Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Mason | 504 | 22.55% | 35 | 14.71% |
Anand Jain | 226 | 10.11% | 40 | 16.81% |
Qu Wenruo | 214 | 9.57% | 20 | 8.40% |
Stefan Behrens | 207 | 9.26% | 11 | 4.62% |
Miao Xie | 181 | 8.10% | 11 | 4.62% |
Josef Whiter | 115 | 5.15% | 10 | 4.20% |
Filipe David Borba Manana | 102 | 4.56% | 3 | 1.26% |
Ilya Dryomov | 97 | 4.34% | 8 | 3.36% |
Christoph Hellwig | 88 | 3.94% | 7 | 2.94% |
David Sterba | 83 | 3.71% | 18 | 7.56% |
Naohiro Aota | 54 | 2.42% | 6 | 2.52% |
Jeff Mahoney | 43 | 1.92% | 9 | 3.78% |
Liu Bo | 41 | 1.83% | 5 | 2.10% |
Nikolay Borisov | 41 | 1.83% | 13 | 5.46% |
David Woodhouse | 37 | 1.66% | 1 | 0.42% |
Omar Sandoval | 37 | 1.66% | 4 | 1.68% |
Zheng Yan | 30 | 1.34% | 2 | 0.84% |
Zhao Lei | 29 | 1.30% | 5 | 2.10% |
Johannes Thumshirn | 26 | 1.16% | 7 | 2.94% |
Josef Bacik | 15 | 0.67% | 4 | 1.68% |
Arne Jansen | 14 | 0.63% | 2 | 0.84% |
Gui Hecheng | 9 | 0.40% | 1 | 0.42% |
Matthew Wilcox | 9 | 0.40% | 1 | 0.42% |
Christian Brauner | 4 | 0.18% | 1 | 0.42% |
Li Dongyang | 3 | 0.13% | 1 | 0.42% |
Chris Ball | 3 | 0.13% | 1 | 0.42% |
Gu JinXiang | 3 | 0.13% | 1 | 0.42% |
Hans van Kranenburg | 3 | 0.13% | 1 | 0.42% |
Su Yue | 3 | 0.13% | 1 | 0.42% |
Jan Kara | 3 | 0.13% | 1 | 0.42% |
Jan Schmidt | 2 | 0.09% | 1 | 0.42% |
Marcos Paulo de Souza | 2 | 0.09% | 1 | 0.42% |
Dulshani Gunawardhana | 2 | 0.09% | 1 | 0.42% |
Thomas Gleixner | 1 | 0.04% | 1 | 0.42% |
Michael Christie | 1 | 0.04% | 1 | 0.42% |
Madhuparna Bhowmik | 1 | 0.04% | 1 | 0.42% |
Byongho Lee | 1 | 0.04% | 1 | 0.42% |
Elena Reshetova | 1 | 0.04% | 1 | 0.42% |
Total | 2235 | 238 |
/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2007 Oracle. All rights reserved. */ #ifndef BTRFS_VOLUMES_H #define BTRFS_VOLUMES_H #include <linux/blk_types.h> #include <linux/sizes.h> #include <linux/atomic.h> #include <linux/sort.h> #include <linux/list.h> #include <linux/mutex.h> #include <linux/log2.h> #include <linux/kobject.h> #include <linux/refcount.h> #include <linux/completion.h> #include <linux/rbtree.h> #include <uapi/linux/btrfs.h> #include "messages.h" #include "rcu-string.h" struct block_device; struct bdev_handle; struct btrfs_fs_info; struct btrfs_block_group; struct btrfs_trans_handle; struct btrfs_zoned_device_info; #define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G) extern struct mutex uuid_mutex; #define BTRFS_STRIPE_LEN SZ_64K #define BTRFS_STRIPE_LEN_SHIFT (16) #define BTRFS_STRIPE_LEN_MASK (BTRFS_STRIPE_LEN - 1) static_assert(const_ilog2(BTRFS_STRIPE_LEN) == BTRFS_STRIPE_LEN_SHIFT); /* Used by sanity check for btrfs_raid_types. */ #define const_ffs(n) (__builtin_ctzll(n) + 1) /* * The conversion from BTRFS_BLOCK_GROUP_* bits to btrfs_raid_type requires * RAID0 always to be the lowest profile bit. * Although it's part of on-disk format and should never change, do extra * compile-time sanity checks. */ static_assert(const_ffs(BTRFS_BLOCK_GROUP_RAID0) < const_ffs(BTRFS_BLOCK_GROUP_PROFILE_MASK & ~BTRFS_BLOCK_GROUP_RAID0)); static_assert(const_ilog2(BTRFS_BLOCK_GROUP_RAID0) > ilog2(BTRFS_BLOCK_GROUP_TYPE_MASK)); /* ilog2() can handle both constants and variables */ #define BTRFS_BG_FLAG_TO_INDEX(profile) \ ilog2((profile) >> (ilog2(BTRFS_BLOCK_GROUP_RAID0) - 1)) enum btrfs_raid_types { /* SINGLE is the special one as it doesn't have on-disk bit. */ BTRFS_RAID_SINGLE = 0, BTRFS_RAID_RAID0 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID0), BTRFS_RAID_RAID1 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1), BTRFS_RAID_DUP = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_DUP), BTRFS_RAID_RAID10 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID10), BTRFS_RAID_RAID5 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID5), BTRFS_RAID_RAID6 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID6), BTRFS_RAID_RAID1C3 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C3), BTRFS_RAID_RAID1C4 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C4), BTRFS_NR_RAID_TYPES }; /* * Use sequence counter to get consistent device stat data on * 32-bit processors. */ #if BITS_PER_LONG==32 && defined(CONFIG_SMP) #include <linux/seqlock.h> #define __BTRFS_NEED_DEVICE_DATA_ORDERED #define btrfs_device_data_ordered_init(device) \ seqcount_init(&device->data_seqcount) #else #define btrfs_device_data_ordered_init(device) do { } while (0) #endif #define BTRFS_DEV_STATE_WRITEABLE (0) #define BTRFS_DEV_STATE_IN_FS_METADATA (1) #define BTRFS_DEV_STATE_MISSING (2) #define BTRFS_DEV_STATE_REPLACE_TGT (3) #define BTRFS_DEV_STATE_FLUSH_SENT (4) #define BTRFS_DEV_STATE_NO_READA (5) /* Special value encoding failure to write primary super block. */ #define BTRFS_SUPER_PRIMARY_WRITE_ERROR (INT_MAX / 2) struct btrfs_fs_devices; struct btrfs_device { struct list_head dev_list; /* device_list_mutex */ struct list_head dev_alloc_list; /* chunk mutex */ struct list_head post_commit_list; /* chunk mutex */ struct btrfs_fs_devices *fs_devices; struct btrfs_fs_info *fs_info; struct rcu_string __rcu *name; u64 generation; struct file *bdev_file; struct block_device *bdev; struct btrfs_zoned_device_info *zone_info; /* * Device's major-minor number. Must be set even if the device is not * opened (bdev == NULL), unless the device is missing. */ dev_t devt; unsigned long dev_state; blk_status_t last_flush_error; #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED seqcount_t data_seqcount; #endif /* the internal btrfs device id */ u64 devid; /* size of the device in memory */ u64 total_bytes; /* size of the device on disk */ u64 disk_total_bytes; /* bytes used */ u64 bytes_used; /* optimal io alignment for this device */ u32 io_align; /* optimal io width for this device */ u32 io_width; /* type and info about this device */ u64 type; /* * Counter of super block write errors, values larger than * BTRFS_SUPER_PRIMARY_WRITE_ERROR encode primary super block write failure. */ atomic_t sb_write_errors; /* minimal io size for this device */ u32 sector_size; /* physical drive uuid (or lvm uuid) */ u8 uuid[BTRFS_UUID_SIZE]; /* * size of the device on the current transaction * * This variant is update when committing the transaction, * and protected by chunk mutex */ u64 commit_total_bytes; /* bytes used on the current transaction */ u64 commit_bytes_used; /* Bio used for flushing device barriers */ struct bio flush_bio; struct completion flush_wait; /* per-device scrub information */ struct scrub_ctx *scrub_ctx; /* disk I/O failure stats. For detailed description refer to * enum btrfs_dev_stat_values in ioctl.h */ int dev_stats_valid; /* Counter to record the change of device stats */ atomic_t dev_stats_ccnt; atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX]; struct extent_io_tree alloc_state; struct completion kobj_unregister; /* For sysfs/FSID/devinfo/devid/ */ struct kobject devid_kobj; /* Bandwidth limit for scrub, in bytes */ u64 scrub_speed_max; }; /* * Block group or device which contains an active swapfile. Used for preventing * unsafe operations while a swapfile is active. * * These are sorted on (ptr, inode) (note that a block group or device can * contain more than one swapfile). We compare the pointer values because we * don't actually care what the object is, we just need a quick check whether * the object exists in the rbtree. */ struct btrfs_swapfile_pin { struct rb_node node; void *ptr; struct inode *inode; /* * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr * points to a struct btrfs_device. */ bool is_block_group; /* * Only used when 'is_block_group' is true and it is the number of * extents used by a swapfile for this block group ('ptr' field). */ int bg_extent_count; }; /* * If we read those variants at the context of their own lock, we needn't * use the following helpers, reading them directly is safe. */ #if BITS_PER_LONG==32 && defined(CONFIG_SMP) #define BTRFS_DEVICE_GETSET_FUNCS(name) \ static inline u64 \ btrfs_device_get_##name(const struct btrfs_device *dev) \ { \ u64 size; \ unsigned int seq; \ \ do { \ seq = read_seqcount_begin(&dev->data_seqcount); \ size = dev->name; \ } while (read_seqcount_retry(&dev->data_seqcount, seq)); \ return size; \ } \ \ static inline void \ btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ { \ preempt_disable(); \ write_seqcount_begin(&dev->data_seqcount); \ dev->name = size; \ write_seqcount_end(&dev->data_seqcount); \ preempt_enable(); \ } #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) #define BTRFS_DEVICE_GETSET_FUNCS(name) \ static inline u64 \ btrfs_device_get_##name(const struct btrfs_device *dev) \ { \ u64 size; \ \ preempt_disable(); \ size = dev->name; \ preempt_enable(); \ return size; \ } \ \ static inline void \ btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ { \ preempt_disable(); \ dev->name = size; \ preempt_enable(); \ } #else #define BTRFS_DEVICE_GETSET_FUNCS(name) \ static inline u64 \ btrfs_device_get_##name(const struct btrfs_device *dev) \ { \ return dev->name; \ } \ \ static inline void \ btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ { \ dev->name = size; \ } #endif BTRFS_DEVICE_GETSET_FUNCS(total_bytes); BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes); BTRFS_DEVICE_GETSET_FUNCS(bytes_used); enum btrfs_chunk_allocation_policy { BTRFS_CHUNK_ALLOC_REGULAR, BTRFS_CHUNK_ALLOC_ZONED, }; /* * Read policies for mirrored block group profiles, read picks the stripe based * on these policies. */ enum btrfs_read_policy { /* Use process PID to choose the stripe */ BTRFS_READ_POLICY_PID, BTRFS_NR_READ_POLICY, }; #ifdef CONFIG_BTRFS_DEBUG /* * Checksum mode - offload it to workqueues or do it synchronously in * btrfs_submit_chunk(). */ enum btrfs_offload_csum_mode { /* * Choose offloading checksum or do it synchronously automatically. * Do it synchronously if the checksum is fast, or offload to workqueues * otherwise. */ BTRFS_OFFLOAD_CSUM_AUTO, /* Always offload checksum to workqueues. */ BTRFS_OFFLOAD_CSUM_FORCE_ON, /* Never offload checksum to workqueues. */ BTRFS_OFFLOAD_CSUM_FORCE_OFF, }; #endif struct btrfs_fs_devices { u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ /* * UUID written into the btree blocks: * * - If metadata_uuid != fsid then super block must have * BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag set. * * - Following shall be true at all times: * - metadata_uuid == btrfs_header::fsid * - metadata_uuid == btrfs_dev_item::fsid * * - Relations between fsid and metadata_uuid in sb and fs_devices: * - Normal: * fs_devices->fsid == fs_devices->metadata_uuid == sb->fsid * sb->metadata_uuid == 0 * * - When the BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag is set: * fs_devices->fsid == sb->fsid * fs_devices->metadata_uuid == sb->metadata_uuid * * - When in-memory fs_devices->temp_fsid is true * fs_devices->fsid = random * fs_devices->metadata_uuid == sb->fsid */ u8 metadata_uuid[BTRFS_FSID_SIZE]; struct list_head fs_list; /* * Number of devices under this fsid including missing and * replace-target device and excludes seed devices. */ u64 num_devices; /* * The number of devices that successfully opened, including * replace-target, excludes seed devices. */ u64 open_devices; /* The number of devices that are under the chunk allocation list. */ u64 rw_devices; /* Count of missing devices under this fsid excluding seed device. */ u64 missing_devices; u64 total_rw_bytes; /* * Count of devices from btrfs_super_block::num_devices for this fsid, * which includes the seed device, excludes the transient replace-target * device. */ u64 total_devices; /* Highest generation number of seen devices */ u64 latest_generation; /* * The mount device or a device with highest generation after removal * or replace. */ struct btrfs_device *latest_dev; /* * All of the devices in the filesystem, protected by a mutex so we can * safely walk it to write out the super blocks without worrying about * adding/removing by the multi-device code. Scrubbing super block can * kick off supers writing by holding this mutex lock. */ struct mutex device_list_mutex; /* List of all devices, protected by device_list_mutex */ struct list_head devices; /* Devices which can satisfy space allocation. Protected by * chunk_mutex. */ struct list_head alloc_list; struct list_head seed_list; /* Count fs-devices opened. */ int opened; /* Set when we find or add a device that doesn't have the nonrot flag set. */ bool rotating; /* Devices support TRIM/discard commands. */ bool discardable; /* The filesystem is a seed filesystem. */ bool seeding; /* The mount needs to use a randomly generated fsid. */ bool temp_fsid; struct btrfs_fs_info *fs_info; /* sysfs kobjects */ struct kobject fsid_kobj; struct kobject *devices_kobj; struct kobject *devinfo_kobj; struct completion kobj_unregister; enum btrfs_chunk_allocation_policy chunk_alloc_policy; /* Policy used to read the mirrored stripes. */ enum btrfs_read_policy read_policy; #ifdef CONFIG_BTRFS_DEBUG /* Checksum mode - offload it or do it synchronously. */ enum btrfs_offload_csum_mode offload_csum_mode; #endif }; #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \ - sizeof(struct btrfs_chunk)) \ / sizeof(struct btrfs_stripe) + 1) #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ - 2 * sizeof(struct btrfs_disk_key) \ - 2 * sizeof(struct btrfs_chunk)) \ / sizeof(struct btrfs_stripe) + 1) struct btrfs_io_stripe { struct btrfs_device *dev; /* Block mapping. */ u64 physical; u64 length; bool is_scrub; /* For the endio handler. */ struct btrfs_io_context *bioc; }; struct btrfs_discard_stripe { struct btrfs_device *dev; u64 physical; u64 length; }; /* * Context for IO subsmission for device stripe. * * - Track the unfinished mirrors for mirror based profiles * Mirror based profiles are SINGLE/DUP/RAID1/RAID10. * * - Contain the logical -> physical mapping info * Used by submit_stripe_bio() for mapping logical bio * into physical device address. * * - Contain device replace info * Used by handle_ops_on_dev_replace() to copy logical bios * into the new device. * * - Contain RAID56 full stripe logical bytenrs */ struct btrfs_io_context { refcount_t refs; struct btrfs_fs_info *fs_info; /* Taken from struct btrfs_chunk_map::type. */ u64 map_type; struct bio *orig_bio; atomic_t error; u16 max_errors; u64 logical; u64 size; /* Raid stripe tree ordered entry. */ struct list_head rst_ordered_entry; /* * The total number of stripes, including the extra duplicated * stripe for replace. */ u16 num_stripes; /* * The mirror_num of this bioc. * * This is for reads which use 0 as mirror_num, thus we should return a * valid mirror_num (>0) for the reader. */ u16 mirror_num; /* * The following two members are for dev-replace case only. * * @replace_nr_stripes: Number of duplicated stripes which need to be * written to replace target. * Should be <= 2 (2 for DUP, otherwise <= 1). * @replace_stripe_src: The array indicates where the duplicated stripes * are from. * * The @replace_stripe_src[] array is mostly for RAID56 cases. * As non-RAID56 stripes share the same contents of the mapped range, * thus no need to bother where the duplicated ones are from. * * But for RAID56 case, all stripes contain different contents, thus * we need a way to know the mapping. * * There is an example for the two members, using a RAID5 write: * * num_stripes: 4 (3 + 1 duplicated write) * stripes[0]: dev = devid 1, physical = X * stripes[1]: dev = devid 2, physical = Y * stripes[2]: dev = devid 3, physical = Z * stripes[3]: dev = devid 0, physical = Y * * replace_nr_stripes = 1 * replace_stripe_src = 1 <- Means stripes[1] is involved in replace. * The duplicated stripe index would be * (@num_stripes - 1). * * Note, that we can still have cases replace_nr_stripes = 2 for DUP. * In that case, all stripes share the same content, thus we don't * need to bother @replace_stripe_src value at all. */ u16 replace_nr_stripes; s16 replace_stripe_src; /* * Logical bytenr of the full stripe start, only for RAID56 cases. * * When this value is set to other than (u64)-1, the stripes[] should * follow this pattern: * * (real_stripes = num_stripes - replace_nr_stripes) * (data_stripes = (is_raid6) ? (real_stripes - 2) : (real_stripes - 1)) * * stripes[0]: The first data stripe * stripes[1]: The second data stripe * ... * stripes[data_stripes - 1]: The last data stripe * stripes[data_stripes]: The P stripe * stripes[data_stripes + 1]: The Q stripe (only for RAID6). */ u64 full_stripe_logical; struct btrfs_io_stripe stripes[]; }; struct btrfs_device_info { struct btrfs_device *dev; u64 dev_offset; u64 max_avail; u64 total_avail; }; struct btrfs_raid_attr { u8 sub_stripes; /* sub_stripes info for map */ u8 dev_stripes; /* stripes per dev */ u8 devs_max; /* max devs to use */ u8 devs_min; /* min devs needed */ u8 tolerated_failures; /* max tolerated fail devs */ u8 devs_increment; /* ndevs has to be a multiple of this */ u8 ncopies; /* how many copies to data has */ u8 nparity; /* number of stripes worth of bytes to store * parity information */ u8 mindev_error; /* error code if min devs requisite is unmet */ const char raid_name[8]; /* name of the raid */ u64 bg_flag; /* block group flag of the raid */ }; extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES]; struct btrfs_chunk_map { struct rb_node rb_node; /* For mount time dev extent verification. */ int verified_stripes; refcount_t refs; u64 start; u64 chunk_len; u64 stripe_size; u64 type; int io_align; int io_width; int num_stripes; int sub_stripes; struct btrfs_io_stripe stripes[]; }; #define btrfs_chunk_map_size(n) (sizeof(struct btrfs_chunk_map) + \ (sizeof(struct btrfs_io_stripe) * (n))) static inline void btrfs_free_chunk_map(struct btrfs_chunk_map *map) { if (map && refcount_dec_and_test(&map->refs)) { ASSERT(RB_EMPTY_NODE(&map->rb_node)); kfree(map); } } struct btrfs_balance_control { struct btrfs_balance_args data; struct btrfs_balance_args meta; struct btrfs_balance_args sys; u64 flags; struct btrfs_balance_progress stat; }; /* * Search for a given device by the set parameters */ struct btrfs_dev_lookup_args { u64 devid; u8 *uuid; u8 *fsid; bool missing; }; /* We have to initialize to -1 because BTRFS_DEV_REPLACE_DEVID is 0 */ #define BTRFS_DEV_LOOKUP_ARGS_INIT { .devid = (u64)-1 } #define BTRFS_DEV_LOOKUP_ARGS(name) \ struct btrfs_dev_lookup_args name = BTRFS_DEV_LOOKUP_ARGS_INIT enum btrfs_map_op { BTRFS_MAP_READ, BTRFS_MAP_WRITE, BTRFS_MAP_GET_READ_MIRRORS, }; static inline enum btrfs_map_op btrfs_op(struct bio *bio) { switch (bio_op(bio)) { case REQ_OP_WRITE: case REQ_OP_ZONE_APPEND: return BTRFS_MAP_WRITE; default: WARN_ON_ONCE(1); fallthrough; case REQ_OP_READ: return BTRFS_MAP_READ; } } static inline unsigned long btrfs_chunk_item_size(int num_stripes) { ASSERT(num_stripes); return sizeof(struct btrfs_chunk) + sizeof(struct btrfs_stripe) * (num_stripes - 1); } /* * Do the type safe conversion from stripe_nr to offset inside the chunk. * * @stripe_nr is u32, with left shift it can overflow u32 for chunks larger * than 4G. This does the proper type cast to avoid overflow. */ static inline u64 btrfs_stripe_nr_to_offset(u32 stripe_nr) { return (u64)stripe_nr << BTRFS_STRIPE_LEN_SHIFT; } void btrfs_get_bioc(struct btrfs_io_context *bioc); void btrfs_put_bioc(struct btrfs_io_context *bioc); int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, u64 logical, u64 *length, struct btrfs_io_context **bioc_ret, struct btrfs_io_stripe *smap, int *mirror_num_ret); int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, struct btrfs_io_stripe *smap, u64 logical, u32 length, int mirror_num); struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, u64 logical, u64 *length_ret, u32 *num_stripes); int btrfs_read_sys_array(struct btrfs_fs_info *fs_info); int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info); struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, u64 type); void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info); int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, blk_mode_t flags, void *holder); struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags, bool mount_arg_dev); int btrfs_forget_devices(dev_t devt); void btrfs_close_devices(struct btrfs_fs_devices *fs_devices); void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices); void btrfs_assign_next_active_device(struct btrfs_device *device, struct btrfs_device *this_dev); struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid, const char *devpath); int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, struct btrfs_dev_lookup_args *args, const char *path); struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, const u64 *devid, const u8 *uuid, const char *path); void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args); int btrfs_rm_device(struct btrfs_fs_info *fs_info, struct btrfs_dev_lookup_args *args, struct file **bdev_file); void __exit btrfs_cleanup_fs_uuids(void); int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len); int btrfs_grow_device(struct btrfs_trans_handle *trans, struct btrfs_device *device, u64 new_size); struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, const struct btrfs_dev_lookup_args *args); int btrfs_shrink_device(struct btrfs_device *device, u64 new_size); int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path); int btrfs_balance(struct btrfs_fs_info *fs_info, struct btrfs_balance_control *bctl, struct btrfs_ioctl_balance_args *bargs); void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf); int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info); int btrfs_recover_balance(struct btrfs_fs_info *fs_info); int btrfs_pause_balance(struct btrfs_fs_info *fs_info); int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset); int btrfs_cancel_balance(struct btrfs_fs_info *fs_info); int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info); int btrfs_uuid_scan_kthread(void *data); bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset); void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index); int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, struct btrfs_ioctl_get_dev_stats *stats); int btrfs_init_devices_late(struct btrfs_fs_info *fs_info); int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info); int btrfs_run_dev_stats(struct btrfs_trans_handle *trans); void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev); void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev); void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev); int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len); unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, u64 logical); u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map); int btrfs_nr_parity_stripes(u64 type); int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, struct btrfs_block_group *bg); int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset); #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp); int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map); #endif struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, u64 logical, u64 length); struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, u64 logical, u64 length); struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, u64 logical, u64 length); void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map); void btrfs_release_disk_super(struct btrfs_super_block *super); static inline void btrfs_dev_stat_inc(struct btrfs_device *dev, int index) { atomic_inc(dev->dev_stat_values + index); /* * This memory barrier orders stores updating statistics before stores * updating dev_stats_ccnt. * * It pairs with smp_rmb() in btrfs_run_dev_stats(). */ smp_mb__before_atomic(); atomic_inc(&dev->dev_stats_ccnt); } static inline int btrfs_dev_stat_read(struct btrfs_device *dev, int index) { return atomic_read(dev->dev_stat_values + index); } static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev, int index) { int ret; ret = atomic_xchg(dev->dev_stat_values + index, 0); /* * atomic_xchg implies a full memory barriers as per atomic_t.txt: * - RMW operations that have a return value are fully ordered; * * This implicit memory barriers is paired with the smp_rmb in * btrfs_run_dev_stats */ atomic_inc(&dev->dev_stats_ccnt); return ret; } static inline void btrfs_dev_stat_set(struct btrfs_device *dev, int index, unsigned long val) { atomic_set(dev->dev_stat_values + index, val); /* * This memory barrier orders stores updating statistics before stores * updating dev_stats_ccnt. * * It pairs with smp_rmb() in btrfs_run_dev_stats(). */ smp_mb__before_atomic(); atomic_inc(&dev->dev_stats_ccnt); } static inline const char *btrfs_dev_name(const struct btrfs_device *device) { if (!device || test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) return "<missing disk>"; else return rcu_str_deref(device->name); } void btrfs_commit_device_sizes(struct btrfs_transaction *trans); struct list_head * __attribute_const__ btrfs_get_fs_uuids(void); bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, struct btrfs_device *failing_dev); void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device); enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags); int btrfs_bg_type_to_factor(u64 flags); const char *btrfs_bg_type_to_raid_name(u64 flags); int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info); bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical); bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb); #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1