Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kent Overstreet | 4393 | 97.67% | 68 | 95.77% |
Brian Foster | 103 | 2.29% | 2 | 2.82% |
Daniel Hill | 2 | 0.04% | 1 | 1.41% |
Total | 4498 | 71 |
// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "bkey_buf.h" #include "btree_locking.h" #include "btree_update.h" #include "btree_update_interior.h" #include "btree_write_buffer.h" #include "disk_accounting.h" #include "error.h" #include "extents.h" #include "journal.h" #include "journal_io.h" #include "journal_reclaim.h" #include <linux/prefetch.h> #include <linux/sort.h> static int bch2_btree_write_buffer_journal_flush(struct journal *, struct journal_entry_pin *, u64); static int bch2_journal_keys_to_write_buffer(struct bch_fs *, struct journal_buf *); static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r) { return (cmp_int(l->hi, r->hi) ?: cmp_int(l->mi, r->mi) ?: cmp_int(l->lo, r->lo)) >= 0; } static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r) { #ifdef CONFIG_X86_64 int cmp; asm("mov (%[l]), %%rax;" "sub (%[r]), %%rax;" "mov 8(%[l]), %%rax;" "sbb 8(%[r]), %%rax;" "mov 16(%[l]), %%rax;" "sbb 16(%[r]), %%rax;" : "=@ccae" (cmp) : [l] "r" (l), [r] "r" (r) : "rax", "cc"); EBUG_ON(cmp != __wb_key_ref_cmp(l, r)); return cmp; #else return __wb_key_ref_cmp(l, r); #endif } static int wb_key_seq_cmp(const void *_l, const void *_r) { const struct btree_write_buffered_key *l = _l; const struct btree_write_buffered_key *r = _r; return cmp_int(l->journal_seq, r->journal_seq); } /* Compare excluding idx, the low 24 bits: */ static inline bool wb_key_eq(const void *_l, const void *_r) { const struct wb_key_ref *l = _l; const struct wb_key_ref *r = _r; return !((l->hi ^ r->hi)| (l->mi ^ r->mi)| ((l->lo >> 24) ^ (r->lo >> 24))); } static noinline void wb_sort(struct wb_key_ref *base, size_t num) { size_t n = num, a = num / 2; if (!a) /* num < 2 || size == 0 */ return; for (;;) { size_t b, c, d; if (a) /* Building heap: sift down --a */ --a; else if (--n) /* Sorting: Extract root to --n */ swap(base[0], base[n]); else /* Sort complete */ break; /* * Sift element at "a" down into heap. This is the * "bottom-up" variant, which significantly reduces * calls to cmp_func(): we find the sift-down path all * the way to the leaves (one compare per level), then * backtrack to find where to insert the target element. * * Because elements tend to sift down close to the leaves, * this uses fewer compares than doing two per level * on the way down. (A bit more than half as many on * average, 3/4 worst-case.) */ for (b = a; c = 2*b + 1, (d = c + 1) < n;) b = wb_key_ref_cmp(base + c, base + d) ? c : d; if (d == n) /* Special case last leaf with no sibling */ b = c; /* Now backtrack from "b" to the correct location for "a" */ while (b != a && wb_key_ref_cmp(base + a, base + b)) b = (b - 1) / 2; c = b; /* Where "a" belongs */ while (b != a) { /* Shift it into place */ b = (b - 1) / 2; swap(base[b], base[c]); } } } static noinline int wb_flush_one_slowpath(struct btree_trans *trans, struct btree_iter *iter, struct btree_write_buffered_key *wb) { struct btree_path *path = btree_iter_path(trans, iter); bch2_btree_node_unlock_write(trans, path, path->l[0].b); trans->journal_res.seq = wb->journal_seq; return bch2_trans_update(trans, iter, &wb->k, BTREE_UPDATE_internal_snapshot_node) ?: bch2_trans_commit(trans, NULL, NULL, BCH_TRANS_COMMIT_no_enospc| BCH_TRANS_COMMIT_no_check_rw| BCH_TRANS_COMMIT_no_journal_res| BCH_TRANS_COMMIT_journal_reclaim); } static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter, struct btree_write_buffered_key *wb, bool *write_locked, bool *accounting_accumulated, size_t *fast) { struct btree_path *path; int ret; EBUG_ON(!wb->journal_seq); EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq); EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq); ret = bch2_btree_iter_traverse(iter); if (ret) return ret; if (!*accounting_accumulated && wb->k.k.type == KEY_TYPE_accounting) { struct bkey u; struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, iter), &u); if (k.k->type == KEY_TYPE_accounting) bch2_accounting_accumulate(bkey_i_to_accounting(&wb->k), bkey_s_c_to_accounting(k)); } *accounting_accumulated = true; /* * We can't clone a path that has write locks: unshare it now, before * set_pos and traverse(): */ if (btree_iter_path(trans, iter)->ref > 1) iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_); path = btree_iter_path(trans, iter); if (!*write_locked) { ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c); if (ret) return ret; bch2_btree_node_prep_for_write(trans, path, path->l[0].b); *write_locked = true; } if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) { *write_locked = false; return wb_flush_one_slowpath(trans, iter, wb); } bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq); (*fast)++; return 0; } /* * Update a btree with a write buffered key using the journal seq of the * original write buffer insert. * * It is not safe to rejournal the key once it has been inserted into the write * buffer because that may break recovery ordering. For example, the key may * have already been modified in the active write buffer in a seq that comes * before the current transaction. If we were to journal this key again and * crash, recovery would process updates in the wrong order. */ static int btree_write_buffered_insert(struct btree_trans *trans, struct btree_write_buffered_key *wb) { struct btree_iter iter; int ret; bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k), BTREE_ITER_cached|BTREE_ITER_intent); trans->journal_res.seq = wb->journal_seq; ret = bch2_btree_iter_traverse(&iter) ?: bch2_trans_update(trans, &iter, &wb->k, BTREE_UPDATE_internal_snapshot_node); bch2_trans_iter_exit(trans, &iter); return ret; } static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb) { struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer); struct journal *j = &c->journal; if (!wb->inc.keys.nr) return; bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin, bch2_btree_write_buffer_journal_flush); darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr)); darray_resize(&wb->sorted, wb->flushing.keys.size); if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) { swap(wb->flushing.keys, wb->inc.keys); goto out; } size_t nr = min(darray_room(wb->flushing.keys), wb->sorted.size - wb->flushing.keys.nr); nr = min(nr, wb->inc.keys.nr); memcpy(&darray_top(wb->flushing.keys), wb->inc.keys.data, sizeof(wb->inc.keys.data[0]) * nr); memmove(wb->inc.keys.data, wb->inc.keys.data + nr, sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr)); wb->flushing.keys.nr += nr; wb->inc.keys.nr -= nr; out: if (!wb->inc.keys.nr) bch2_journal_pin_drop(j, &wb->inc.pin); else bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin, bch2_btree_write_buffer_journal_flush); if (j->watermark) { spin_lock(&j->lock); bch2_journal_set_watermark(j); spin_unlock(&j->lock); } BUG_ON(wb->sorted.size < wb->flushing.keys.nr); } static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans) { struct bch_fs *c = trans->c; struct journal *j = &c->journal; struct btree_write_buffer *wb = &c->btree_write_buffer; struct btree_iter iter = { NULL }; size_t overwritten = 0, fast = 0, slowpath = 0, could_not_insert = 0; bool write_locked = false; bool accounting_replay_done = test_bit(BCH_FS_accounting_replay_done, &c->flags); int ret = 0; bch2_trans_unlock(trans); bch2_trans_begin(trans); mutex_lock(&wb->inc.lock); move_keys_from_inc_to_flushing(wb); mutex_unlock(&wb->inc.lock); for (size_t i = 0; i < wb->flushing.keys.nr; i++) { wb->sorted.data[i].idx = i; wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree; memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos)); } wb->sorted.nr = wb->flushing.keys.nr; /* * We first sort so that we can detect and skip redundant updates, and * then we attempt to flush in sorted btree order, as this is most * efficient. * * However, since we're not flushing in the order they appear in the * journal we won't be able to drop our journal pin until everything is * flushed - which means this could deadlock the journal if we weren't * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail * if it would block taking a journal reservation. * * If that happens, simply skip the key so we can optimistically insert * as many keys as possible in the fast path. */ wb_sort(wb->sorted.data, wb->sorted.nr); darray_for_each(wb->sorted, i) { struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx]; for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++) prefetch(&wb->flushing.keys.data[n->idx]); BUG_ON(!k->journal_seq); if (!accounting_replay_done && k->k.k.type == KEY_TYPE_accounting) { slowpath++; continue; } if (i + 1 < &darray_top(wb->sorted) && wb_key_eq(i, i + 1)) { struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx]; if (k->k.k.type == KEY_TYPE_accounting && n->k.k.type == KEY_TYPE_accounting) bch2_accounting_accumulate(bkey_i_to_accounting(&n->k), bkey_i_to_s_c_accounting(&k->k)); overwritten++; n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq); k->journal_seq = 0; continue; } if (write_locked) { struct btree_path *path = btree_iter_path(trans, &iter); if (path->btree_id != i->btree || bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) { bch2_btree_node_unlock_write(trans, path, path->l[0].b); write_locked = false; ret = lockrestart_do(trans, bch2_btree_iter_traverse(&iter) ?: bch2_foreground_maybe_merge(trans, iter.path, 0, BCH_WATERMARK_reclaim| BCH_TRANS_COMMIT_journal_reclaim| BCH_TRANS_COMMIT_no_check_rw| BCH_TRANS_COMMIT_no_enospc)); if (ret) goto err; } } if (!iter.path || iter.btree_id != k->btree) { bch2_trans_iter_exit(trans, &iter); bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p, BTREE_ITER_intent|BTREE_ITER_all_snapshots); } bch2_btree_iter_set_pos(&iter, k->k.k.p); btree_iter_path(trans, &iter)->preserve = false; bool accounting_accumulated = false; do { if (race_fault()) { ret = -BCH_ERR_journal_reclaim_would_deadlock; break; } ret = wb_flush_one(trans, &iter, k, &write_locked, &accounting_accumulated, &fast); if (!write_locked) bch2_trans_begin(trans); } while (bch2_err_matches(ret, BCH_ERR_transaction_restart)); if (!ret) { k->journal_seq = 0; } else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) { slowpath++; ret = 0; } else break; } if (write_locked) { struct btree_path *path = btree_iter_path(trans, &iter); bch2_btree_node_unlock_write(trans, path, path->l[0].b); } bch2_trans_iter_exit(trans, &iter); if (ret) goto err; if (slowpath) { /* * Flush in the order they were present in the journal, so that * we can release journal pins: * The fastpath zapped the seq of keys that were successfully flushed so * we can skip those here. */ trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr); sort(wb->flushing.keys.data, wb->flushing.keys.nr, sizeof(wb->flushing.keys.data[0]), wb_key_seq_cmp, NULL); darray_for_each(wb->flushing.keys, i) { if (!i->journal_seq) continue; if (!accounting_replay_done && i->k.k.type == KEY_TYPE_accounting) { could_not_insert++; continue; } if (!could_not_insert) bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin, bch2_btree_write_buffer_journal_flush); bch2_trans_begin(trans); ret = commit_do(trans, NULL, NULL, BCH_WATERMARK_reclaim| BCH_TRANS_COMMIT_journal_reclaim| BCH_TRANS_COMMIT_no_check_rw| BCH_TRANS_COMMIT_no_enospc| BCH_TRANS_COMMIT_no_journal_res , btree_write_buffered_insert(trans, i)); if (ret) goto err; i->journal_seq = 0; } /* * If journal replay hasn't finished with accounting keys we * can't flush accounting keys at all - condense them and leave * them for next time. * * Q: Can the write buffer overflow? * A Shouldn't be any actual risk. It's just new accounting * updates that the write buffer can't flush, and those are only * going to be generated by interior btree node updates as * journal replay has to split/rewrite nodes to make room for * its updates. * * And for those new acounting updates, updates to the same * counters get accumulated as they're flushed from the journal * to the write buffer - see the patch for eytzingcer tree * accumulated. So we could only overflow if the number of * distinct counters touched somehow was very large. */ if (could_not_insert) { struct btree_write_buffered_key *dst = wb->flushing.keys.data; darray_for_each(wb->flushing.keys, i) if (i->journal_seq) *dst++ = *i; wb->flushing.keys.nr = dst - wb->flushing.keys.data; } } err: if (ret || !could_not_insert) { bch2_journal_pin_drop(j, &wb->flushing.pin); wb->flushing.keys.nr = 0; } bch2_fs_fatal_err_on(ret, c, "%s", bch2_err_str(ret)); trace_write_buffer_flush(trans, wb->flushing.keys.nr, overwritten, fast, 0); return ret; } static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 seq) { struct journal *j = &c->journal; struct journal_buf *buf; int ret = 0; while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, seq))) { ret = bch2_journal_keys_to_write_buffer(c, buf); mutex_unlock(&j->buf_lock); } return ret; } static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 seq) { struct bch_fs *c = trans->c; struct btree_write_buffer *wb = &c->btree_write_buffer; int ret = 0, fetch_from_journal_err; do { bch2_trans_unlock(trans); fetch_from_journal_err = fetch_wb_keys_from_journal(c, seq); /* * On memory allocation failure, bch2_btree_write_buffer_flush_locked() * is not guaranteed to empty wb->inc: */ mutex_lock(&wb->flushing.lock); ret = bch2_btree_write_buffer_flush_locked(trans); mutex_unlock(&wb->flushing.lock); } while (!ret && (fetch_from_journal_err || (wb->inc.pin.seq && wb->inc.pin.seq <= seq) || (wb->flushing.pin.seq && wb->flushing.pin.seq <= seq))); return ret; } static int bch2_btree_write_buffer_journal_flush(struct journal *j, struct journal_entry_pin *_pin, u64 seq) { struct bch_fs *c = container_of(j, struct bch_fs, journal); return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq)); } int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans) { struct bch_fs *c = trans->c; trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_); return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal)); } int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans) { struct bch_fs *c = trans->c; struct btree_write_buffer *wb = &c->btree_write_buffer; int ret = 0; if (mutex_trylock(&wb->flushing.lock)) { ret = bch2_btree_write_buffer_flush_locked(trans); mutex_unlock(&wb->flushing.lock); } return ret; } int bch2_btree_write_buffer_tryflush(struct btree_trans *trans) { struct bch_fs *c = trans->c; if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer)) return -BCH_ERR_erofs_no_writes; int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans); bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); return ret; } /* * In check and repair code, when checking references to write buffer btrees we * need to issue a flush before we have a definitive error: this issues a flush * if this is a key we haven't yet checked. */ int bch2_btree_write_buffer_maybe_flush(struct btree_trans *trans, struct bkey_s_c referring_k, struct bkey_buf *last_flushed) { struct bch_fs *c = trans->c; struct bkey_buf tmp; int ret = 0; bch2_bkey_buf_init(&tmp); if (!bkey_and_val_eq(referring_k, bkey_i_to_s_c(last_flushed->k))) { bch2_bkey_buf_reassemble(&tmp, c, referring_k); if (bkey_is_btree_ptr(referring_k.k)) { bch2_trans_unlock(trans); bch2_btree_interior_updates_flush(c); } ret = bch2_btree_write_buffer_flush_sync(trans); if (ret) goto err; bch2_bkey_buf_copy(last_flushed, c, tmp.k); ret = -BCH_ERR_transaction_restart_write_buffer_flush; } err: bch2_bkey_buf_exit(&tmp, c); return ret; } static void bch2_btree_write_buffer_flush_work(struct work_struct *work) { struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work); struct btree_write_buffer *wb = &c->btree_write_buffer; int ret; mutex_lock(&wb->flushing.lock); do { ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans)); } while (!ret && bch2_btree_write_buffer_should_flush(c)); mutex_unlock(&wb->flushing.lock); bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); } static void wb_accounting_sort(struct btree_write_buffer *wb) { eytzinger0_sort(wb->accounting.data, wb->accounting.nr, sizeof(wb->accounting.data[0]), wb_key_cmp, NULL); } int bch2_accounting_key_to_wb_slowpath(struct bch_fs *c, enum btree_id btree, struct bkey_i_accounting *k) { struct btree_write_buffer *wb = &c->btree_write_buffer; struct btree_write_buffered_key new = { .btree = btree }; bkey_copy(&new.k, &k->k_i); int ret = darray_push(&wb->accounting, new); if (ret) return ret; wb_accounting_sort(wb); return 0; } int bch2_journal_key_to_wb_slowpath(struct bch_fs *c, struct journal_keys_to_wb *dst, enum btree_id btree, struct bkey_i *k) { struct btree_write_buffer *wb = &c->btree_write_buffer; int ret; retry: ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL); if (!ret && dst->wb == &wb->flushing) ret = darray_resize(&wb->sorted, wb->flushing.keys.size); if (unlikely(ret)) { if (dst->wb == &c->btree_write_buffer.flushing) { mutex_unlock(&dst->wb->lock); dst->wb = &c->btree_write_buffer.inc; bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin, bch2_btree_write_buffer_journal_flush); goto retry; } return ret; } dst->room = darray_room(dst->wb->keys); if (dst->wb == &wb->flushing) dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr); BUG_ON(!dst->room); BUG_ON(!dst->seq); struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys); wb_k->journal_seq = dst->seq; wb_k->btree = btree; bkey_copy(&wb_k->k, k); dst->wb->keys.nr++; dst->room--; return 0; } void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq) { struct btree_write_buffer *wb = &c->btree_write_buffer; if (mutex_trylock(&wb->flushing.lock)) { mutex_lock(&wb->inc.lock); move_keys_from_inc_to_flushing(wb); /* * Attempt to skip wb->inc, and add keys directly to * wb->flushing, saving us a copy later: */ if (!wb->inc.keys.nr) { dst->wb = &wb->flushing; } else { mutex_unlock(&wb->flushing.lock); dst->wb = &wb->inc; } } else { mutex_lock(&wb->inc.lock); dst->wb = &wb->inc; } dst->room = darray_room(dst->wb->keys); if (dst->wb == &wb->flushing) dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr); dst->seq = seq; bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin, bch2_btree_write_buffer_journal_flush); darray_for_each(wb->accounting, i) memset(&i->k.v, 0, bkey_val_bytes(&i->k.k)); } int bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst) { struct btree_write_buffer *wb = &c->btree_write_buffer; unsigned live_accounting_keys = 0; int ret = 0; darray_for_each(wb->accounting, i) if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&i->k))) { i->journal_seq = dst->seq; live_accounting_keys++; ret = __bch2_journal_key_to_wb(c, dst, i->btree, &i->k); if (ret) break; } if (live_accounting_keys * 2 < wb->accounting.nr) { struct btree_write_buffered_key *dst = wb->accounting.data; darray_for_each(wb->accounting, src) if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&src->k))) *dst++ = *src; wb->accounting.nr = dst - wb->accounting.data; wb_accounting_sort(wb); } if (!dst->wb->keys.nr) bch2_journal_pin_drop(&c->journal, &dst->wb->pin); if (bch2_btree_write_buffer_should_flush(c) && __bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) && !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work)) bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); if (dst->wb == &wb->flushing) mutex_unlock(&wb->flushing.lock); mutex_unlock(&wb->inc.lock); return ret; } static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf) { struct journal_keys_to_wb dst; int ret = 0; bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq)); for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) { jset_entry_for_each_key(entry, k) { ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k); if (ret) goto out; } entry->type = BCH_JSET_ENTRY_btree_keys; } spin_lock(&c->journal.lock); buf->need_flush_to_write_buffer = false; spin_unlock(&c->journal.lock); out: ret = bch2_journal_keys_to_write_buffer_end(c, &dst) ?: ret; return ret; } static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size) { if (wb->keys.size >= new_size) return 0; if (!mutex_trylock(&wb->lock)) return -EINTR; int ret = darray_resize(&wb->keys, new_size); mutex_unlock(&wb->lock); return ret; } int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size) { struct btree_write_buffer *wb = &c->btree_write_buffer; return wb_keys_resize(&wb->flushing, new_size) ?: wb_keys_resize(&wb->inc, new_size); } void bch2_fs_btree_write_buffer_exit(struct bch_fs *c) { struct btree_write_buffer *wb = &c->btree_write_buffer; BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) && !bch2_journal_error(&c->journal)); darray_exit(&wb->accounting); darray_exit(&wb->sorted); darray_exit(&wb->flushing.keys); darray_exit(&wb->inc.keys); } int bch2_fs_btree_write_buffer_init(struct bch_fs *c) { struct btree_write_buffer *wb = &c->btree_write_buffer; mutex_init(&wb->inc.lock); mutex_init(&wb->flushing.lock); INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work); /* Will be resized by journal as needed: */ unsigned initial_size = 1 << 16; return darray_make_room(&wb->inc.keys, initial_size) ?: darray_make_room(&wb->flushing.keys, initial_size) ?: darray_make_room(&wb->sorted, initial_size); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1