Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Qu Wenruo | 898 | 44.86% | 12 | 17.65% |
Li Zefan | 669 | 33.42% | 3 | 4.41% |
David Sterba | 210 | 10.49% | 15 | 22.06% |
Chris Mason | 81 | 4.05% | 13 | 19.12% |
Linus Torvalds | 43 | 2.15% | 3 | 4.41% |
Dāvis Mosāns | 30 | 1.50% | 2 | 2.94% |
Christoph Hellwig | 14 | 0.70% | 3 | 4.41% |
Fabio M. De Francesco | 11 | 0.55% | 1 | 1.47% |
Anand Jain | 10 | 0.50% | 1 | 1.47% |
Stefan Agner | 6 | 0.30% | 1 | 1.47% |
Dennis Zhou | 6 | 0.30% | 3 | 4.41% |
Josef Whiter | 6 | 0.30% | 2 | 2.94% |
Zach Brown | 4 | 0.20% | 1 | 1.47% |
Ira Weiny | 3 | 0.15% | 1 | 1.47% |
Timofey Titovets | 3 | 0.15% | 2 | 2.94% |
Linus Torvalds (pre-git) | 2 | 0.10% | 1 | 1.47% |
Eric Paris | 2 | 0.10% | 1 | 1.47% |
Jie Liu | 2 | 0.10% | 1 | 1.47% |
katrinzhou | 1 | 0.05% | 1 | 1.47% |
Filipe Brandenburger | 1 | 0.05% | 1 | 1.47% |
Total | 2002 | 68 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2008 Oracle. All rights reserved. */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/init.h> #include <linux/err.h> #include <linux/sched.h> #include <linux/pagemap.h> #include <linux/bio.h> #include <linux/lzo.h> #include <linux/refcount.h> #include "messages.h" #include "compression.h" #include "ctree.h" #include "super.h" #include "btrfs_inode.h" #define LZO_LEN 4 /* * Btrfs LZO compression format * * Regular and inlined LZO compressed data extents consist of: * * 1. Header * Fixed size. LZO_LEN (4) bytes long, LE32. * Records the total size (including the header) of compressed data. * * 2. Segment(s) * Variable size. Each segment includes one segment header, followed by data * payload. * One regular LZO compressed extent can have one or more segments. * For inlined LZO compressed extent, only one segment is allowed. * One segment represents at most one sector of uncompressed data. * * 2.1 Segment header * Fixed size. LZO_LEN (4) bytes long, LE32. * Records the total size of the segment (not including the header). * Segment header never crosses sector boundary, thus it's possible to * have at most 3 padding zeros at the end of the sector. * * 2.2 Data Payload * Variable size. Size up limit should be lzo1x_worst_compress(sectorsize) * which is 4419 for a 4KiB sectorsize. * * Example with 4K sectorsize: * Page 1: * 0 0x2 0x4 0x6 0x8 0xa 0xc 0xe 0x10 * 0x0000 | Header | SegHdr 01 | Data payload 01 ... | * ... * 0x0ff0 | SegHdr N | Data payload N ... |00| * ^^ padding zeros * Page 2: * 0x1000 | SegHdr N+1| Data payload N+1 ... | */ #define WORKSPACE_BUF_LENGTH (lzo1x_worst_compress(PAGE_SIZE)) #define WORKSPACE_CBUF_LENGTH (lzo1x_worst_compress(PAGE_SIZE)) struct workspace { void *mem; void *buf; /* where decompressed data goes */ void *cbuf; /* where compressed data goes */ struct list_head list; }; static struct workspace_manager wsm; void lzo_free_workspace(struct list_head *ws) { struct workspace *workspace = list_entry(ws, struct workspace, list); kvfree(workspace->buf); kvfree(workspace->cbuf); kvfree(workspace->mem); kfree(workspace); } struct list_head *lzo_alloc_workspace(unsigned int level) { struct workspace *workspace; workspace = kzalloc(sizeof(*workspace), GFP_KERNEL); if (!workspace) return ERR_PTR(-ENOMEM); workspace->mem = kvmalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL | __GFP_NOWARN); workspace->buf = kvmalloc(WORKSPACE_BUF_LENGTH, GFP_KERNEL | __GFP_NOWARN); workspace->cbuf = kvmalloc(WORKSPACE_CBUF_LENGTH, GFP_KERNEL | __GFP_NOWARN); if (!workspace->mem || !workspace->buf || !workspace->cbuf) goto fail; INIT_LIST_HEAD(&workspace->list); return &workspace->list; fail: lzo_free_workspace(&workspace->list); return ERR_PTR(-ENOMEM); } static inline void write_compress_length(char *buf, size_t len) { __le32 dlen; dlen = cpu_to_le32(len); memcpy(buf, &dlen, LZO_LEN); } static inline size_t read_compress_length(const char *buf) { __le32 dlen; memcpy(&dlen, buf, LZO_LEN); return le32_to_cpu(dlen); } /* * Will do: * * - Write a segment header into the destination * - Copy the compressed buffer into the destination * - Make sure we have enough space in the last sector to fit a segment header * If not, we will pad at most (LZO_LEN (4)) - 1 bytes of zeros. * * Will allocate new pages when needed. */ static int copy_compressed_data_to_page(char *compressed_data, size_t compressed_size, struct folio **out_folios, unsigned long max_nr_folio, u32 *cur_out, const u32 sectorsize) { u32 sector_bytes_left; u32 orig_out; struct folio *cur_folio; char *kaddr; if ((*cur_out / PAGE_SIZE) >= max_nr_folio) return -E2BIG; /* * We never allow a segment header crossing sector boundary, previous * run should ensure we have enough space left inside the sector. */ ASSERT((*cur_out / sectorsize) == (*cur_out + LZO_LEN - 1) / sectorsize); cur_folio = out_folios[*cur_out / PAGE_SIZE]; /* Allocate a new page */ if (!cur_folio) { cur_folio = btrfs_alloc_compr_folio(); if (!cur_folio) return -ENOMEM; out_folios[*cur_out / PAGE_SIZE] = cur_folio; } kaddr = kmap_local_folio(cur_folio, 0); write_compress_length(kaddr + offset_in_page(*cur_out), compressed_size); *cur_out += LZO_LEN; orig_out = *cur_out; /* Copy compressed data */ while (*cur_out - orig_out < compressed_size) { u32 copy_len = min_t(u32, sectorsize - *cur_out % sectorsize, orig_out + compressed_size - *cur_out); kunmap_local(kaddr); if ((*cur_out / PAGE_SIZE) >= max_nr_folio) return -E2BIG; cur_folio = out_folios[*cur_out / PAGE_SIZE]; /* Allocate a new page */ if (!cur_folio) { cur_folio = btrfs_alloc_compr_folio(); if (!cur_folio) return -ENOMEM; out_folios[*cur_out / PAGE_SIZE] = cur_folio; } kaddr = kmap_local_folio(cur_folio, 0); memcpy(kaddr + offset_in_page(*cur_out), compressed_data + *cur_out - orig_out, copy_len); *cur_out += copy_len; } /* * Check if we can fit the next segment header into the remaining space * of the sector. */ sector_bytes_left = round_up(*cur_out, sectorsize) - *cur_out; if (sector_bytes_left >= LZO_LEN || sector_bytes_left == 0) goto out; /* The remaining size is not enough, pad it with zeros */ memset(kaddr + offset_in_page(*cur_out), 0, sector_bytes_left); *cur_out += sector_bytes_left; out: kunmap_local(kaddr); return 0; } int lzo_compress_folios(struct list_head *ws, struct address_space *mapping, u64 start, struct folio **folios, unsigned long *out_folios, unsigned long *total_in, unsigned long *total_out) { struct workspace *workspace = list_entry(ws, struct workspace, list); const u32 sectorsize = inode_to_fs_info(mapping->host)->sectorsize; struct folio *folio_in = NULL; char *sizes_ptr; const unsigned long max_nr_folio = *out_folios; int ret = 0; /* Points to the file offset of input data */ u64 cur_in = start; /* Points to the current output byte */ u32 cur_out = 0; u32 len = *total_out; ASSERT(max_nr_folio > 0); *out_folios = 0; *total_out = 0; *total_in = 0; /* * Skip the header for now, we will later come back and write the total * compressed size */ cur_out += LZO_LEN; while (cur_in < start + len) { char *data_in; const u32 sectorsize_mask = sectorsize - 1; u32 sector_off = (cur_in - start) & sectorsize_mask; u32 in_len; size_t out_len; /* Get the input page first */ if (!folio_in) { ret = btrfs_compress_filemap_get_folio(mapping, cur_in, &folio_in); if (ret < 0) goto out; } /* Compress at most one sector of data each time */ in_len = min_t(u32, start + len - cur_in, sectorsize - sector_off); ASSERT(in_len); data_in = kmap_local_folio(folio_in, 0); ret = lzo1x_1_compress(data_in + offset_in_page(cur_in), in_len, workspace->cbuf, &out_len, workspace->mem); kunmap_local(data_in); if (unlikely(ret < 0)) { /* lzo1x_1_compress never fails. */ ret = -EIO; goto out; } ret = copy_compressed_data_to_page(workspace->cbuf, out_len, folios, max_nr_folio, &cur_out, sectorsize); if (ret < 0) goto out; cur_in += in_len; /* * Check if we're making it bigger after two sectors. And if * it is so, give up. */ if (cur_in - start > sectorsize * 2 && cur_in - start < cur_out) { ret = -E2BIG; goto out; } /* Check if we have reached page boundary */ if (PAGE_ALIGNED(cur_in)) { folio_put(folio_in); folio_in = NULL; } } /* Store the size of all chunks of compressed data */ sizes_ptr = kmap_local_folio(folios[0], 0); write_compress_length(sizes_ptr, cur_out); kunmap_local(sizes_ptr); ret = 0; *total_out = cur_out; *total_in = cur_in - start; out: if (folio_in) folio_put(folio_in); *out_folios = DIV_ROUND_UP(cur_out, PAGE_SIZE); return ret; } /* * Copy the compressed segment payload into @dest. * * For the payload there will be no padding, just need to do page switching. */ static void copy_compressed_segment(struct compressed_bio *cb, char *dest, u32 len, u32 *cur_in) { u32 orig_in = *cur_in; while (*cur_in < orig_in + len) { struct folio *cur_folio; u32 copy_len = min_t(u32, PAGE_SIZE - offset_in_page(*cur_in), orig_in + len - *cur_in); ASSERT(copy_len); cur_folio = cb->compressed_folios[*cur_in / PAGE_SIZE]; memcpy_from_folio(dest + *cur_in - orig_in, cur_folio, offset_in_folio(cur_folio, *cur_in), copy_len); *cur_in += copy_len; } } int lzo_decompress_bio(struct list_head *ws, struct compressed_bio *cb) { struct workspace *workspace = list_entry(ws, struct workspace, list); const struct btrfs_fs_info *fs_info = cb->bbio.inode->root->fs_info; const u32 sectorsize = fs_info->sectorsize; char *kaddr; int ret; /* Compressed data length, can be unaligned */ u32 len_in; /* Offset inside the compressed data */ u32 cur_in = 0; /* Bytes decompressed so far */ u32 cur_out = 0; kaddr = kmap_local_folio(cb->compressed_folios[0], 0); len_in = read_compress_length(kaddr); kunmap_local(kaddr); cur_in += LZO_LEN; /* * LZO header length check * * The total length should not exceed the maximum extent length, * and all sectors should be used. * If this happens, it means the compressed extent is corrupted. */ if (unlikely(len_in > min_t(size_t, BTRFS_MAX_COMPRESSED, cb->compressed_len) || round_up(len_in, sectorsize) < cb->compressed_len)) { struct btrfs_inode *inode = cb->bbio.inode; btrfs_err(fs_info, "lzo header invalid, root %llu inode %llu offset %llu lzo len %u compressed len %u", btrfs_root_id(inode->root), btrfs_ino(inode), cb->start, len_in, cb->compressed_len); return -EUCLEAN; } /* Go through each lzo segment */ while (cur_in < len_in) { struct folio *cur_folio; /* Length of the compressed segment */ u32 seg_len; u32 sector_bytes_left; size_t out_len = lzo1x_worst_compress(sectorsize); /* * We should always have enough space for one segment header * inside current sector. */ ASSERT(cur_in / sectorsize == (cur_in + LZO_LEN - 1) / sectorsize); cur_folio = cb->compressed_folios[cur_in / PAGE_SIZE]; ASSERT(cur_folio); kaddr = kmap_local_folio(cur_folio, 0); seg_len = read_compress_length(kaddr + offset_in_page(cur_in)); kunmap_local(kaddr); cur_in += LZO_LEN; if (unlikely(seg_len > WORKSPACE_CBUF_LENGTH)) { struct btrfs_inode *inode = cb->bbio.inode; /* * seg_len shouldn't be larger than we have allocated * for workspace->cbuf */ btrfs_err(fs_info, "lzo segment too big, root %llu inode %llu offset %llu len %u", btrfs_root_id(inode->root), btrfs_ino(inode), cb->start, seg_len); return -EIO; } /* Copy the compressed segment payload into workspace */ copy_compressed_segment(cb, workspace->cbuf, seg_len, &cur_in); /* Decompress the data */ ret = lzo1x_decompress_safe(workspace->cbuf, seg_len, workspace->buf, &out_len); if (unlikely(ret != LZO_E_OK)) { struct btrfs_inode *inode = cb->bbio.inode; btrfs_err(fs_info, "lzo decompression failed, error %d root %llu inode %llu offset %llu", ret, btrfs_root_id(inode->root), btrfs_ino(inode), cb->start); return -EIO; } /* Copy the data into inode pages */ ret = btrfs_decompress_buf2page(workspace->buf, out_len, cb, cur_out); cur_out += out_len; /* All data read, exit */ if (ret == 0) return 0; ret = 0; /* Check if the sector has enough space for a segment header */ sector_bytes_left = sectorsize - (cur_in % sectorsize); if (sector_bytes_left >= LZO_LEN) continue; /* Skip the padding zeros */ cur_in += sector_bytes_left; } return 0; } int lzo_decompress(struct list_head *ws, const u8 *data_in, struct page *dest_page, unsigned long dest_pgoff, size_t srclen, size_t destlen) { struct workspace *workspace = list_entry(ws, struct workspace, list); struct btrfs_fs_info *fs_info = page_to_fs_info(dest_page); const u32 sectorsize = fs_info->sectorsize; size_t in_len; size_t out_len; size_t max_segment_len = WORKSPACE_BUF_LENGTH; int ret = 0; if (srclen < LZO_LEN || srclen > max_segment_len + LZO_LEN * 2) return -EUCLEAN; in_len = read_compress_length(data_in); if (in_len != srclen) return -EUCLEAN; data_in += LZO_LEN; in_len = read_compress_length(data_in); if (in_len != srclen - LZO_LEN * 2) { ret = -EUCLEAN; goto out; } data_in += LZO_LEN; out_len = sectorsize; ret = lzo1x_decompress_safe(data_in, in_len, workspace->buf, &out_len); if (unlikely(ret != LZO_E_OK)) { struct btrfs_inode *inode = BTRFS_I(dest_page->mapping->host); btrfs_err(fs_info, "lzo decompression failed, error %d root %llu inode %llu offset %llu", ret, btrfs_root_id(inode->root), btrfs_ino(inode), page_offset(dest_page)); ret = -EIO; goto out; } ASSERT(out_len <= sectorsize); memcpy_to_page(dest_page, dest_pgoff, workspace->buf, out_len); /* Early end, considered as an error. */ if (unlikely(out_len < destlen)) { ret = -EIO; memzero_page(dest_page, dest_pgoff + out_len, destlen - out_len); } out: return ret; } const struct btrfs_compress_op btrfs_lzo_compress = { .workspace_manager = &wsm, .max_level = 1, .default_level = 1, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1