Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kent Overstreet | 1081 | 85.93% | 2 | 50.00% |
Kuan-Wei Chiu | 173 | 13.75% | 1 | 25.00% |
Thorsten Blum | 4 | 0.32% | 1 | 25.00% |
Total | 1258 | 4 |
// SPDX-License-Identifier: GPL-2.0 #include "eytzinger.h" /** * is_aligned - is this pointer & size okay for word-wide copying? * @base: pointer to data * @size: size of each element * @align: required alignment (typically 4 or 8) * * Returns true if elements can be copied using word loads and stores. * The size must be a multiple of the alignment, and the base address must * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS. * * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)" * to "if ((a | b) & mask)", so we do that by hand. */ __attribute_const__ __always_inline static bool is_aligned(const void *base, size_t size, unsigned char align) { unsigned char lsbits = (unsigned char)size; (void)base; #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS lsbits |= (unsigned char)(uintptr_t)base; #endif return (lsbits & (align - 1)) == 0; } /** * swap_words_32 - swap two elements in 32-bit chunks * @a: pointer to the first element to swap * @b: pointer to the second element to swap * @n: element size (must be a multiple of 4) * * Exchange the two objects in memory. This exploits base+index addressing, * which basically all CPUs have, to minimize loop overhead computations. * * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the * bottom of the loop, even though the zero flag is still valid from the * subtract (since the intervening mov instructions don't alter the flags). * Gcc 8.1.0 doesn't have that problem. */ static void swap_words_32(void *a, void *b, size_t n) { do { u32 t = *(u32 *)(a + (n -= 4)); *(u32 *)(a + n) = *(u32 *)(b + n); *(u32 *)(b + n) = t; } while (n); } /** * swap_words_64 - swap two elements in 64-bit chunks * @a: pointer to the first element to swap * @b: pointer to the second element to swap * @n: element size (must be a multiple of 8) * * Exchange the two objects in memory. This exploits base+index * addressing, which basically all CPUs have, to minimize loop overhead * computations. * * We'd like to use 64-bit loads if possible. If they're not, emulating * one requires base+index+4 addressing which x86 has but most other * processors do not. If CONFIG_64BIT, we definitely have 64-bit loads, * but it's possible to have 64-bit loads without 64-bit pointers (e.g. * x32 ABI). Are there any cases the kernel needs to worry about? */ static void swap_words_64(void *a, void *b, size_t n) { do { #ifdef CONFIG_64BIT u64 t = *(u64 *)(a + (n -= 8)); *(u64 *)(a + n) = *(u64 *)(b + n); *(u64 *)(b + n) = t; #else /* Use two 32-bit transfers to avoid base+index+4 addressing */ u32 t = *(u32 *)(a + (n -= 4)); *(u32 *)(a + n) = *(u32 *)(b + n); *(u32 *)(b + n) = t; t = *(u32 *)(a + (n -= 4)); *(u32 *)(a + n) = *(u32 *)(b + n); *(u32 *)(b + n) = t; #endif } while (n); } /** * swap_bytes - swap two elements a byte at a time * @a: pointer to the first element to swap * @b: pointer to the second element to swap * @n: element size * * This is the fallback if alignment doesn't allow using larger chunks. */ static void swap_bytes(void *a, void *b, size_t n) { do { char t = ((char *)a)[--n]; ((char *)a)[n] = ((char *)b)[n]; ((char *)b)[n] = t; } while (n); } /* * The values are arbitrary as long as they can't be confused with * a pointer, but small integers make for the smallest compare * instructions. */ #define SWAP_WORDS_64 (swap_r_func_t)0 #define SWAP_WORDS_32 (swap_r_func_t)1 #define SWAP_BYTES (swap_r_func_t)2 #define SWAP_WRAPPER (swap_r_func_t)3 struct wrapper { cmp_func_t cmp; swap_func_t swap_func; }; /* * The function pointer is last to make tail calls most efficient if the * compiler decides not to inline this function. */ static void do_swap(void *a, void *b, size_t size, swap_r_func_t swap_func, const void *priv) { if (swap_func == SWAP_WRAPPER) { ((const struct wrapper *)priv)->swap_func(a, b, (int)size); return; } if (swap_func == SWAP_WORDS_64) swap_words_64(a, b, size); else if (swap_func == SWAP_WORDS_32) swap_words_32(a, b, size); else if (swap_func == SWAP_BYTES) swap_bytes(a, b, size); else swap_func(a, b, (int)size, priv); } #define _CMP_WRAPPER ((cmp_r_func_t)0L) static int do_cmp(const void *a, const void *b, cmp_r_func_t cmp, const void *priv) { if (cmp == _CMP_WRAPPER) return ((const struct wrapper *)priv)->cmp(a, b); return cmp(a, b, priv); } static inline int eytzinger0_do_cmp(void *base, size_t n, size_t size, cmp_r_func_t cmp_func, const void *priv, size_t l, size_t r) { return do_cmp(base + inorder_to_eytzinger0(l, n) * size, base + inorder_to_eytzinger0(r, n) * size, cmp_func, priv); } static inline void eytzinger0_do_swap(void *base, size_t n, size_t size, swap_r_func_t swap_func, const void *priv, size_t l, size_t r) { do_swap(base + inorder_to_eytzinger0(l, n) * size, base + inorder_to_eytzinger0(r, n) * size, size, swap_func, priv); } void eytzinger0_sort_r(void *base, size_t n, size_t size, cmp_r_func_t cmp_func, swap_r_func_t swap_func, const void *priv) { int i, j, k; /* called from 'sort' without swap function, let's pick the default */ if (swap_func == SWAP_WRAPPER && !((struct wrapper *)priv)->swap_func) swap_func = NULL; if (!swap_func) { if (is_aligned(base, size, 8)) swap_func = SWAP_WORDS_64; else if (is_aligned(base, size, 4)) swap_func = SWAP_WORDS_32; else swap_func = SWAP_BYTES; } /* heapify */ for (i = n / 2 - 1; i >= 0; --i) { /* Find the sift-down path all the way to the leaves. */ for (j = i; k = j * 2 + 1, k + 1 < n;) j = eytzinger0_do_cmp(base, n, size, cmp_func, priv, k, k + 1) > 0 ? k : k + 1; /* Special case for the last leaf with no sibling. */ if (j * 2 + 2 == n) j = j * 2 + 1; /* Backtrack to the correct location. */ while (j != i && eytzinger0_do_cmp(base, n, size, cmp_func, priv, i, j) >= 0) j = (j - 1) / 2; /* Shift the element into its correct place. */ for (k = j; j != i;) { j = (j - 1) / 2; eytzinger0_do_swap(base, n, size, swap_func, priv, j, k); } } /* sort */ for (i = n - 1; i > 0; --i) { eytzinger0_do_swap(base, n, size, swap_func, priv, 0, i); /* Find the sift-down path all the way to the leaves. */ for (j = 0; k = j * 2 + 1, k + 1 < i;) j = eytzinger0_do_cmp(base, n, size, cmp_func, priv, k, k + 1) > 0 ? k : k + 1; /* Special case for the last leaf with no sibling. */ if (j * 2 + 2 == i) j = j * 2 + 1; /* Backtrack to the correct location. */ while (j && eytzinger0_do_cmp(base, n, size, cmp_func, priv, 0, j) >= 0) j = (j - 1) / 2; /* Shift the element into its correct place. */ for (k = j; j;) { j = (j - 1) / 2; eytzinger0_do_swap(base, n, size, swap_func, priv, j, k); } } } void eytzinger0_sort(void *base, size_t n, size_t size, cmp_func_t cmp_func, swap_func_t swap_func) { struct wrapper w = { .cmp = cmp_func, .swap_func = swap_func, }; return eytzinger0_sort_r(base, n, size, _CMP_WRAPPER, SWAP_WRAPPER, &w); } #if 0 #include <linux/slab.h> #include <linux/random.h> #include <linux/ktime.h> static u64 cmp_count; static int mycmp(const void *a, const void *b) { u32 _a = *(u32 *)a; u32 _b = *(u32 *)b; cmp_count++; if (_a < _b) return -1; else if (_a > _b) return 1; else return 0; } static int test(void) { size_t N, i; ktime_t start, end; s64 delta; u32 *arr; for (N = 10000; N <= 100000; N += 10000) { arr = kmalloc_array(N, sizeof(u32), GFP_KERNEL); cmp_count = 0; for (i = 0; i < N; i++) arr[i] = get_random_u32(); start = ktime_get(); eytzinger0_sort(arr, N, sizeof(u32), mycmp, NULL); end = ktime_get(); delta = ktime_us_delta(end, start); printk(KERN_INFO "time: %lld\n", delta); printk(KERN_INFO "comparisons: %lld\n", cmp_count); u32 prev = 0; eytzinger0_for_each(i, N) { if (prev > arr[i]) goto err; prev = arr[i]; } kfree(arr); } return 0; err: kfree(arr); return -1; } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1