Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kent Overstreet | 3767 | 94.60% | 43 | 91.49% |
Janpieter Sollie | 206 | 5.17% | 2 | 4.26% |
Brian Foster | 6 | 0.15% | 1 | 2.13% |
Nathan Chancellor | 3 | 0.08% | 1 | 2.13% |
Total | 3982 | 47 |
// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "checksum.h" #include "errcode.h" #include "super.h" #include "super-io.h" #include <linux/crc32c.h> #include <linux/crypto.h> #include <linux/xxhash.h> #include <linux/key.h> #include <linux/random.h> #include <linux/ratelimit.h> #include <linux/scatterlist.h> #include <crypto/algapi.h> #include <crypto/chacha.h> #include <crypto/hash.h> #include <crypto/poly1305.h> #include <crypto/skcipher.h> #include <keys/user-type.h> /* * bch2_checksum state is an abstraction of the checksum state calculated over different pages. * it features page merging without having the checksum algorithm lose its state. * for native checksum aglorithms (like crc), a default seed value will do. * for hash-like algorithms, a state needs to be stored */ struct bch2_checksum_state { union { u64 seed; struct xxh64_state h64state; }; unsigned int type; }; static void bch2_checksum_init(struct bch2_checksum_state *state) { switch (state->type) { case BCH_CSUM_none: case BCH_CSUM_crc32c: case BCH_CSUM_crc64: state->seed = 0; break; case BCH_CSUM_crc32c_nonzero: state->seed = U32_MAX; break; case BCH_CSUM_crc64_nonzero: state->seed = U64_MAX; break; case BCH_CSUM_xxhash: xxh64_reset(&state->h64state, 0); break; default: BUG(); } } static u64 bch2_checksum_final(const struct bch2_checksum_state *state) { switch (state->type) { case BCH_CSUM_none: case BCH_CSUM_crc32c: case BCH_CSUM_crc64: return state->seed; case BCH_CSUM_crc32c_nonzero: return state->seed ^ U32_MAX; case BCH_CSUM_crc64_nonzero: return state->seed ^ U64_MAX; case BCH_CSUM_xxhash: return xxh64_digest(&state->h64state); default: BUG(); } } static void bch2_checksum_update(struct bch2_checksum_state *state, const void *data, size_t len) { switch (state->type) { case BCH_CSUM_none: return; case BCH_CSUM_crc32c_nonzero: case BCH_CSUM_crc32c: state->seed = crc32c(state->seed, data, len); break; case BCH_CSUM_crc64_nonzero: case BCH_CSUM_crc64: state->seed = crc64_be(state->seed, data, len); break; case BCH_CSUM_xxhash: xxh64_update(&state->h64state, data, len); break; default: BUG(); } } static inline int do_encrypt_sg(struct crypto_sync_skcipher *tfm, struct nonce nonce, struct scatterlist *sg, size_t len) { SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm); int ret; skcipher_request_set_sync_tfm(req, tfm); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, sg, sg, len, nonce.d); ret = crypto_skcipher_encrypt(req); if (ret) pr_err("got error %i from crypto_skcipher_encrypt()", ret); return ret; } static inline int do_encrypt(struct crypto_sync_skcipher *tfm, struct nonce nonce, void *buf, size_t len) { if (!is_vmalloc_addr(buf)) { struct scatterlist sg; sg_init_table(&sg, 1); sg_set_page(&sg, is_vmalloc_addr(buf) ? vmalloc_to_page(buf) : virt_to_page(buf), len, offset_in_page(buf)); return do_encrypt_sg(tfm, nonce, &sg, len); } else { unsigned pages = buf_pages(buf, len); struct scatterlist *sg; size_t orig_len = len; int ret, i; sg = kmalloc_array(pages, sizeof(*sg), GFP_KERNEL); if (!sg) return -BCH_ERR_ENOMEM_do_encrypt; sg_init_table(sg, pages); for (i = 0; i < pages; i++) { unsigned offset = offset_in_page(buf); unsigned pg_len = min_t(size_t, len, PAGE_SIZE - offset); sg_set_page(sg + i, vmalloc_to_page(buf), pg_len, offset); buf += pg_len; len -= pg_len; } ret = do_encrypt_sg(tfm, nonce, sg, orig_len); kfree(sg); return ret; } } int bch2_chacha_encrypt_key(struct bch_key *key, struct nonce nonce, void *buf, size_t len) { struct crypto_sync_skcipher *chacha20 = crypto_alloc_sync_skcipher("chacha20", 0, 0); int ret; ret = PTR_ERR_OR_ZERO(chacha20); if (ret) { pr_err("error requesting chacha20 cipher: %s", bch2_err_str(ret)); return ret; } ret = crypto_skcipher_setkey(&chacha20->base, (void *) key, sizeof(*key)); if (ret) { pr_err("error from crypto_skcipher_setkey(): %s", bch2_err_str(ret)); goto err; } ret = do_encrypt(chacha20, nonce, buf, len); err: crypto_free_sync_skcipher(chacha20); return ret; } static int gen_poly_key(struct bch_fs *c, struct shash_desc *desc, struct nonce nonce) { u8 key[POLY1305_KEY_SIZE]; int ret; nonce.d[3] ^= BCH_NONCE_POLY; memset(key, 0, sizeof(key)); ret = do_encrypt(c->chacha20, nonce, key, sizeof(key)); if (ret) return ret; desc->tfm = c->poly1305; crypto_shash_init(desc); crypto_shash_update(desc, key, sizeof(key)); return 0; } struct bch_csum bch2_checksum(struct bch_fs *c, unsigned type, struct nonce nonce, const void *data, size_t len) { switch (type) { case BCH_CSUM_none: case BCH_CSUM_crc32c_nonzero: case BCH_CSUM_crc64_nonzero: case BCH_CSUM_crc32c: case BCH_CSUM_xxhash: case BCH_CSUM_crc64: { struct bch2_checksum_state state; state.type = type; bch2_checksum_init(&state); bch2_checksum_update(&state, data, len); return (struct bch_csum) { .lo = cpu_to_le64(bch2_checksum_final(&state)) }; } case BCH_CSUM_chacha20_poly1305_80: case BCH_CSUM_chacha20_poly1305_128: { SHASH_DESC_ON_STACK(desc, c->poly1305); u8 digest[POLY1305_DIGEST_SIZE]; struct bch_csum ret = { 0 }; gen_poly_key(c, desc, nonce); crypto_shash_update(desc, data, len); crypto_shash_final(desc, digest); memcpy(&ret, digest, bch_crc_bytes[type]); return ret; } default: return (struct bch_csum) {}; } } int bch2_encrypt(struct bch_fs *c, unsigned type, struct nonce nonce, void *data, size_t len) { if (!bch2_csum_type_is_encryption(type)) return 0; return do_encrypt(c->chacha20, nonce, data, len); } static struct bch_csum __bch2_checksum_bio(struct bch_fs *c, unsigned type, struct nonce nonce, struct bio *bio, struct bvec_iter *iter) { struct bio_vec bv; switch (type) { case BCH_CSUM_none: return (struct bch_csum) { 0 }; case BCH_CSUM_crc32c_nonzero: case BCH_CSUM_crc64_nonzero: case BCH_CSUM_crc32c: case BCH_CSUM_xxhash: case BCH_CSUM_crc64: { struct bch2_checksum_state state; state.type = type; bch2_checksum_init(&state); #ifdef CONFIG_HIGHMEM __bio_for_each_segment(bv, bio, *iter, *iter) { void *p = kmap_local_page(bv.bv_page) + bv.bv_offset; bch2_checksum_update(&state, p, bv.bv_len); kunmap_local(p); } #else __bio_for_each_bvec(bv, bio, *iter, *iter) bch2_checksum_update(&state, page_address(bv.bv_page) + bv.bv_offset, bv.bv_len); #endif return (struct bch_csum) { .lo = cpu_to_le64(bch2_checksum_final(&state)) }; } case BCH_CSUM_chacha20_poly1305_80: case BCH_CSUM_chacha20_poly1305_128: { SHASH_DESC_ON_STACK(desc, c->poly1305); u8 digest[POLY1305_DIGEST_SIZE]; struct bch_csum ret = { 0 }; gen_poly_key(c, desc, nonce); #ifdef CONFIG_HIGHMEM __bio_for_each_segment(bv, bio, *iter, *iter) { void *p = kmap_local_page(bv.bv_page) + bv.bv_offset; crypto_shash_update(desc, p, bv.bv_len); kunmap_local(p); } #else __bio_for_each_bvec(bv, bio, *iter, *iter) crypto_shash_update(desc, page_address(bv.bv_page) + bv.bv_offset, bv.bv_len); #endif crypto_shash_final(desc, digest); memcpy(&ret, digest, bch_crc_bytes[type]); return ret; } default: return (struct bch_csum) {}; } } struct bch_csum bch2_checksum_bio(struct bch_fs *c, unsigned type, struct nonce nonce, struct bio *bio) { struct bvec_iter iter = bio->bi_iter; return __bch2_checksum_bio(c, type, nonce, bio, &iter); } int __bch2_encrypt_bio(struct bch_fs *c, unsigned type, struct nonce nonce, struct bio *bio) { struct bio_vec bv; struct bvec_iter iter; struct scatterlist sgl[16], *sg = sgl; size_t bytes = 0; int ret = 0; if (!bch2_csum_type_is_encryption(type)) return 0; sg_init_table(sgl, ARRAY_SIZE(sgl)); bio_for_each_segment(bv, bio, iter) { if (sg == sgl + ARRAY_SIZE(sgl)) { sg_mark_end(sg - 1); ret = do_encrypt_sg(c->chacha20, nonce, sgl, bytes); if (ret) return ret; nonce = nonce_add(nonce, bytes); bytes = 0; sg_init_table(sgl, ARRAY_SIZE(sgl)); sg = sgl; } sg_set_page(sg++, bv.bv_page, bv.bv_len, bv.bv_offset); bytes += bv.bv_len; } if (sg != sgl) { sg_mark_end(sg - 1); return do_encrypt_sg(c->chacha20, nonce, sgl, bytes); } return ret; } struct bch_csum bch2_checksum_merge(unsigned type, struct bch_csum a, struct bch_csum b, size_t b_len) { struct bch2_checksum_state state; state.type = type; bch2_checksum_init(&state); state.seed = le64_to_cpu(a.lo); BUG_ON(!bch2_checksum_mergeable(type)); while (b_len) { unsigned page_len = min_t(unsigned, b_len, PAGE_SIZE); bch2_checksum_update(&state, page_address(ZERO_PAGE(0)), page_len); b_len -= page_len; } a.lo = cpu_to_le64(bch2_checksum_final(&state)); a.lo ^= b.lo; a.hi ^= b.hi; return a; } int bch2_rechecksum_bio(struct bch_fs *c, struct bio *bio, struct bversion version, struct bch_extent_crc_unpacked crc_old, struct bch_extent_crc_unpacked *crc_a, struct bch_extent_crc_unpacked *crc_b, unsigned len_a, unsigned len_b, unsigned new_csum_type) { struct bvec_iter iter = bio->bi_iter; struct nonce nonce = extent_nonce(version, crc_old); struct bch_csum merged = { 0 }; struct crc_split { struct bch_extent_crc_unpacked *crc; unsigned len; unsigned csum_type; struct bch_csum csum; } splits[3] = { { crc_a, len_a, new_csum_type, { 0 }}, { crc_b, len_b, new_csum_type, { 0 } }, { NULL, bio_sectors(bio) - len_a - len_b, new_csum_type, { 0 } }, }, *i; bool mergeable = crc_old.csum_type == new_csum_type && bch2_checksum_mergeable(new_csum_type); unsigned crc_nonce = crc_old.nonce; BUG_ON(len_a + len_b > bio_sectors(bio)); BUG_ON(crc_old.uncompressed_size != bio_sectors(bio)); BUG_ON(crc_is_compressed(crc_old)); BUG_ON(bch2_csum_type_is_encryption(crc_old.csum_type) != bch2_csum_type_is_encryption(new_csum_type)); for (i = splits; i < splits + ARRAY_SIZE(splits); i++) { iter.bi_size = i->len << 9; if (mergeable || i->crc) i->csum = __bch2_checksum_bio(c, i->csum_type, nonce, bio, &iter); else bio_advance_iter(bio, &iter, i->len << 9); nonce = nonce_add(nonce, i->len << 9); } if (mergeable) for (i = splits; i < splits + ARRAY_SIZE(splits); i++) merged = bch2_checksum_merge(new_csum_type, merged, i->csum, i->len << 9); else merged = bch2_checksum_bio(c, crc_old.csum_type, extent_nonce(version, crc_old), bio); if (bch2_crc_cmp(merged, crc_old.csum) && !c->opts.no_data_io) { struct printbuf buf = PRINTBUF; prt_printf(&buf, "checksum error in %s() (memory corruption or bug?)\n" " expected %0llx:%0llx got %0llx:%0llx (old type ", __func__, crc_old.csum.hi, crc_old.csum.lo, merged.hi, merged.lo); bch2_prt_csum_type(&buf, crc_old.csum_type); prt_str(&buf, " new type "); bch2_prt_csum_type(&buf, new_csum_type); prt_str(&buf, ")"); WARN_RATELIMIT(1, "%s", buf.buf); printbuf_exit(&buf); return -EIO; } for (i = splits; i < splits + ARRAY_SIZE(splits); i++) { if (i->crc) *i->crc = (struct bch_extent_crc_unpacked) { .csum_type = i->csum_type, .compression_type = crc_old.compression_type, .compressed_size = i->len, .uncompressed_size = i->len, .offset = 0, .live_size = i->len, .nonce = crc_nonce, .csum = i->csum, }; if (bch2_csum_type_is_encryption(new_csum_type)) crc_nonce += i->len; } return 0; } /* BCH_SB_FIELD_crypt: */ static int bch2_sb_crypt_validate(struct bch_sb *sb, struct bch_sb_field *f, enum bch_validate_flags flags, struct printbuf *err) { struct bch_sb_field_crypt *crypt = field_to_type(f, crypt); if (vstruct_bytes(&crypt->field) < sizeof(*crypt)) { prt_printf(err, "wrong size (got %zu should be %zu)", vstruct_bytes(&crypt->field), sizeof(*crypt)); return -BCH_ERR_invalid_sb_crypt; } if (BCH_CRYPT_KDF_TYPE(crypt)) { prt_printf(err, "bad kdf type %llu", BCH_CRYPT_KDF_TYPE(crypt)); return -BCH_ERR_invalid_sb_crypt; } return 0; } static void bch2_sb_crypt_to_text(struct printbuf *out, struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_crypt *crypt = field_to_type(f, crypt); prt_printf(out, "KFD: %llu\n", BCH_CRYPT_KDF_TYPE(crypt)); prt_printf(out, "scrypt n: %llu\n", BCH_KDF_SCRYPT_N(crypt)); prt_printf(out, "scrypt r: %llu\n", BCH_KDF_SCRYPT_R(crypt)); prt_printf(out, "scrypt p: %llu\n", BCH_KDF_SCRYPT_P(crypt)); } const struct bch_sb_field_ops bch_sb_field_ops_crypt = { .validate = bch2_sb_crypt_validate, .to_text = bch2_sb_crypt_to_text, }; #ifdef __KERNEL__ static int __bch2_request_key(char *key_description, struct bch_key *key) { struct key *keyring_key; const struct user_key_payload *ukp; int ret; keyring_key = request_key(&key_type_user, key_description, NULL); if (IS_ERR(keyring_key)) return PTR_ERR(keyring_key); down_read(&keyring_key->sem); ukp = dereference_key_locked(keyring_key); if (ukp->datalen == sizeof(*key)) { memcpy(key, ukp->data, ukp->datalen); ret = 0; } else { ret = -EINVAL; } up_read(&keyring_key->sem); key_put(keyring_key); return ret; } #else #include <keyutils.h> static int __bch2_request_key(char *key_description, struct bch_key *key) { key_serial_t key_id; key_id = request_key("user", key_description, NULL, KEY_SPEC_SESSION_KEYRING); if (key_id >= 0) goto got_key; key_id = request_key("user", key_description, NULL, KEY_SPEC_USER_KEYRING); if (key_id >= 0) goto got_key; key_id = request_key("user", key_description, NULL, KEY_SPEC_USER_SESSION_KEYRING); if (key_id >= 0) goto got_key; return -errno; got_key: if (keyctl_read(key_id, (void *) key, sizeof(*key)) != sizeof(*key)) return -1; return 0; } #include "crypto.h" #endif int bch2_request_key(struct bch_sb *sb, struct bch_key *key) { struct printbuf key_description = PRINTBUF; int ret; prt_printf(&key_description, "bcachefs:"); pr_uuid(&key_description, sb->user_uuid.b); ret = __bch2_request_key(key_description.buf, key); printbuf_exit(&key_description); #ifndef __KERNEL__ if (ret) { char *passphrase = read_passphrase("Enter passphrase: "); struct bch_encrypted_key sb_key; bch2_passphrase_check(sb, passphrase, key, &sb_key); ret = 0; } #endif /* stash with memfd, pass memfd fd to mount */ return ret; } #ifndef __KERNEL__ int bch2_revoke_key(struct bch_sb *sb) { key_serial_t key_id; struct printbuf key_description = PRINTBUF; prt_printf(&key_description, "bcachefs:"); pr_uuid(&key_description, sb->user_uuid.b); key_id = request_key("user", key_description.buf, NULL, KEY_SPEC_USER_KEYRING); printbuf_exit(&key_description); if (key_id < 0) return errno; keyctl_revoke(key_id); return 0; } #endif int bch2_decrypt_sb_key(struct bch_fs *c, struct bch_sb_field_crypt *crypt, struct bch_key *key) { struct bch_encrypted_key sb_key = crypt->key; struct bch_key user_key; int ret = 0; /* is key encrypted? */ if (!bch2_key_is_encrypted(&sb_key)) goto out; ret = bch2_request_key(c->disk_sb.sb, &user_key); if (ret) { bch_err(c, "error requesting encryption key: %s", bch2_err_str(ret)); goto err; } /* decrypt real key: */ ret = bch2_chacha_encrypt_key(&user_key, bch2_sb_key_nonce(c), &sb_key, sizeof(sb_key)); if (ret) goto err; if (bch2_key_is_encrypted(&sb_key)) { bch_err(c, "incorrect encryption key"); ret = -EINVAL; goto err; } out: *key = sb_key.key; err: memzero_explicit(&sb_key, sizeof(sb_key)); memzero_explicit(&user_key, sizeof(user_key)); return ret; } static int bch2_alloc_ciphers(struct bch_fs *c) { if (c->chacha20) return 0; struct crypto_sync_skcipher *chacha20 = crypto_alloc_sync_skcipher("chacha20", 0, 0); int ret = PTR_ERR_OR_ZERO(chacha20); if (ret) { bch_err(c, "error requesting chacha20 module: %s", bch2_err_str(ret)); return ret; } struct crypto_shash *poly1305 = crypto_alloc_shash("poly1305", 0, 0); ret = PTR_ERR_OR_ZERO(poly1305); if (ret) { bch_err(c, "error requesting poly1305 module: %s", bch2_err_str(ret)); crypto_free_sync_skcipher(chacha20); return ret; } c->chacha20 = chacha20; c->poly1305 = poly1305; return 0; } int bch2_disable_encryption(struct bch_fs *c) { struct bch_sb_field_crypt *crypt; struct bch_key key; int ret = -EINVAL; mutex_lock(&c->sb_lock); crypt = bch2_sb_field_get(c->disk_sb.sb, crypt); if (!crypt) goto out; /* is key encrypted? */ ret = 0; if (bch2_key_is_encrypted(&crypt->key)) goto out; ret = bch2_decrypt_sb_key(c, crypt, &key); if (ret) goto out; crypt->key.magic = cpu_to_le64(BCH_KEY_MAGIC); crypt->key.key = key; SET_BCH_SB_ENCRYPTION_TYPE(c->disk_sb.sb, 0); bch2_write_super(c); out: mutex_unlock(&c->sb_lock); return ret; } int bch2_enable_encryption(struct bch_fs *c, bool keyed) { struct bch_encrypted_key key; struct bch_key user_key; struct bch_sb_field_crypt *crypt; int ret = -EINVAL; mutex_lock(&c->sb_lock); /* Do we already have an encryption key? */ if (bch2_sb_field_get(c->disk_sb.sb, crypt)) goto err; ret = bch2_alloc_ciphers(c); if (ret) goto err; key.magic = cpu_to_le64(BCH_KEY_MAGIC); get_random_bytes(&key.key, sizeof(key.key)); if (keyed) { ret = bch2_request_key(c->disk_sb.sb, &user_key); if (ret) { bch_err(c, "error requesting encryption key: %s", bch2_err_str(ret)); goto err; } ret = bch2_chacha_encrypt_key(&user_key, bch2_sb_key_nonce(c), &key, sizeof(key)); if (ret) goto err; } ret = crypto_skcipher_setkey(&c->chacha20->base, (void *) &key.key, sizeof(key.key)); if (ret) goto err; crypt = bch2_sb_field_resize(&c->disk_sb, crypt, sizeof(*crypt) / sizeof(u64)); if (!crypt) { ret = -BCH_ERR_ENOSPC_sb_crypt; goto err; } crypt->key = key; /* write superblock */ SET_BCH_SB_ENCRYPTION_TYPE(c->disk_sb.sb, 1); bch2_write_super(c); err: mutex_unlock(&c->sb_lock); memzero_explicit(&user_key, sizeof(user_key)); memzero_explicit(&key, sizeof(key)); return ret; } void bch2_fs_encryption_exit(struct bch_fs *c) { if (c->poly1305) crypto_free_shash(c->poly1305); if (c->chacha20) crypto_free_sync_skcipher(c->chacha20); if (c->sha256) crypto_free_shash(c->sha256); } int bch2_fs_encryption_init(struct bch_fs *c) { struct bch_sb_field_crypt *crypt; struct bch_key key; int ret = 0; c->sha256 = crypto_alloc_shash("sha256", 0, 0); ret = PTR_ERR_OR_ZERO(c->sha256); if (ret) { c->sha256 = NULL; bch_err(c, "error requesting sha256 module: %s", bch2_err_str(ret)); goto out; } crypt = bch2_sb_field_get(c->disk_sb.sb, crypt); if (!crypt) goto out; ret = bch2_alloc_ciphers(c); if (ret) goto out; ret = bch2_decrypt_sb_key(c, crypt, &key); if (ret) goto out; ret = crypto_skcipher_setkey(&c->chacha20->base, (void *) &key.key, sizeof(key.key)); if (ret) goto out; out: memzero_explicit(&key, sizeof(key)); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1