(this_opt+11, NULL, 0);
		} else if (!strncmp(this_opt, "vram:", 5)) {
			vram = simple_strtoul(this_opt+5, NULL, 0);
		} else if (!strncmp(this_opt, "backlight:", 10)) {
			backlight = simple_strtoul(this_opt+10, NULL, 0);
		} else if (!strncmp(this_opt, "nomtrr", 6)) {
			nomtrr = true;
		} else if (!strncmp(this_opt, "fpdither:", 9)) {
			fpdither = simple_strtol(this_opt+9, NULL, 0);
		} else if (!strncmp(this_opt, "bpp:", 4)) {
			bpp = simple_strtoul(this_opt+4, NULL, 0);
		} else
			mode_option = this_opt;
	}
	NVTRACE_LEAVE();
	return 0;
}
#endif				/* !MODULE */

static struct pci_driver nvidiafb_driver = {
	.name      = "nvidiafb",
	.id_table  = nvidiafb_pci_tbl,
	.probe     = nvidiafb_probe,
	.driver.pm = &nvidiafb_pm_ops,
	.remove    = nvidiafb_remove,
};

/* ------------------------------------------------------------------------- *
 *
 * modularization
 *
 * ------------------------------------------------------------------------- */

static int nvidiafb_init(void)
{
#ifndef MODULE
	char *option = NULL;
#endif

	if (fb_modesetting_disabled("nvidiafb"))
		return -ENODEV;

#ifndef MODULE
	if (fb_get_options("nvidiafb", &option))
		return -ENODEV;
	nvidiafb_setup(option);
#endif
	return pci_register_driver(&nvidiafb_driver);
}

module_init(nvidiafb_init);

static void __exit nvidiafb_exit(void)
{
	pci_unregister_driver(&nvidiafb_driver);
}

module_exit(nvidiafb_exit);

module_param(flatpanel, int, 0);
MODULE_PARM_DESC(flatpanel,
		 "Enables experimental flat panel support for some chipsets. "
		 "(0=disabled, 1=enabled, -1=autodetect) (default=-1)");
module_param(fpdither, int, 0);
MODULE_PARM_DESC(fpdither,
		 "Enables dithering of flat panel for 6 bits panels. "
		 "(0=disabled, 1=enabled, -1=autodetect) (default=-1)");
module_param(hwcur, int, 0);
MODULE_PARM_DESC(hwcur,
		 "Enables hardware cursor implementation. (0 or 1=enabled) "
		 "(default=0)");
module_param(noaccel, int, 0);
MODULE_PARM_DESC(noaccel,
		 "Disables hardware acceleration. (0 or 1=disable) "
		 "(default=0)");
module_param(noscale, int, 0);
MODULE_PARM_DESC(noscale,
		 "Disables screen scaling. (0 or 1=disable) "
		 "(default=0, do scaling)");
module_param(paneltweak, int, 0);
MODULE_PARM_DESC(paneltweak,
		 "Tweak display settings for flatpanels. "
		 "(default=0, no tweaks)");
module_param(forceCRTC, int, 0);
MODULE_PARM_DESC(forceCRTC,
		 "Forces usage of a particular CRTC in case autodetection "
		 "fails. (0 or 1) (default=autodetect)");
module_param(vram, int, 0);
MODULE_PARM_DESC(vram,
		 "amount of framebuffer memory to remap in MiB"
		 "(default=0 - remap entire memory)");
module_param(mode_option, charp, 0);
MODULE_PARM_DESC(mode_option, "Specify initial video mode");
module_param(bpp, int, 0);
MODULE_PARM_DESC(bpp, "pixel width in bits"
		 "(default=8)");
module_param(reverse_i2c, int, 0);
MODULE_PARM_DESC(reverse_i2c, "reverse port assignment of the i2c bus");
module_param(nomtrr, bool, false);
MODULE_PARM_DESC(nomtrr, "Disables MTRR support (0 or 1=disabled) "
		 "(default=0)");

MODULE_AUTHOR("Antonino Daplas");
MODULE_DESCRIPTION("Framebuffer driver for nVidia graphics chipset");
MODULE_LICENSE("GPL");