Contributors: 13
Author Tokens Token Proportion Commits Commit Proportion
David Daney 1479 69.34% 3 15.79%
Carlos Munoz 380 17.82% 1 5.26%
Aaro Koskinen 100 4.69% 3 15.79%
Steven J. Hill 95 4.45% 2 10.53%
Sebastian Andrzej Siewior 50 2.34% 1 5.26%
Wim Van Sebroeck 9 0.42% 2 10.53%
Lukas Bulwahn 6 0.28% 1 5.26%
Dawei Li 4 0.19% 1 5.26%
David Howells 3 0.14% 1 5.26%
Marc Zyngier 3 0.14% 1 5.26%
Guenter Roeck 2 0.09% 1 5.26%
Venkat Subbiah 1 0.05% 1 5.26%
Joe Perches 1 0.05% 1 5.26%
Total 2133 19


// SPDX-License-Identifier: GPL-2.0+
/*
 * Octeon Watchdog driver
 *
 * Copyright (C) 2007-2017 Cavium, Inc.
 *
 * Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>.
 *
 * Some parts derived from wdt.c
 *
 *	(c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
 *						All Rights Reserved.
 *
 *	Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
 *	warranty for any of this software. This material is provided
 *	"AS-IS" and at no charge.
 *
 *	(c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk>
 *
 * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
 * For most systems this is less than 10 seconds, so to allow for
 * software to request longer watchdog heartbeats, we maintain software
 * counters to count multiples of the base rate.  If the system locks
 * up in such a manner that we can not run the software counters, the
 * only result is a watchdog reset sooner than was requested.  But
 * that is OK, because in this case userspace would likely not be able
 * to do anything anyhow.
 *
 * The hardware watchdog interval we call the period.  The OCTEON
 * watchdog goes through several stages, after the first period an
 * irq is asserted, then if it is not reset, after the next period NMI
 * is asserted, then after an additional period a chip wide soft reset.
 * So for the software counters, we reset watchdog after each period
 * and decrement the counter.  But for the last two periods we need to
 * let the watchdog progress to the NMI stage so we disable the irq
 * and let it proceed.  Once in the NMI, we print the register state
 * to the serial port and then wait for the reset.
 *
 * A watchdog is maintained for each CPU in the system, that way if
 * one CPU suffers a lockup, we also get a register dump and reset.
 * The userspace ping resets the watchdog on all CPUs.
 *
 * Before userspace opens the watchdog device, we still run the
 * watchdogs to catch any lockups that may be kernel related.
 *
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/interrupt.h>
#include <linux/watchdog.h>
#include <linux/cpumask.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/cpu.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>

#include <asm/mipsregs.h>
#include <asm/uasm.h>

#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-boot-vector.h>
#include <asm/octeon/cvmx-ciu2-defs.h>
#include <asm/octeon/cvmx-rst-defs.h>

/* Watchdog interrupt major block number (8 MSBs of intsn) */
#define WD_BLOCK_NUMBER		0x01

static int divisor;

/* The count needed to achieve timeout_sec. */
static unsigned int timeout_cnt;

/* The maximum period supported. */
static unsigned int max_timeout_sec;

/* The current period.  */
static unsigned int timeout_sec;

/* Set to non-zero when userspace countdown mode active */
static bool do_countdown;
static unsigned int countdown_reset;
static unsigned int per_cpu_countdown[NR_CPUS];

static cpumask_t irq_enabled_cpus;

#define WD_TIMO 60			/* Default heartbeat = 60 seconds */

#define CVMX_GSERX_SCRATCH(offset) (CVMX_ADD_IO_SEG(0x0001180090000020ull) + ((offset) & 15) * 0x1000000ull)

static int heartbeat = WD_TIMO;
module_param(heartbeat, int, 0444);
MODULE_PARM_DESC(heartbeat,
	"Watchdog heartbeat in seconds. (0 < heartbeat, default="
				__MODULE_STRING(WD_TIMO) ")");

static bool nowayout = WATCHDOG_NOWAYOUT;
module_param(nowayout, bool, 0444);
MODULE_PARM_DESC(nowayout,
	"Watchdog cannot be stopped once started (default="
				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");

static int disable;
module_param(disable, int, 0444);
MODULE_PARM_DESC(disable,
	"Disable the watchdog entirely (default=0)");

static struct cvmx_boot_vector_element *octeon_wdt_bootvector;

void octeon_wdt_nmi_stage2(void);

static int cpu2core(int cpu)
{
#ifdef CONFIG_SMP
	return cpu_logical_map(cpu) & 0x3f;
#else
	return cvmx_get_core_num();
#endif
}

/**
 * octeon_wdt_poke_irq - Poke the watchdog when an interrupt is received
 *
 * @cpl:
 * @dev_id:
 *
 * Returns
 */
static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
{
	int cpu = raw_smp_processor_id();
	unsigned int core = cpu2core(cpu);
	int node = cpu_to_node(cpu);

	if (do_countdown) {
		if (per_cpu_countdown[cpu] > 0) {
			/* We're alive, poke the watchdog */
			cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
			per_cpu_countdown[cpu]--;
		} else {
			/* Bad news, you are about to reboot. */
			disable_irq_nosync(cpl);
			cpumask_clear_cpu(cpu, &irq_enabled_cpus);
		}
	} else {
		/* Not open, just ping away... */
		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
	}
	return IRQ_HANDLED;
}

/* From setup.c */
extern int prom_putchar(char c);

/**
 * octeon_wdt_write_string - Write a string to the uart
 *
 * @str:        String to write
 */
static void octeon_wdt_write_string(const char *str)
{
	/* Just loop writing one byte at a time */
	while (*str)
		prom_putchar(*str++);
}

/**
 * octeon_wdt_write_hex() - Write a hex number out of the uart
 *
 * @value:      Number to display
 * @digits:     Number of digits to print (1 to 16)
 */
static void octeon_wdt_write_hex(u64 value, int digits)
{
	int d;
	int v;

	for (d = 0; d < digits; d++) {
		v = (value >> ((digits - d - 1) * 4)) & 0xf;
		if (v >= 10)
			prom_putchar('a' + v - 10);
		else
			prom_putchar('0' + v);
	}
}

static const char reg_name[][3] = {
	"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
	"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
	"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
	"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
};

/**
 * octeon_wdt_nmi_stage3:
 *
 * NMI stage 3 handler. NMIs are handled in the following manner:
 * 1) The first NMI handler enables CVMSEG and transfers from
 * the bootbus region into normal memory. It is careful to not
 * destroy any registers.
 * 2) The second stage handler uses CVMSEG to save the registers
 * and create a stack for C code. It then calls the third level
 * handler with one argument, a pointer to the register values.
 * 3) The third, and final, level handler is the following C
 * function that prints out some useful infomration.
 *
 * @reg:    Pointer to register state before the NMI
 */
void octeon_wdt_nmi_stage3(u64 reg[32])
{
	u64 i;

	unsigned int coreid = cvmx_get_core_num();
	/*
	 * Save status and cause early to get them before any changes
	 * might happen.
	 */
	u64 cp0_cause = read_c0_cause();
	u64 cp0_status = read_c0_status();
	u64 cp0_error_epc = read_c0_errorepc();
	u64 cp0_epc = read_c0_epc();

	/* Delay so output from all cores output is not jumbled together. */
	udelay(85000 * coreid);

	octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
	octeon_wdt_write_hex(coreid, 2);
	octeon_wdt_write_string(" ***\r\n");
	for (i = 0; i < 32; i++) {
		octeon_wdt_write_string("\t");
		octeon_wdt_write_string(reg_name[i]);
		octeon_wdt_write_string("\t0x");
		octeon_wdt_write_hex(reg[i], 16);
		if (i & 1)
			octeon_wdt_write_string("\r\n");
	}
	octeon_wdt_write_string("\terr_epc\t0x");
	octeon_wdt_write_hex(cp0_error_epc, 16);

	octeon_wdt_write_string("\tepc\t0x");
	octeon_wdt_write_hex(cp0_epc, 16);
	octeon_wdt_write_string("\r\n");

	octeon_wdt_write_string("\tstatus\t0x");
	octeon_wdt_write_hex(cp0_status, 16);
	octeon_wdt_write_string("\tcause\t0x");
	octeon_wdt_write_hex(cp0_cause, 16);
	octeon_wdt_write_string("\r\n");

	/* The CIU register is different for each Octeon model. */
	if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
		octeon_wdt_write_string("\tsrc_wd\t0x");
		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_WDOG(coreid)), 16);
		octeon_wdt_write_string("\ten_wd\t0x");
		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_WDOG(coreid)), 16);
		octeon_wdt_write_string("\r\n");
		octeon_wdt_write_string("\tsrc_rml\t0x");
		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_RML(coreid)), 16);
		octeon_wdt_write_string("\ten_rml\t0x");
		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_RML(coreid)), 16);
		octeon_wdt_write_string("\r\n");
		octeon_wdt_write_string("\tsum\t0x");
		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SUM_PPX_IP2(coreid)), 16);
		octeon_wdt_write_string("\r\n");
	} else if (!octeon_has_feature(OCTEON_FEATURE_CIU3)) {
		octeon_wdt_write_string("\tsum0\t0x");
		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
		octeon_wdt_write_string("\ten0\t0x");
		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
		octeon_wdt_write_string("\r\n");
	}

	octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");

	/*
	 * G-30204: We must trigger a soft reset before watchdog
	 * does an incomplete job of doing it.
	 */
	if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX)) {
		u64 scr;
		unsigned int node = cvmx_get_node_num();
		unsigned int lcore = cvmx_get_local_core_num();
		union cvmx_ciu_wdogx ciu_wdog;

		/*
		 * Wait for other cores to print out information, but
		 * not too long.  Do the soft reset before watchdog
		 * can trigger it.
		 */
		do {
			ciu_wdog.u64 = cvmx_read_csr_node(node, CVMX_CIU_WDOGX(lcore));
		} while (ciu_wdog.s.cnt > 0x10000);

		scr = cvmx_read_csr_node(0, CVMX_GSERX_SCRATCH(0));
		scr |= 1 << 11; /* Indicate watchdog in bit 11 */
		cvmx_write_csr_node(0, CVMX_GSERX_SCRATCH(0), scr);
		cvmx_write_csr_node(0, CVMX_RST_SOFT_RST, 1);
	}
}

static int octeon_wdt_cpu_to_irq(int cpu)
{
	unsigned int coreid;
	int node;
	int irq;

	coreid = cpu2core(cpu);
	node = cpu_to_node(cpu);

	if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
		struct irq_domain *domain;
		int hwirq;

		domain = octeon_irq_get_block_domain(node,
						     WD_BLOCK_NUMBER);
		hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | coreid;
		irq = irq_find_mapping(domain, hwirq);
	} else {
		irq = OCTEON_IRQ_WDOG0 + coreid;
	}
	return irq;
}

static int octeon_wdt_cpu_pre_down(unsigned int cpu)
{
	unsigned int core;
	int node;
	union cvmx_ciu_wdogx ciu_wdog;

	core = cpu2core(cpu);

	node = cpu_to_node(cpu);

	/* Poke the watchdog to clear out its state */
	cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);

	/* Disable the hardware. */
	ciu_wdog.u64 = 0;
	cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);

	free_irq(octeon_wdt_cpu_to_irq(cpu), octeon_wdt_poke_irq);
	return 0;
}

static int octeon_wdt_cpu_online(unsigned int cpu)
{
	unsigned int core;
	unsigned int irq;
	union cvmx_ciu_wdogx ciu_wdog;
	int node;
	struct irq_domain *domain;
	int hwirq;

	core = cpu2core(cpu);
	node = cpu_to_node(cpu);

	octeon_wdt_bootvector[core].target_ptr = (u64)octeon_wdt_nmi_stage2;

	/* Disable it before doing anything with the interrupts. */
	ciu_wdog.u64 = 0;
	cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);

	per_cpu_countdown[cpu] = countdown_reset;

	if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
		/* Must get the domain for the watchdog block */
		domain = octeon_irq_get_block_domain(node, WD_BLOCK_NUMBER);

		/* Get a irq for the wd intsn (hardware interrupt) */
		hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | core;
		irq = irq_create_mapping(domain, hwirq);
		irqd_set_trigger_type(irq_get_irq_data(irq),
				      IRQ_TYPE_EDGE_RISING);
	} else
		irq = OCTEON_IRQ_WDOG0 + core;

	if (request_irq(irq, octeon_wdt_poke_irq,
			IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
		panic("octeon_wdt: Couldn't obtain irq %d", irq);

	/* Must set the irq affinity here */
	if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
		irq_set_affinity(irq, cpumask_of(cpu));
	}

	cpumask_set_cpu(cpu, &irq_enabled_cpus);

	/* Poke the watchdog to clear out its state */
	cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);

	/* Finally enable the watchdog now that all handlers are installed */
	ciu_wdog.u64 = 0;
	ciu_wdog.s.len = timeout_cnt;
	ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
	cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);

	return 0;
}

static int octeon_wdt_ping(struct watchdog_device __always_unused *wdog)
{
	int cpu;
	int coreid;
	int node;

	if (disable)
		return 0;

	for_each_online_cpu(cpu) {
		coreid = cpu2core(cpu);
		node = cpu_to_node(cpu);
		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
		per_cpu_countdown[cpu] = countdown_reset;
		if ((countdown_reset || !do_countdown) &&
		    !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
			/* We have to enable the irq */
			enable_irq(octeon_wdt_cpu_to_irq(cpu));
			cpumask_set_cpu(cpu, &irq_enabled_cpus);
		}
	}
	return 0;
}

static void octeon_wdt_calc_parameters(int t)
{
	unsigned int periods;

	timeout_sec = max_timeout_sec;


	/*
	 * Find the largest interrupt period, that can evenly divide
	 * the requested heartbeat time.
	 */
	while ((t % timeout_sec) != 0)
		timeout_sec--;

	periods = t / timeout_sec;

	/*
	 * The last two periods are after the irq is disabled, and
	 * then to the nmi, so we subtract them off.
	 */

	countdown_reset = periods > 2 ? periods - 2 : 0;
	heartbeat = t;
	timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * timeout_sec) >> 8;
}

static int octeon_wdt_set_timeout(struct watchdog_device *wdog,
				  unsigned int t)
{
	int cpu;
	int coreid;
	union cvmx_ciu_wdogx ciu_wdog;
	int node;

	if (t <= 0)
		return -1;

	octeon_wdt_calc_parameters(t);

	if (disable)
		return 0;

	for_each_online_cpu(cpu) {
		coreid = cpu2core(cpu);
		node = cpu_to_node(cpu);
		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
		ciu_wdog.u64 = 0;
		ciu_wdog.s.len = timeout_cnt;
		ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
		cvmx_write_csr_node(node, CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
	}
	octeon_wdt_ping(wdog); /* Get the irqs back on. */
	return 0;
}

static int octeon_wdt_start(struct watchdog_device *wdog)
{
	octeon_wdt_ping(wdog);
	do_countdown = 1;
	return 0;
}

static int octeon_wdt_stop(struct watchdog_device *wdog)
{
	do_countdown = 0;
	octeon_wdt_ping(wdog);
	return 0;
}

static const struct watchdog_info octeon_wdt_info = {
	.options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING,
	.identity = "OCTEON",
};

static const struct watchdog_ops octeon_wdt_ops = {
	.owner		= THIS_MODULE,
	.start		= octeon_wdt_start,
	.stop		= octeon_wdt_stop,
	.ping		= octeon_wdt_ping,
	.set_timeout	= octeon_wdt_set_timeout,
};

static struct watchdog_device octeon_wdt = {
	.info	= &octeon_wdt_info,
	.ops	= &octeon_wdt_ops,
};

static enum cpuhp_state octeon_wdt_online;
/**
 * octeon_wdt_init - Module/ driver initialization.
 *
 * Returns Zero on success
 */
static int __init octeon_wdt_init(void)
{
	int ret;

	octeon_wdt_bootvector = cvmx_boot_vector_get();
	if (!octeon_wdt_bootvector) {
		pr_err("Error: Cannot allocate boot vector.\n");
		return -ENOMEM;
	}

	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
		divisor = 0x200;
	else if (OCTEON_IS_MODEL(OCTEON_CN78XX))
		divisor = 0x400;
	else
		divisor = 0x100;

	/*
	 * Watchdog time expiration length = The 16 bits of LEN
	 * represent the most significant bits of a 24 bit decrementer
	 * that decrements every divisor cycle.
	 *
	 * Try for a timeout of 5 sec, if that fails a smaller number
	 * of even seconds,
	 */
	max_timeout_sec = 6;
	do {
		max_timeout_sec--;
		timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * max_timeout_sec) >> 8;
	} while (timeout_cnt > 65535);

	BUG_ON(timeout_cnt == 0);

	octeon_wdt_calc_parameters(heartbeat);

	pr_info("Initial granularity %d Sec\n", timeout_sec);

	octeon_wdt.timeout	= timeout_sec;
	octeon_wdt.max_timeout	= UINT_MAX;

	watchdog_set_nowayout(&octeon_wdt, nowayout);

	ret = watchdog_register_device(&octeon_wdt);
	if (ret) {
		pr_err("watchdog_register_device() failed: %d\n", ret);
		return ret;
	}

	if (disable) {
		pr_notice("disabled\n");
		return 0;
	}

	cpumask_clear(&irq_enabled_cpus);

	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "watchdog/octeon:online",
				octeon_wdt_cpu_online, octeon_wdt_cpu_pre_down);
	if (ret < 0)
		goto err;
	octeon_wdt_online = ret;
	return 0;
err:
	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
	watchdog_unregister_device(&octeon_wdt);
	return ret;
}

/**
 * octeon_wdt_cleanup - Module / driver shutdown
 */
static void __exit octeon_wdt_cleanup(void)
{
	watchdog_unregister_device(&octeon_wdt);

	if (disable)
		return;

	cpuhp_remove_state(octeon_wdt_online);

	/*
	 * Disable the boot-bus memory, the code it points to is soon
	 * to go missing.
	 */
	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
}

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cavium Inc. <support@cavium.com>");
MODULE_DESCRIPTION("Cavium Inc. OCTEON Watchdog driver.");
module_init(octeon_wdt_init);
module_exit(octeon_wdt_cleanup);