Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kent Overstreet | 5385 | 98.12% | 110 | 90.91% |
Brian Foster | 45 | 0.82% | 1 | 0.83% |
Linus Torvalds | 33 | 0.60% | 2 | 1.65% |
Hongbo Li | 10 | 0.18% | 1 | 0.83% |
Herve Codina | 7 | 0.13% | 1 | 0.83% |
Nathan Chancellor | 2 | 0.04% | 1 | 0.83% |
Qi Zheng | 2 | 0.04% | 1 | 0.83% |
Trond Myklebust | 2 | 0.04% | 2 | 1.65% |
Roman Gushchin | 1 | 0.02% | 1 | 0.83% |
Mikulas Patocka | 1 | 0.02% | 1 | 0.83% |
Total | 5488 | 121 |
// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "btree_cache.h" #include "btree_iter.h" #include "btree_key_cache.h" #include "btree_locking.h" #include "btree_update.h" #include "errcode.h" #include "error.h" #include "journal.h" #include "journal_reclaim.h" #include "trace.h" #include <linux/sched/mm.h> static inline bool btree_uses_pcpu_readers(enum btree_id id) { return id == BTREE_ID_subvolumes; } static struct kmem_cache *bch2_key_cache; static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg, const void *obj) { const struct bkey_cached *ck = obj; const struct bkey_cached_key *key = arg->key; return ck->key.btree_id != key->btree_id || !bpos_eq(ck->key.pos, key->pos); } static const struct rhashtable_params bch2_btree_key_cache_params = { .head_offset = offsetof(struct bkey_cached, hash), .key_offset = offsetof(struct bkey_cached, key), .key_len = sizeof(struct bkey_cached_key), .obj_cmpfn = bch2_btree_key_cache_cmp_fn, .automatic_shrinking = true, }; static inline void btree_path_cached_set(struct btree_trans *trans, struct btree_path *path, struct bkey_cached *ck, enum btree_node_locked_type lock_held) { path->l[0].lock_seq = six_lock_seq(&ck->c.lock); path->l[0].b = (void *) ck; mark_btree_node_locked(trans, path, 0, lock_held); } __flatten inline struct bkey_cached * bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos) { struct bkey_cached_key key = { .btree_id = btree_id, .pos = pos, }; return rhashtable_lookup_fast(&c->btree_key_cache.table, &key, bch2_btree_key_cache_params); } static bool bkey_cached_lock_for_evict(struct bkey_cached *ck) { if (!six_trylock_intent(&ck->c.lock)) return false; if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { six_unlock_intent(&ck->c.lock); return false; } if (!six_trylock_write(&ck->c.lock)) { six_unlock_intent(&ck->c.lock); return false; } return true; } static void bkey_cached_evict(struct btree_key_cache *c, struct bkey_cached *ck) { BUG_ON(rhashtable_remove_fast(&c->table, &ck->hash, bch2_btree_key_cache_params)); memset(&ck->key, ~0, sizeof(ck->key)); atomic_long_dec(&c->nr_keys); } static void bkey_cached_free(struct btree_key_cache *bc, struct bkey_cached *ck) { struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags)); ck->btree_trans_barrier_seq = start_poll_synchronize_srcu(&c->btree_trans_barrier); if (ck->c.lock.readers) { list_move_tail(&ck->list, &bc->freed_pcpu); bc->nr_freed_pcpu++; } else { list_move_tail(&ck->list, &bc->freed_nonpcpu); bc->nr_freed_nonpcpu++; } atomic_long_inc(&bc->nr_freed); kfree(ck->k); ck->k = NULL; ck->u64s = 0; six_unlock_write(&ck->c.lock); six_unlock_intent(&ck->c.lock); } #ifdef __KERNEL__ static void __bkey_cached_move_to_freelist_ordered(struct btree_key_cache *bc, struct bkey_cached *ck) { struct bkey_cached *pos; bc->nr_freed_nonpcpu++; list_for_each_entry_reverse(pos, &bc->freed_nonpcpu, list) { if (ULONG_CMP_GE(ck->btree_trans_barrier_seq, pos->btree_trans_barrier_seq)) { list_move(&ck->list, &pos->list); return; } } list_move(&ck->list, &bc->freed_nonpcpu); } #endif static void bkey_cached_move_to_freelist(struct btree_key_cache *bc, struct bkey_cached *ck) { BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags)); if (!ck->c.lock.readers) { #ifdef __KERNEL__ struct btree_key_cache_freelist *f; bool freed = false; preempt_disable(); f = this_cpu_ptr(bc->pcpu_freed); if (f->nr < ARRAY_SIZE(f->objs)) { f->objs[f->nr++] = ck; freed = true; } preempt_enable(); if (!freed) { mutex_lock(&bc->lock); preempt_disable(); f = this_cpu_ptr(bc->pcpu_freed); while (f->nr > ARRAY_SIZE(f->objs) / 2) { struct bkey_cached *ck2 = f->objs[--f->nr]; __bkey_cached_move_to_freelist_ordered(bc, ck2); } preempt_enable(); __bkey_cached_move_to_freelist_ordered(bc, ck); mutex_unlock(&bc->lock); } #else mutex_lock(&bc->lock); list_move_tail(&ck->list, &bc->freed_nonpcpu); bc->nr_freed_nonpcpu++; mutex_unlock(&bc->lock); #endif } else { mutex_lock(&bc->lock); list_move_tail(&ck->list, &bc->freed_pcpu); bc->nr_freed_pcpu++; mutex_unlock(&bc->lock); } } static void bkey_cached_free_fast(struct btree_key_cache *bc, struct bkey_cached *ck) { struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); ck->btree_trans_barrier_seq = start_poll_synchronize_srcu(&c->btree_trans_barrier); list_del_init(&ck->list); atomic_long_inc(&bc->nr_freed); kfree(ck->k); ck->k = NULL; ck->u64s = 0; bkey_cached_move_to_freelist(bc, ck); six_unlock_write(&ck->c.lock); six_unlock_intent(&ck->c.lock); } static struct bkey_cached *__bkey_cached_alloc(unsigned key_u64s, gfp_t gfp) { struct bkey_cached *ck = kmem_cache_zalloc(bch2_key_cache, gfp); if (unlikely(!ck)) return NULL; ck->k = kmalloc(key_u64s * sizeof(u64), gfp); if (unlikely(!ck->k)) { kmem_cache_free(bch2_key_cache, ck); return NULL; } ck->u64s = key_u64s; return ck; } static struct bkey_cached * bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path, unsigned key_u64s) { struct bch_fs *c = trans->c; struct btree_key_cache *bc = &c->btree_key_cache; struct bkey_cached *ck = NULL; bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id); int ret; if (!pcpu_readers) { #ifdef __KERNEL__ struct btree_key_cache_freelist *f; preempt_disable(); f = this_cpu_ptr(bc->pcpu_freed); if (f->nr) ck = f->objs[--f->nr]; preempt_enable(); if (!ck) { mutex_lock(&bc->lock); preempt_disable(); f = this_cpu_ptr(bc->pcpu_freed); while (!list_empty(&bc->freed_nonpcpu) && f->nr < ARRAY_SIZE(f->objs) / 2) { ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list); list_del_init(&ck->list); bc->nr_freed_nonpcpu--; f->objs[f->nr++] = ck; } ck = f->nr ? f->objs[--f->nr] : NULL; preempt_enable(); mutex_unlock(&bc->lock); } #else mutex_lock(&bc->lock); if (!list_empty(&bc->freed_nonpcpu)) { ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list); list_del_init(&ck->list); bc->nr_freed_nonpcpu--; } mutex_unlock(&bc->lock); #endif } else { mutex_lock(&bc->lock); if (!list_empty(&bc->freed_pcpu)) { ck = list_last_entry(&bc->freed_pcpu, struct bkey_cached, list); list_del_init(&ck->list); bc->nr_freed_pcpu--; } mutex_unlock(&bc->lock); } if (ck) { ret = btree_node_lock_nopath(trans, &ck->c, SIX_LOCK_intent, _THIS_IP_); if (unlikely(ret)) { bkey_cached_move_to_freelist(bc, ck); return ERR_PTR(ret); } btree_path_cached_set(trans, path, ck, BTREE_NODE_INTENT_LOCKED); ret = bch2_btree_node_lock_write(trans, path, &ck->c); if (unlikely(ret)) { btree_node_unlock(trans, path, 0); bkey_cached_move_to_freelist(bc, ck); return ERR_PTR(ret); } return ck; } ck = allocate_dropping_locks(trans, ret, __bkey_cached_alloc(key_u64s, _gfp)); if (ret) { if (ck) kfree(ck->k); kmem_cache_free(bch2_key_cache, ck); return ERR_PTR(ret); } if (!ck) return NULL; INIT_LIST_HEAD(&ck->list); bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0); ck->c.cached = true; BUG_ON(!six_trylock_intent(&ck->c.lock)); BUG_ON(!six_trylock_write(&ck->c.lock)); return ck; } static struct bkey_cached * bkey_cached_reuse(struct btree_key_cache *c) { struct bucket_table *tbl; struct rhash_head *pos; struct bkey_cached *ck; unsigned i; mutex_lock(&c->lock); rcu_read_lock(); tbl = rht_dereference_rcu(c->table.tbl, &c->table); for (i = 0; i < tbl->size; i++) rht_for_each_entry_rcu(ck, pos, tbl, i, hash) { if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) && bkey_cached_lock_for_evict(ck)) { bkey_cached_evict(c, ck); goto out; } } ck = NULL; out: rcu_read_unlock(); mutex_unlock(&c->lock); return ck; } static int btree_key_cache_create(struct btree_trans *trans, struct btree_path *path, struct bkey_s_c k) { struct bch_fs *c = trans->c; struct btree_key_cache *bc = &c->btree_key_cache; /* * bch2_varint_decode can read past the end of the buffer by at * most 7 bytes (it won't be used): */ unsigned key_u64s = k.k->u64s + 1; /* * Allocate some extra space so that the transaction commit path is less * likely to have to reallocate, since that requires a transaction * restart: */ key_u64s = min(256U, (key_u64s * 3) / 2); key_u64s = roundup_pow_of_two(key_u64s); struct bkey_cached *ck = bkey_cached_alloc(trans, path, key_u64s); int ret = PTR_ERR_OR_ZERO(ck); if (ret) return ret; if (unlikely(!ck)) { ck = bkey_cached_reuse(bc); if (unlikely(!ck)) { bch_err(c, "error allocating memory for key cache item, btree %s", bch2_btree_id_str(path->btree_id)); return -BCH_ERR_ENOMEM_btree_key_cache_create; } } ck->c.level = 0; ck->c.btree_id = path->btree_id; ck->key.btree_id = path->btree_id; ck->key.pos = path->pos; ck->flags = 1U << BKEY_CACHED_ACCESSED; if (unlikely(key_u64s > ck->u64s)) { mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED); struct bkey_i *new_k = allocate_dropping_locks(trans, ret, kmalloc(key_u64s * sizeof(u64), _gfp)); if (unlikely(!new_k)) { bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u", bch2_btree_id_str(ck->key.btree_id), key_u64s); ret = -BCH_ERR_ENOMEM_btree_key_cache_fill; } else if (ret) { kfree(new_k); goto err; } kfree(ck->k); ck->k = new_k; ck->u64s = key_u64s; } bkey_reassemble(ck->k, k); ret = rhashtable_lookup_insert_fast(&bc->table, &ck->hash, bch2_btree_key_cache_params); if (unlikely(ret)) /* raced with another fill? */ goto err; atomic_long_inc(&bc->nr_keys); six_unlock_write(&ck->c.lock); enum six_lock_type lock_want = __btree_lock_want(path, 0); if (lock_want == SIX_LOCK_read) six_lock_downgrade(&ck->c.lock); btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want); path->uptodate = BTREE_ITER_UPTODATE; return 0; err: bkey_cached_free_fast(bc, ck); mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED); return ret; } static noinline int btree_key_cache_fill(struct btree_trans *trans, struct btree_path *ck_path, unsigned flags) { if (flags & BTREE_ITER_cached_nofill) { ck_path->uptodate = BTREE_ITER_UPTODATE; return 0; } struct bch_fs *c = trans->c; struct btree_iter iter; struct bkey_s_c k; int ret; bch2_trans_iter_init(trans, &iter, ck_path->btree_id, ck_path->pos, BTREE_ITER_key_cache_fill| BTREE_ITER_cached_nofill); iter.flags &= ~BTREE_ITER_with_journal; k = bch2_btree_iter_peek_slot(&iter); ret = bkey_err(k); if (ret) goto err; /* Recheck after btree lookup, before allocating: */ ret = bch2_btree_key_cache_find(c, ck_path->btree_id, ck_path->pos) ? -EEXIST : 0; if (unlikely(ret)) goto out; ret = btree_key_cache_create(trans, ck_path, k); if (ret) goto err; out: /* We're not likely to need this iterator again: */ bch2_set_btree_iter_dontneed(&iter); err: bch2_trans_iter_exit(trans, &iter); return ret; } static inline int btree_path_traverse_cached_fast(struct btree_trans *trans, struct btree_path *path) { struct bch_fs *c = trans->c; struct bkey_cached *ck; retry: ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos); if (!ck) return -ENOENT; enum six_lock_type lock_want = __btree_lock_want(path, 0); int ret = btree_node_lock(trans, path, (void *) ck, 0, lock_want, _THIS_IP_); if (ret) return ret; if (ck->key.btree_id != path->btree_id || !bpos_eq(ck->key.pos, path->pos)) { six_unlock_type(&ck->c.lock, lock_want); goto retry; } if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) set_bit(BKEY_CACHED_ACCESSED, &ck->flags); btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want); path->uptodate = BTREE_ITER_UPTODATE; return 0; } int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path, unsigned flags) { EBUG_ON(path->level); path->l[1].b = NULL; int ret; do { ret = btree_path_traverse_cached_fast(trans, path); if (unlikely(ret == -ENOENT)) ret = btree_key_cache_fill(trans, path, flags); } while (ret == -EEXIST); if (unlikely(ret)) { path->uptodate = BTREE_ITER_NEED_TRAVERSE; if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) { btree_node_unlock(trans, path, 0); path->l[0].b = ERR_PTR(ret); } } return ret; } static int btree_key_cache_flush_pos(struct btree_trans *trans, struct bkey_cached_key key, u64 journal_seq, unsigned commit_flags, bool evict) { struct bch_fs *c = trans->c; struct journal *j = &c->journal; struct btree_iter c_iter, b_iter; struct bkey_cached *ck = NULL; int ret; bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos, BTREE_ITER_slots| BTREE_ITER_intent| BTREE_ITER_all_snapshots); bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos, BTREE_ITER_cached| BTREE_ITER_intent); b_iter.flags &= ~BTREE_ITER_with_key_cache; ret = bch2_btree_iter_traverse(&c_iter); if (ret) goto out; ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b; if (!ck) goto out; if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { if (evict) goto evict; goto out; } if (journal_seq && ck->journal.seq != journal_seq) goto out; trans->journal_res.seq = ck->journal.seq; /* * If we're at the end of the journal, we really want to free up space * in the journal right away - we don't want to pin that old journal * sequence number with a new btree node write, we want to re-journal * the update */ if (ck->journal.seq == journal_last_seq(j)) commit_flags |= BCH_WATERMARK_reclaim; if (ck->journal.seq != journal_last_seq(j) || !test_bit(JOURNAL_space_low, &c->journal.flags)) commit_flags |= BCH_TRANS_COMMIT_no_journal_res; ret = bch2_btree_iter_traverse(&b_iter) ?: bch2_trans_update(trans, &b_iter, ck->k, BTREE_UPDATE_key_cache_reclaim| BTREE_UPDATE_internal_snapshot_node| BTREE_TRIGGER_norun) ?: bch2_trans_commit(trans, NULL, NULL, BCH_TRANS_COMMIT_no_check_rw| BCH_TRANS_COMMIT_no_enospc| commit_flags); bch2_fs_fatal_err_on(ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart) && !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) && !bch2_journal_error(j), c, "flushing key cache: %s", bch2_err_str(ret)); if (ret) goto out; bch2_journal_pin_drop(j, &ck->journal); struct btree_path *path = btree_iter_path(trans, &c_iter); BUG_ON(!btree_node_locked(path, 0)); if (!evict) { if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { clear_bit(BKEY_CACHED_DIRTY, &ck->flags); atomic_long_dec(&c->btree_key_cache.nr_dirty); } } else { struct btree_path *path2; unsigned i; evict: trans_for_each_path(trans, path2, i) if (path2 != path) __bch2_btree_path_unlock(trans, path2); bch2_btree_node_lock_write_nofail(trans, path, &ck->c); if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { clear_bit(BKEY_CACHED_DIRTY, &ck->flags); atomic_long_dec(&c->btree_key_cache.nr_dirty); } mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED); bkey_cached_evict(&c->btree_key_cache, ck); bkey_cached_free_fast(&c->btree_key_cache, ck); } out: bch2_trans_iter_exit(trans, &b_iter); bch2_trans_iter_exit(trans, &c_iter); return ret; } int bch2_btree_key_cache_journal_flush(struct journal *j, struct journal_entry_pin *pin, u64 seq) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct bkey_cached *ck = container_of(pin, struct bkey_cached, journal); struct bkey_cached_key key; struct btree_trans *trans = bch2_trans_get(c); int srcu_idx = srcu_read_lock(&c->btree_trans_barrier); int ret = 0; btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read); key = ck->key; if (ck->journal.seq != seq || !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { six_unlock_read(&ck->c.lock); goto unlock; } if (ck->seq != seq) { bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal, bch2_btree_key_cache_journal_flush); six_unlock_read(&ck->c.lock); goto unlock; } six_unlock_read(&ck->c.lock); ret = lockrestart_do(trans, btree_key_cache_flush_pos(trans, key, seq, BCH_TRANS_COMMIT_journal_reclaim, false)); unlock: srcu_read_unlock(&c->btree_trans_barrier, srcu_idx); bch2_trans_put(trans); return ret; } bool bch2_btree_insert_key_cached(struct btree_trans *trans, unsigned flags, struct btree_insert_entry *insert_entry) { struct bch_fs *c = trans->c; struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b; struct bkey_i *insert = insert_entry->k; bool kick_reclaim = false; BUG_ON(insert->k.u64s > ck->u64s); bkey_copy(ck->k, insert); if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags)); set_bit(BKEY_CACHED_DIRTY, &ck->flags); atomic_long_inc(&c->btree_key_cache.nr_dirty); if (bch2_nr_btree_keys_need_flush(c)) kick_reclaim = true; } /* * To minimize lock contention, we only add the journal pin here and * defer pin updates to the flush callback via ->seq. Be careful not to * update ->seq on nojournal commits because we don't want to update the * pin to a seq that doesn't include journal updates on disk. Otherwise * we risk losing the update after a crash. * * The only exception is if the pin is not active in the first place. We * have to add the pin because journal reclaim drives key cache * flushing. The flush callback will not proceed unless ->seq matches * the latest pin, so make sure it starts with a consistent value. */ if (!(insert_entry->flags & BTREE_UPDATE_nojournal) || !journal_pin_active(&ck->journal)) { ck->seq = trans->journal_res.seq; } bch2_journal_pin_add(&c->journal, trans->journal_res.seq, &ck->journal, bch2_btree_key_cache_journal_flush); if (kick_reclaim) journal_reclaim_kick(&c->journal); return true; } void bch2_btree_key_cache_drop(struct btree_trans *trans, struct btree_path *path) { struct bch_fs *c = trans->c; struct btree_key_cache *bc = &c->btree_key_cache; struct bkey_cached *ck = (void *) path->l[0].b; /* * We just did an update to the btree, bypassing the key cache: the key * cache key is now stale and must be dropped, even if dirty: */ if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { clear_bit(BKEY_CACHED_DIRTY, &ck->flags); atomic_long_dec(&c->btree_key_cache.nr_dirty); bch2_journal_pin_drop(&c->journal, &ck->journal); } bkey_cached_evict(bc, ck); bkey_cached_free_fast(bc, ck); mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED); btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); path->should_be_locked = false; } static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink, struct shrink_control *sc) { struct bch_fs *c = shrink->private_data; struct btree_key_cache *bc = &c->btree_key_cache; struct bucket_table *tbl; struct bkey_cached *ck, *t; size_t scanned = 0, freed = 0, nr = sc->nr_to_scan; unsigned start, flags; int srcu_idx; mutex_lock(&bc->lock); bc->requested_to_free += sc->nr_to_scan; srcu_idx = srcu_read_lock(&c->btree_trans_barrier); flags = memalloc_nofs_save(); /* * Newest freed entries are at the end of the list - once we hit one * that's too new to be freed, we can bail out: */ list_for_each_entry_safe(ck, t, &bc->freed_nonpcpu, list) { if (!poll_state_synchronize_srcu(&c->btree_trans_barrier, ck->btree_trans_barrier_seq)) break; list_del(&ck->list); six_lock_exit(&ck->c.lock); kmem_cache_free(bch2_key_cache, ck); atomic_long_dec(&bc->nr_freed); bc->nr_freed_nonpcpu--; bc->freed++; } list_for_each_entry_safe(ck, t, &bc->freed_pcpu, list) { if (!poll_state_synchronize_srcu(&c->btree_trans_barrier, ck->btree_trans_barrier_seq)) break; list_del(&ck->list); six_lock_exit(&ck->c.lock); kmem_cache_free(bch2_key_cache, ck); atomic_long_dec(&bc->nr_freed); bc->nr_freed_pcpu--; bc->freed++; } rcu_read_lock(); tbl = rht_dereference_rcu(bc->table.tbl, &bc->table); /* * Scanning is expensive while a rehash is in progress - most elements * will be on the new hashtable, if it's in progress * * A rehash could still start while we're scanning - that's ok, we'll * still see most elements. */ if (unlikely(tbl->nest)) { rcu_read_unlock(); srcu_read_unlock(&c->btree_trans_barrier, srcu_idx); return SHRINK_STOP; } if (bc->shrink_iter >= tbl->size) bc->shrink_iter = 0; start = bc->shrink_iter; do { struct rhash_head *pos, *next; pos = rht_ptr_rcu(&tbl->buckets[bc->shrink_iter]); while (!rht_is_a_nulls(pos)) { next = rht_dereference_bucket_rcu(pos->next, tbl, bc->shrink_iter); ck = container_of(pos, struct bkey_cached, hash); if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { bc->skipped_dirty++; } else if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) { clear_bit(BKEY_CACHED_ACCESSED, &ck->flags); bc->skipped_accessed++; } else if (!bkey_cached_lock_for_evict(ck)) { bc->skipped_lock_fail++; } else { bkey_cached_evict(bc, ck); bkey_cached_free(bc, ck); bc->moved_to_freelist++; freed++; } scanned++; if (scanned >= nr) break; pos = next; } bc->shrink_iter++; if (bc->shrink_iter >= tbl->size) bc->shrink_iter = 0; } while (scanned < nr && bc->shrink_iter != start); rcu_read_unlock(); memalloc_nofs_restore(flags); srcu_read_unlock(&c->btree_trans_barrier, srcu_idx); mutex_unlock(&bc->lock); return freed; } static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink, struct shrink_control *sc) { struct bch_fs *c = shrink->private_data; struct btree_key_cache *bc = &c->btree_key_cache; long nr = atomic_long_read(&bc->nr_keys) - atomic_long_read(&bc->nr_dirty); /* * Avoid hammering our shrinker too much if it's nearly empty - the * shrinker code doesn't take into account how big our cache is, if it's * mostly empty but the system is under memory pressure it causes nasty * lock contention: */ nr -= 128; return max(0L, nr); } void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc) { struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); struct bucket_table *tbl; struct bkey_cached *ck, *n; struct rhash_head *pos; LIST_HEAD(items); unsigned i; #ifdef __KERNEL__ int cpu; #endif shrinker_free(bc->shrink); mutex_lock(&bc->lock); /* * The loop is needed to guard against racing with rehash: */ while (atomic_long_read(&bc->nr_keys)) { rcu_read_lock(); tbl = rht_dereference_rcu(bc->table.tbl, &bc->table); if (tbl) { if (tbl->nest) { /* wait for in progress rehash */ rcu_read_unlock(); mutex_lock(&bc->table.mutex); mutex_unlock(&bc->table.mutex); rcu_read_lock(); continue; } for (i = 0; i < tbl->size; i++) while (pos = rht_ptr_rcu(&tbl->buckets[i]), !rht_is_a_nulls(pos)) { ck = container_of(pos, struct bkey_cached, hash); bkey_cached_evict(bc, ck); list_add(&ck->list, &items); } } rcu_read_unlock(); } #ifdef __KERNEL__ if (bc->pcpu_freed) { for_each_possible_cpu(cpu) { struct btree_key_cache_freelist *f = per_cpu_ptr(bc->pcpu_freed, cpu); for (i = 0; i < f->nr; i++) { ck = f->objs[i]; list_add(&ck->list, &items); } } } #endif BUG_ON(list_count_nodes(&bc->freed_pcpu) != bc->nr_freed_pcpu); BUG_ON(list_count_nodes(&bc->freed_nonpcpu) != bc->nr_freed_nonpcpu); list_splice(&bc->freed_pcpu, &items); list_splice(&bc->freed_nonpcpu, &items); mutex_unlock(&bc->lock); list_for_each_entry_safe(ck, n, &items, list) { cond_resched(); list_del(&ck->list); kfree(ck->k); six_lock_exit(&ck->c.lock); kmem_cache_free(bch2_key_cache, ck); } if (atomic_long_read(&bc->nr_dirty) && !bch2_journal_error(&c->journal) && test_bit(BCH_FS_was_rw, &c->flags)) panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n", atomic_long_read(&bc->nr_dirty)); if (atomic_long_read(&bc->nr_keys)) panic("btree key cache shutdown error: nr_keys nonzero (%li)\n", atomic_long_read(&bc->nr_keys)); if (bc->table_init_done) rhashtable_destroy(&bc->table); free_percpu(bc->pcpu_freed); } void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c) { mutex_init(&c->lock); INIT_LIST_HEAD(&c->freed_pcpu); INIT_LIST_HEAD(&c->freed_nonpcpu); } int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc) { struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); struct shrinker *shrink; #ifdef __KERNEL__ bc->pcpu_freed = alloc_percpu(struct btree_key_cache_freelist); if (!bc->pcpu_freed) return -BCH_ERR_ENOMEM_fs_btree_cache_init; #endif if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params)) return -BCH_ERR_ENOMEM_fs_btree_cache_init; bc->table_init_done = true; shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name); if (!shrink) return -BCH_ERR_ENOMEM_fs_btree_cache_init; bc->shrink = shrink; shrink->count_objects = bch2_btree_key_cache_count; shrink->scan_objects = bch2_btree_key_cache_scan; shrink->batch = 1 << 14; shrink->seeks = 0; shrink->private_data = c; shrinker_register(shrink); return 0; } void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *bc) { struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); printbuf_tabstop_push(out, 24); printbuf_tabstop_push(out, 12); unsigned flags = memalloc_nofs_save(); mutex_lock(&bc->lock); prt_printf(out, "keys:\t%lu\r\n", atomic_long_read(&bc->nr_keys)); prt_printf(out, "dirty:\t%lu\r\n", atomic_long_read(&bc->nr_dirty)); prt_printf(out, "freelist:\t%lu\r\n", atomic_long_read(&bc->nr_freed)); prt_printf(out, "nonpcpu freelist:\t%zu\r\n", bc->nr_freed_nonpcpu); prt_printf(out, "pcpu freelist:\t%zu\r\n", bc->nr_freed_pcpu); prt_printf(out, "\nshrinker:\n"); prt_printf(out, "requested_to_free:\t%lu\r\n", bc->requested_to_free); prt_printf(out, "freed:\t%lu\r\n", bc->freed); prt_printf(out, "moved_to_freelist:\t%lu\r\n", bc->moved_to_freelist); prt_printf(out, "skipped_dirty:\t%lu\r\n", bc->skipped_dirty); prt_printf(out, "skipped_accessed:\t%lu\r\n", bc->skipped_accessed); prt_printf(out, "skipped_lock_fail:\t%lu\r\n", bc->skipped_lock_fail); prt_printf(out, "srcu seq:\t%lu\r\n", get_state_synchronize_srcu(&c->btree_trans_barrier)); struct bkey_cached *ck; unsigned iter = 0; list_for_each_entry(ck, &bc->freed_nonpcpu, list) { prt_printf(out, "freed_nonpcpu:\t%lu\r\n", ck->btree_trans_barrier_seq); if (++iter > 10) break; } iter = 0; list_for_each_entry(ck, &bc->freed_pcpu, list) { prt_printf(out, "freed_pcpu:\t%lu\r\n", ck->btree_trans_barrier_seq); if (++iter > 10) break; } mutex_unlock(&bc->lock); memalloc_flags_restore(flags); } void bch2_btree_key_cache_exit(void) { kmem_cache_destroy(bch2_key_cache); } int __init bch2_btree_key_cache_init(void) { bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT); if (!bch2_key_cache) return -ENOMEM; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1