Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sage Weil | 6746 | 40.62% | 41 | 14.09% |
Yan Zheng | 4054 | 24.41% | 89 | 30.58% |
Jeff Layton | 2717 | 16.36% | 54 | 18.56% |
Xiubo Li | 1949 | 11.74% | 20 | 6.87% |
Luis Henriques | 226 | 1.36% | 11 | 3.78% |
Milind Changire | 206 | 1.24% | 1 | 0.34% |
David Howells | 126 | 0.76% | 7 | 2.41% |
Yehuda Sadeh Weinraub | 94 | 0.57% | 6 | 2.06% |
Christian Brauner | 69 | 0.42% | 14 | 4.81% |
Eric W. Biedermann | 67 | 0.40% | 2 | 0.69% |
Al Viro | 52 | 0.31% | 13 | 4.47% |
Jan Kara | 35 | 0.21% | 2 | 0.69% |
Arnd Bergmann | 34 | 0.20% | 1 | 0.34% |
Nicholas Piggin | 30 | 0.18% | 2 | 0.69% |
Chengguang Xu | 25 | 0.15% | 1 | 0.34% |
Xi Wang | 24 | 0.14% | 1 | 0.34% |
Guangliang Zhao | 23 | 0.14% | 2 | 0.69% |
Andreas Gruenbacher | 21 | 0.13% | 1 | 0.34% |
Milosz Tanski | 14 | 0.08% | 1 | 0.34% |
David Disseldorp | 13 | 0.08% | 1 | 0.34% |
Ilya Dryomov | 12 | 0.07% | 1 | 0.34% |
Linus Torvalds | 11 | 0.07% | 3 | 1.03% |
Dan Carpenter | 10 | 0.06% | 2 | 0.69% |
Deepa Dinamani | 9 | 0.05% | 2 | 0.69% |
Yanhu Cao | 8 | 0.05% | 1 | 0.34% |
Henry C Chang | 8 | 0.05% | 1 | 0.34% |
Miklos Szeredi | 6 | 0.04% | 2 | 0.69% |
Jason A. Donenfeld | 3 | 0.02% | 2 | 0.69% |
SF Markus Elfring | 3 | 0.02% | 1 | 0.34% |
Song Muchun | 3 | 0.02% | 1 | 0.34% |
Kirill A. Shutemov | 3 | 0.02% | 1 | 0.34% |
Alexander Mikhalitsyn | 2 | 0.01% | 1 | 0.34% |
Hongnan Li | 2 | 0.01% | 1 | 0.34% |
Kairui Song | 2 | 0.01% | 1 | 0.34% |
Greg Kroah-Hartman | 1 | 0.01% | 1 | 0.34% |
Total | 16608 | 291 |
// SPDX-License-Identifier: GPL-2.0 #include <linux/ceph/ceph_debug.h> #include <linux/module.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/uaccess.h> #include <linux/kernel.h> #include <linux/writeback.h> #include <linux/vmalloc.h> #include <linux/xattr.h> #include <linux/posix_acl.h> #include <linux/random.h> #include <linux/sort.h> #include <linux/iversion.h> #include <linux/fscrypt.h> #include "super.h" #include "mds_client.h" #include "cache.h" #include "crypto.h" #include <linux/ceph/decode.h> /* * Ceph inode operations * * Implement basic inode helpers (get, alloc) and inode ops (getattr, * setattr, etc.), xattr helpers, and helpers for assimilating * metadata returned by the MDS into our cache. * * Also define helpers for doing asynchronous writeback, invalidation, * and truncation for the benefit of those who can't afford to block * (typically because they are in the message handler path). */ static const struct inode_operations ceph_symlink_iops; static const struct inode_operations ceph_encrypted_symlink_iops; static void ceph_inode_work(struct work_struct *work); /* * find or create an inode, given the ceph ino number */ static int ceph_set_ino_cb(struct inode *inode, void *data) { struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); ci->i_vino = *(struct ceph_vino *)data; inode->i_ino = ceph_vino_to_ino_t(ci->i_vino); inode_set_iversion_raw(inode, 0); percpu_counter_inc(&mdsc->metric.total_inodes); return 0; } /** * ceph_new_inode - allocate a new inode in advance of an expected create * @dir: parent directory for new inode * @dentry: dentry that may eventually point to new inode * @mode: mode of new inode * @as_ctx: pointer to inherited security context * * Allocate a new inode in advance of an operation to create a new inode. * This allocates the inode and sets up the acl_sec_ctx with appropriate * info for the new inode. * * Returns a pointer to the new inode or an ERR_PTR. */ struct inode *ceph_new_inode(struct inode *dir, struct dentry *dentry, umode_t *mode, struct ceph_acl_sec_ctx *as_ctx) { int err; struct inode *inode; inode = new_inode(dir->i_sb); if (!inode) return ERR_PTR(-ENOMEM); inode->i_blkbits = CEPH_FSCRYPT_BLOCK_SHIFT; if (!S_ISLNK(*mode)) { err = ceph_pre_init_acls(dir, mode, as_ctx); if (err < 0) goto out_err; } inode->i_state = 0; inode->i_mode = *mode; err = ceph_security_init_secctx(dentry, *mode, as_ctx); if (err < 0) goto out_err; /* * We'll skip setting fscrypt context for snapshots, leaving that for * the handle_reply(). */ if (ceph_snap(dir) != CEPH_SNAPDIR) { err = ceph_fscrypt_prepare_context(dir, inode, as_ctx); if (err) goto out_err; } return inode; out_err: iput(inode); return ERR_PTR(err); } void ceph_as_ctx_to_req(struct ceph_mds_request *req, struct ceph_acl_sec_ctx *as_ctx) { if (as_ctx->pagelist) { req->r_pagelist = as_ctx->pagelist; as_ctx->pagelist = NULL; } ceph_fscrypt_as_ctx_to_req(req, as_ctx); } /** * ceph_get_inode - find or create/hash a new inode * @sb: superblock to search and allocate in * @vino: vino to search for * @newino: optional new inode to insert if one isn't found (may be NULL) * * Search for or insert a new inode into the hash for the given vino, and * return a reference to it. If new is non-NULL, its reference is consumed. */ struct inode *ceph_get_inode(struct super_block *sb, struct ceph_vino vino, struct inode *newino) { struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(sb); struct ceph_client *cl = mdsc->fsc->client; struct inode *inode; if (ceph_vino_is_reserved(vino)) return ERR_PTR(-EREMOTEIO); if (newino) { inode = inode_insert5(newino, (unsigned long)vino.ino, ceph_ino_compare, ceph_set_ino_cb, &vino); if (inode != newino) iput(newino); } else { inode = iget5_locked(sb, (unsigned long)vino.ino, ceph_ino_compare, ceph_set_ino_cb, &vino); } if (!inode) { doutc(cl, "no inode found for %llx.%llx\n", vino.ino, vino.snap); return ERR_PTR(-ENOMEM); } doutc(cl, "on %llx=%llx.%llx got %p new %d\n", ceph_present_inode(inode), ceph_vinop(inode), inode, !!(inode->i_state & I_NEW)); return inode; } /* * get/constuct snapdir inode for a given directory */ struct inode *ceph_get_snapdir(struct inode *parent) { struct ceph_client *cl = ceph_inode_to_client(parent); struct ceph_vino vino = { .ino = ceph_ino(parent), .snap = CEPH_SNAPDIR, }; struct inode *inode = ceph_get_inode(parent->i_sb, vino, NULL); struct ceph_inode_info *ci = ceph_inode(inode); int ret = -ENOTDIR; if (IS_ERR(inode)) return inode; if (!S_ISDIR(parent->i_mode)) { pr_warn_once_client(cl, "bad snapdir parent type (mode=0%o)\n", parent->i_mode); goto err; } if (!(inode->i_state & I_NEW) && !S_ISDIR(inode->i_mode)) { pr_warn_once_client(cl, "bad snapdir inode type (mode=0%o)\n", inode->i_mode); goto err; } inode->i_mode = parent->i_mode; inode->i_uid = parent->i_uid; inode->i_gid = parent->i_gid; inode_set_mtime_to_ts(inode, inode_get_mtime(parent)); inode_set_ctime_to_ts(inode, inode_get_ctime(parent)); inode_set_atime_to_ts(inode, inode_get_atime(parent)); ci->i_rbytes = 0; ci->i_btime = ceph_inode(parent)->i_btime; #ifdef CONFIG_FS_ENCRYPTION /* if encrypted, just borrow fscrypt_auth from parent */ if (IS_ENCRYPTED(parent)) { struct ceph_inode_info *pci = ceph_inode(parent); ci->fscrypt_auth = kmemdup(pci->fscrypt_auth, pci->fscrypt_auth_len, GFP_KERNEL); if (ci->fscrypt_auth) { inode->i_flags |= S_ENCRYPTED; ci->fscrypt_auth_len = pci->fscrypt_auth_len; } else { doutc(cl, "Failed to alloc snapdir fscrypt_auth\n"); ret = -ENOMEM; goto err; } } #endif if (inode->i_state & I_NEW) { inode->i_op = &ceph_snapdir_iops; inode->i_fop = &ceph_snapdir_fops; ci->i_snap_caps = CEPH_CAP_PIN; /* so we can open */ unlock_new_inode(inode); } return inode; err: if ((inode->i_state & I_NEW)) discard_new_inode(inode); else iput(inode); return ERR_PTR(ret); } const struct inode_operations ceph_file_iops = { .permission = ceph_permission, .setattr = ceph_setattr, .getattr = ceph_getattr, .listxattr = ceph_listxattr, .get_inode_acl = ceph_get_acl, .set_acl = ceph_set_acl, }; /* * We use a 'frag tree' to keep track of the MDS's directory fragments * for a given inode (usually there is just a single fragment). We * need to know when a child frag is delegated to a new MDS, or when * it is flagged as replicated, so we can direct our requests * accordingly. */ /* * find/create a frag in the tree */ static struct ceph_inode_frag *__get_or_create_frag(struct ceph_inode_info *ci, u32 f) { struct inode *inode = &ci->netfs.inode; struct ceph_client *cl = ceph_inode_to_client(inode); struct rb_node **p; struct rb_node *parent = NULL; struct ceph_inode_frag *frag; int c; p = &ci->i_fragtree.rb_node; while (*p) { parent = *p; frag = rb_entry(parent, struct ceph_inode_frag, node); c = ceph_frag_compare(f, frag->frag); if (c < 0) p = &(*p)->rb_left; else if (c > 0) p = &(*p)->rb_right; else return frag; } frag = kmalloc(sizeof(*frag), GFP_NOFS); if (!frag) return ERR_PTR(-ENOMEM); frag->frag = f; frag->split_by = 0; frag->mds = -1; frag->ndist = 0; rb_link_node(&frag->node, parent, p); rb_insert_color(&frag->node, &ci->i_fragtree); doutc(cl, "added %p %llx.%llx frag %x\n", inode, ceph_vinop(inode), f); return frag; } /* * find a specific frag @f */ struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci, u32 f) { struct rb_node *n = ci->i_fragtree.rb_node; while (n) { struct ceph_inode_frag *frag = rb_entry(n, struct ceph_inode_frag, node); int c = ceph_frag_compare(f, frag->frag); if (c < 0) n = n->rb_left; else if (c > 0) n = n->rb_right; else return frag; } return NULL; } /* * Choose frag containing the given value @v. If @pfrag is * specified, copy the frag delegation info to the caller if * it is present. */ static u32 __ceph_choose_frag(struct ceph_inode_info *ci, u32 v, struct ceph_inode_frag *pfrag, int *found) { struct ceph_client *cl = ceph_inode_to_client(&ci->netfs.inode); u32 t = ceph_frag_make(0, 0); struct ceph_inode_frag *frag; unsigned nway, i; u32 n; if (found) *found = 0; while (1) { WARN_ON(!ceph_frag_contains_value(t, v)); frag = __ceph_find_frag(ci, t); if (!frag) break; /* t is a leaf */ if (frag->split_by == 0) { if (pfrag) memcpy(pfrag, frag, sizeof(*pfrag)); if (found) *found = 1; break; } /* choose child */ nway = 1 << frag->split_by; doutc(cl, "frag(%x) %x splits by %d (%d ways)\n", v, t, frag->split_by, nway); for (i = 0; i < nway; i++) { n = ceph_frag_make_child(t, frag->split_by, i); if (ceph_frag_contains_value(n, v)) { t = n; break; } } BUG_ON(i == nway); } doutc(cl, "frag(%x) = %x\n", v, t); return t; } u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v, struct ceph_inode_frag *pfrag, int *found) { u32 ret; mutex_lock(&ci->i_fragtree_mutex); ret = __ceph_choose_frag(ci, v, pfrag, found); mutex_unlock(&ci->i_fragtree_mutex); return ret; } /* * Process dirfrag (delegation) info from the mds. Include leaf * fragment in tree ONLY if ndist > 0. Otherwise, only * branches/splits are included in i_fragtree) */ static int ceph_fill_dirfrag(struct inode *inode, struct ceph_mds_reply_dirfrag *dirinfo) { struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_client *cl = ceph_inode_to_client(inode); struct ceph_inode_frag *frag; u32 id = le32_to_cpu(dirinfo->frag); int mds = le32_to_cpu(dirinfo->auth); int ndist = le32_to_cpu(dirinfo->ndist); int diri_auth = -1; int i; int err = 0; spin_lock(&ci->i_ceph_lock); if (ci->i_auth_cap) diri_auth = ci->i_auth_cap->mds; spin_unlock(&ci->i_ceph_lock); if (mds == -1) /* CDIR_AUTH_PARENT */ mds = diri_auth; mutex_lock(&ci->i_fragtree_mutex); if (ndist == 0 && mds == diri_auth) { /* no delegation info needed. */ frag = __ceph_find_frag(ci, id); if (!frag) goto out; if (frag->split_by == 0) { /* tree leaf, remove */ doutc(cl, "removed %p %llx.%llx frag %x (no ref)\n", inode, ceph_vinop(inode), id); rb_erase(&frag->node, &ci->i_fragtree); kfree(frag); } else { /* tree branch, keep and clear */ doutc(cl, "cleared %p %llx.%llx frag %x referral\n", inode, ceph_vinop(inode), id); frag->mds = -1; frag->ndist = 0; } goto out; } /* find/add this frag to store mds delegation info */ frag = __get_or_create_frag(ci, id); if (IS_ERR(frag)) { /* this is not the end of the world; we can continue with bad/inaccurate delegation info */ pr_err_client(cl, "ENOMEM on mds ref %p %llx.%llx fg %x\n", inode, ceph_vinop(inode), le32_to_cpu(dirinfo->frag)); err = -ENOMEM; goto out; } frag->mds = mds; frag->ndist = min_t(u32, ndist, CEPH_MAX_DIRFRAG_REP); for (i = 0; i < frag->ndist; i++) frag->dist[i] = le32_to_cpu(dirinfo->dist[i]); doutc(cl, "%p %llx.%llx frag %x ndist=%d\n", inode, ceph_vinop(inode), frag->frag, frag->ndist); out: mutex_unlock(&ci->i_fragtree_mutex); return err; } static int frag_tree_split_cmp(const void *l, const void *r) { struct ceph_frag_tree_split *ls = (struct ceph_frag_tree_split*)l; struct ceph_frag_tree_split *rs = (struct ceph_frag_tree_split*)r; return ceph_frag_compare(le32_to_cpu(ls->frag), le32_to_cpu(rs->frag)); } static bool is_frag_child(u32 f, struct ceph_inode_frag *frag) { if (!frag) return f == ceph_frag_make(0, 0); if (ceph_frag_bits(f) != ceph_frag_bits(frag->frag) + frag->split_by) return false; return ceph_frag_contains_value(frag->frag, ceph_frag_value(f)); } static int ceph_fill_fragtree(struct inode *inode, struct ceph_frag_tree_head *fragtree, struct ceph_mds_reply_dirfrag *dirinfo) { struct ceph_client *cl = ceph_inode_to_client(inode); struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_inode_frag *frag, *prev_frag = NULL; struct rb_node *rb_node; unsigned i, split_by, nsplits; u32 id; bool update = false; mutex_lock(&ci->i_fragtree_mutex); nsplits = le32_to_cpu(fragtree->nsplits); if (nsplits != ci->i_fragtree_nsplits) { update = true; } else if (nsplits) { i = get_random_u32_below(nsplits); id = le32_to_cpu(fragtree->splits[i].frag); if (!__ceph_find_frag(ci, id)) update = true; } else if (!RB_EMPTY_ROOT(&ci->i_fragtree)) { rb_node = rb_first(&ci->i_fragtree); frag = rb_entry(rb_node, struct ceph_inode_frag, node); if (frag->frag != ceph_frag_make(0, 0) || rb_next(rb_node)) update = true; } if (!update && dirinfo) { id = le32_to_cpu(dirinfo->frag); if (id != __ceph_choose_frag(ci, id, NULL, NULL)) update = true; } if (!update) goto out_unlock; if (nsplits > 1) { sort(fragtree->splits, nsplits, sizeof(fragtree->splits[0]), frag_tree_split_cmp, NULL); } doutc(cl, "%p %llx.%llx\n", inode, ceph_vinop(inode)); rb_node = rb_first(&ci->i_fragtree); for (i = 0; i < nsplits; i++) { id = le32_to_cpu(fragtree->splits[i].frag); split_by = le32_to_cpu(fragtree->splits[i].by); if (split_by == 0 || ceph_frag_bits(id) + split_by > 24) { pr_err_client(cl, "%p %llx.%llx invalid split %d/%u, " "frag %x split by %d\n", inode, ceph_vinop(inode), i, nsplits, id, split_by); continue; } frag = NULL; while (rb_node) { frag = rb_entry(rb_node, struct ceph_inode_frag, node); if (ceph_frag_compare(frag->frag, id) >= 0) { if (frag->frag != id) frag = NULL; else rb_node = rb_next(rb_node); break; } rb_node = rb_next(rb_node); /* delete stale split/leaf node */ if (frag->split_by > 0 || !is_frag_child(frag->frag, prev_frag)) { rb_erase(&frag->node, &ci->i_fragtree); if (frag->split_by > 0) ci->i_fragtree_nsplits--; kfree(frag); } frag = NULL; } if (!frag) { frag = __get_or_create_frag(ci, id); if (IS_ERR(frag)) continue; } if (frag->split_by == 0) ci->i_fragtree_nsplits++; frag->split_by = split_by; doutc(cl, " frag %x split by %d\n", frag->frag, frag->split_by); prev_frag = frag; } while (rb_node) { frag = rb_entry(rb_node, struct ceph_inode_frag, node); rb_node = rb_next(rb_node); /* delete stale split/leaf node */ if (frag->split_by > 0 || !is_frag_child(frag->frag, prev_frag)) { rb_erase(&frag->node, &ci->i_fragtree); if (frag->split_by > 0) ci->i_fragtree_nsplits--; kfree(frag); } } out_unlock: mutex_unlock(&ci->i_fragtree_mutex); return 0; } /* * initialize a newly allocated inode. */ struct inode *ceph_alloc_inode(struct super_block *sb) { struct ceph_fs_client *fsc = ceph_sb_to_fs_client(sb); struct ceph_inode_info *ci; int i; ci = alloc_inode_sb(sb, ceph_inode_cachep, GFP_NOFS); if (!ci) return NULL; doutc(fsc->client, "%p\n", &ci->netfs.inode); /* Set parameters for the netfs library */ netfs_inode_init(&ci->netfs, &ceph_netfs_ops, false); spin_lock_init(&ci->i_ceph_lock); ci->i_version = 0; ci->i_inline_version = 0; ci->i_time_warp_seq = 0; ci->i_ceph_flags = 0; atomic64_set(&ci->i_ordered_count, 1); atomic64_set(&ci->i_release_count, 1); atomic64_set(&ci->i_complete_seq[0], 0); atomic64_set(&ci->i_complete_seq[1], 0); ci->i_symlink = NULL; ci->i_max_bytes = 0; ci->i_max_files = 0; memset(&ci->i_dir_layout, 0, sizeof(ci->i_dir_layout)); memset(&ci->i_cached_layout, 0, sizeof(ci->i_cached_layout)); RCU_INIT_POINTER(ci->i_layout.pool_ns, NULL); ci->i_fragtree = RB_ROOT; mutex_init(&ci->i_fragtree_mutex); ci->i_xattrs.blob = NULL; ci->i_xattrs.prealloc_blob = NULL; ci->i_xattrs.dirty = false; ci->i_xattrs.index = RB_ROOT; ci->i_xattrs.count = 0; ci->i_xattrs.names_size = 0; ci->i_xattrs.vals_size = 0; ci->i_xattrs.version = 0; ci->i_xattrs.index_version = 0; ci->i_caps = RB_ROOT; ci->i_auth_cap = NULL; ci->i_dirty_caps = 0; ci->i_flushing_caps = 0; INIT_LIST_HEAD(&ci->i_dirty_item); INIT_LIST_HEAD(&ci->i_flushing_item); ci->i_prealloc_cap_flush = NULL; INIT_LIST_HEAD(&ci->i_cap_flush_list); init_waitqueue_head(&ci->i_cap_wq); ci->i_hold_caps_max = 0; INIT_LIST_HEAD(&ci->i_cap_delay_list); INIT_LIST_HEAD(&ci->i_cap_snaps); ci->i_head_snapc = NULL; ci->i_snap_caps = 0; ci->i_last_rd = ci->i_last_wr = jiffies - 3600 * HZ; for (i = 0; i < CEPH_FILE_MODE_BITS; i++) ci->i_nr_by_mode[i] = 0; mutex_init(&ci->i_truncate_mutex); ci->i_truncate_seq = 0; ci->i_truncate_size = 0; ci->i_truncate_pending = 0; ci->i_truncate_pagecache_size = 0; ci->i_max_size = 0; ci->i_reported_size = 0; ci->i_wanted_max_size = 0; ci->i_requested_max_size = 0; ci->i_pin_ref = 0; ci->i_rd_ref = 0; ci->i_rdcache_ref = 0; ci->i_wr_ref = 0; ci->i_wb_ref = 0; ci->i_fx_ref = 0; ci->i_wrbuffer_ref = 0; ci->i_wrbuffer_ref_head = 0; atomic_set(&ci->i_filelock_ref, 0); atomic_set(&ci->i_shared_gen, 1); ci->i_rdcache_gen = 0; ci->i_rdcache_revoking = 0; INIT_LIST_HEAD(&ci->i_unsafe_dirops); INIT_LIST_HEAD(&ci->i_unsafe_iops); spin_lock_init(&ci->i_unsafe_lock); ci->i_snap_realm = NULL; INIT_LIST_HEAD(&ci->i_snap_realm_item); INIT_LIST_HEAD(&ci->i_snap_flush_item); INIT_WORK(&ci->i_work, ceph_inode_work); ci->i_work_mask = 0; memset(&ci->i_btime, '\0', sizeof(ci->i_btime)); #ifdef CONFIG_FS_ENCRYPTION ci->fscrypt_auth = NULL; ci->fscrypt_auth_len = 0; #endif return &ci->netfs.inode; } void ceph_free_inode(struct inode *inode) { struct ceph_inode_info *ci = ceph_inode(inode); kfree(ci->i_symlink); #ifdef CONFIG_FS_ENCRYPTION kfree(ci->fscrypt_auth); #endif fscrypt_free_inode(inode); kmem_cache_free(ceph_inode_cachep, ci); } void ceph_evict_inode(struct inode *inode) { struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); struct ceph_client *cl = ceph_inode_to_client(inode); struct ceph_inode_frag *frag; struct rb_node *n; doutc(cl, "%p ino %llx.%llx\n", inode, ceph_vinop(inode)); percpu_counter_dec(&mdsc->metric.total_inodes); netfs_wait_for_outstanding_io(inode); truncate_inode_pages_final(&inode->i_data); if (inode->i_state & I_PINNING_NETFS_WB) ceph_fscache_unuse_cookie(inode, true); clear_inode(inode); ceph_fscache_unregister_inode_cookie(ci); fscrypt_put_encryption_info(inode); __ceph_remove_caps(ci); if (__ceph_has_quota(ci, QUOTA_GET_ANY)) ceph_adjust_quota_realms_count(inode, false); /* * we may still have a snap_realm reference if there are stray * caps in i_snap_caps. */ if (ci->i_snap_realm) { if (ceph_snap(inode) == CEPH_NOSNAP) { doutc(cl, " dropping residual ref to snap realm %p\n", ci->i_snap_realm); ceph_change_snap_realm(inode, NULL); } else { ceph_put_snapid_map(mdsc, ci->i_snapid_map); ci->i_snap_realm = NULL; } } while ((n = rb_first(&ci->i_fragtree)) != NULL) { frag = rb_entry(n, struct ceph_inode_frag, node); rb_erase(n, &ci->i_fragtree); kfree(frag); } ci->i_fragtree_nsplits = 0; __ceph_destroy_xattrs(ci); if (ci->i_xattrs.blob) ceph_buffer_put(ci->i_xattrs.blob); if (ci->i_xattrs.prealloc_blob) ceph_buffer_put(ci->i_xattrs.prealloc_blob); ceph_put_string(rcu_dereference_raw(ci->i_layout.pool_ns)); ceph_put_string(rcu_dereference_raw(ci->i_cached_layout.pool_ns)); } static inline blkcnt_t calc_inode_blocks(u64 size) { return (size + (1<<9) - 1) >> 9; } /* * Helpers to fill in size, ctime, mtime, and atime. We have to be * careful because either the client or MDS may have more up to date * info, depending on which capabilities are held, and whether * time_warp_seq or truncate_seq have increased. (Ordinarily, mtime * and size are monotonically increasing, except when utimes() or * truncate() increments the corresponding _seq values.) */ int ceph_fill_file_size(struct inode *inode, int issued, u32 truncate_seq, u64 truncate_size, u64 size) { struct ceph_client *cl = ceph_inode_to_client(inode); struct ceph_inode_info *ci = ceph_inode(inode); int queue_trunc = 0; loff_t isize = i_size_read(inode); if (ceph_seq_cmp(truncate_seq, ci->i_truncate_seq) > 0 || (truncate_seq == ci->i_truncate_seq && size > isize)) { doutc(cl, "size %lld -> %llu\n", isize, size); if (size > 0 && S_ISDIR(inode->i_mode)) { pr_err_client(cl, "non-zero size for directory\n"); size = 0; } i_size_write(inode, size); inode->i_blocks = calc_inode_blocks(size); /* * If we're expanding, then we should be able to just update * the existing cookie. */ if (size > isize) ceph_fscache_update(inode); ci->i_reported_size = size; if (truncate_seq != ci->i_truncate_seq) { doutc(cl, "truncate_seq %u -> %u\n", ci->i_truncate_seq, truncate_seq); ci->i_truncate_seq = truncate_seq; /* the MDS should have revoked these caps */ WARN_ON_ONCE(issued & (CEPH_CAP_FILE_RD | CEPH_CAP_FILE_LAZYIO)); /* * If we hold relevant caps, or in the case where we're * not the only client referencing this file and we * don't hold those caps, then we need to check whether * the file is either opened or mmaped */ if ((issued & (CEPH_CAP_FILE_CACHE| CEPH_CAP_FILE_BUFFER)) || mapping_mapped(inode->i_mapping) || __ceph_is_file_opened(ci)) { ci->i_truncate_pending++; queue_trunc = 1; } } } /* * It's possible that the new sizes of the two consecutive * size truncations will be in the same fscrypt last block, * and we need to truncate the corresponding page caches * anyway. */ if (ceph_seq_cmp(truncate_seq, ci->i_truncate_seq) >= 0) { doutc(cl, "truncate_size %lld -> %llu, encrypted %d\n", ci->i_truncate_size, truncate_size, !!IS_ENCRYPTED(inode)); ci->i_truncate_size = truncate_size; if (IS_ENCRYPTED(inode)) { doutc(cl, "truncate_pagecache_size %lld -> %llu\n", ci->i_truncate_pagecache_size, size); ci->i_truncate_pagecache_size = size; } else { ci->i_truncate_pagecache_size = truncate_size; } } return queue_trunc; } void ceph_fill_file_time(struct inode *inode, int issued, u64 time_warp_seq, struct timespec64 *ctime, struct timespec64 *mtime, struct timespec64 *atime) { struct ceph_client *cl = ceph_inode_to_client(inode); struct ceph_inode_info *ci = ceph_inode(inode); struct timespec64 ictime = inode_get_ctime(inode); int warn = 0; if (issued & (CEPH_CAP_FILE_EXCL| CEPH_CAP_FILE_WR| CEPH_CAP_FILE_BUFFER| CEPH_CAP_AUTH_EXCL| CEPH_CAP_XATTR_EXCL)) { if (ci->i_version == 0 || timespec64_compare(ctime, &ictime) > 0) { doutc(cl, "ctime %lld.%09ld -> %lld.%09ld inc w/ cap\n", ictime.tv_sec, ictime.tv_nsec, ctime->tv_sec, ctime->tv_nsec); inode_set_ctime_to_ts(inode, *ctime); } if (ci->i_version == 0 || ceph_seq_cmp(time_warp_seq, ci->i_time_warp_seq) > 0) { /* the MDS did a utimes() */ doutc(cl, "mtime %lld.%09ld -> %lld.%09ld tw %d -> %d\n", inode_get_mtime_sec(inode), inode_get_mtime_nsec(inode), mtime->tv_sec, mtime->tv_nsec, ci->i_time_warp_seq, (int)time_warp_seq); inode_set_mtime_to_ts(inode, *mtime); inode_set_atime_to_ts(inode, *atime); ci->i_time_warp_seq = time_warp_seq; } else if (time_warp_seq == ci->i_time_warp_seq) { struct timespec64 ts; /* nobody did utimes(); take the max */ ts = inode_get_mtime(inode); if (timespec64_compare(mtime, &ts) > 0) { doutc(cl, "mtime %lld.%09ld -> %lld.%09ld inc\n", ts.tv_sec, ts.tv_nsec, mtime->tv_sec, mtime->tv_nsec); inode_set_mtime_to_ts(inode, *mtime); } ts = inode_get_atime(inode); if (timespec64_compare(atime, &ts) > 0) { doutc(cl, "atime %lld.%09ld -> %lld.%09ld inc\n", ts.tv_sec, ts.tv_nsec, atime->tv_sec, atime->tv_nsec); inode_set_atime_to_ts(inode, *atime); } } else if (issued & CEPH_CAP_FILE_EXCL) { /* we did a utimes(); ignore mds values */ } else { warn = 1; } } else { /* we have no write|excl caps; whatever the MDS says is true */ if (ceph_seq_cmp(time_warp_seq, ci->i_time_warp_seq) >= 0) { inode_set_ctime_to_ts(inode, *ctime); inode_set_mtime_to_ts(inode, *mtime); inode_set_atime_to_ts(inode, *atime); ci->i_time_warp_seq = time_warp_seq; } else { warn = 1; } } if (warn) /* time_warp_seq shouldn't go backwards */ doutc(cl, "%p mds time_warp_seq %llu < %u\n", inode, time_warp_seq, ci->i_time_warp_seq); } #if IS_ENABLED(CONFIG_FS_ENCRYPTION) static int decode_encrypted_symlink(struct ceph_mds_client *mdsc, const char *encsym, int enclen, u8 **decsym) { struct ceph_client *cl = mdsc->fsc->client; int declen; u8 *sym; sym = kmalloc(enclen + 1, GFP_NOFS); if (!sym) return -ENOMEM; declen = ceph_base64_decode(encsym, enclen, sym); if (declen < 0) { pr_err_client(cl, "can't decode symlink (%d). Content: %.*s\n", declen, enclen, encsym); kfree(sym); return -EIO; } sym[declen + 1] = '\0'; *decsym = sym; return declen; } #else static int decode_encrypted_symlink(struct ceph_mds_client *mdsc, const char *encsym, int symlen, u8 **decsym) { return -EOPNOTSUPP; } #endif /* * Populate an inode based on info from mds. May be called on new or * existing inodes. */ int ceph_fill_inode(struct inode *inode, struct page *locked_page, struct ceph_mds_reply_info_in *iinfo, struct ceph_mds_reply_dirfrag *dirinfo, struct ceph_mds_session *session, int cap_fmode, struct ceph_cap_reservation *caps_reservation) { struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); struct ceph_client *cl = mdsc->fsc->client; struct ceph_mds_reply_inode *info = iinfo->in; struct ceph_inode_info *ci = ceph_inode(inode); int issued, new_issued, info_caps; struct timespec64 mtime, atime, ctime; struct ceph_buffer *xattr_blob = NULL; struct ceph_buffer *old_blob = NULL; struct ceph_string *pool_ns = NULL; struct ceph_cap *new_cap = NULL; int err = 0; bool wake = false; bool queue_trunc = false; bool new_version = false; bool fill_inline = false; umode_t mode = le32_to_cpu(info->mode); dev_t rdev = le32_to_cpu(info->rdev); lockdep_assert_held(&mdsc->snap_rwsem); doutc(cl, "%p ino %llx.%llx v %llu had %llu\n", inode, ceph_vinop(inode), le64_to_cpu(info->version), ci->i_version); /* Once I_NEW is cleared, we can't change type or dev numbers */ if (inode->i_state & I_NEW) { inode->i_mode = mode; } else { if (inode_wrong_type(inode, mode)) { pr_warn_once_client(cl, "inode type changed! (ino %llx.%llx is 0%o, mds says 0%o)\n", ceph_vinop(inode), inode->i_mode, mode); return -ESTALE; } if ((S_ISCHR(mode) || S_ISBLK(mode)) && inode->i_rdev != rdev) { pr_warn_once_client(cl, "dev inode rdev changed! (ino %llx.%llx is %u:%u, mds says %u:%u)\n", ceph_vinop(inode), MAJOR(inode->i_rdev), MINOR(inode->i_rdev), MAJOR(rdev), MINOR(rdev)); return -ESTALE; } } info_caps = le32_to_cpu(info->cap.caps); /* prealloc new cap struct */ if (info_caps && ceph_snap(inode) == CEPH_NOSNAP) { new_cap = ceph_get_cap(mdsc, caps_reservation); if (!new_cap) return -ENOMEM; } /* * prealloc xattr data, if it looks like we'll need it. only * if len > 4 (meaning there are actually xattrs; the first 4 * bytes are the xattr count). */ if (iinfo->xattr_len > 4) { xattr_blob = ceph_buffer_new(iinfo->xattr_len, GFP_NOFS); if (!xattr_blob) pr_err_client(cl, "ENOMEM xattr blob %d bytes\n", iinfo->xattr_len); } if (iinfo->pool_ns_len > 0) pool_ns = ceph_find_or_create_string(iinfo->pool_ns_data, iinfo->pool_ns_len); if (ceph_snap(inode) != CEPH_NOSNAP && !ci->i_snapid_map) ci->i_snapid_map = ceph_get_snapid_map(mdsc, ceph_snap(inode)); spin_lock(&ci->i_ceph_lock); /* * provided version will be odd if inode value is projected, * even if stable. skip the update if we have newer stable * info (ours>=theirs, e.g. due to racing mds replies), unless * we are getting projected (unstable) info (in which case the * version is odd, and we want ours>theirs). * us them * 2 2 skip * 3 2 skip * 3 3 update */ if (ci->i_version == 0 || ((info->cap.flags & CEPH_CAP_FLAG_AUTH) && le64_to_cpu(info->version) > (ci->i_version & ~1))) new_version = true; /* Update change_attribute */ inode_set_max_iversion_raw(inode, iinfo->change_attr); __ceph_caps_issued(ci, &issued); issued |= __ceph_caps_dirty(ci); new_issued = ~issued & info_caps; __ceph_update_quota(ci, iinfo->max_bytes, iinfo->max_files); #ifdef CONFIG_FS_ENCRYPTION if (iinfo->fscrypt_auth_len && ((inode->i_state & I_NEW) || (ci->fscrypt_auth_len == 0))) { kfree(ci->fscrypt_auth); ci->fscrypt_auth_len = iinfo->fscrypt_auth_len; ci->fscrypt_auth = iinfo->fscrypt_auth; iinfo->fscrypt_auth = NULL; iinfo->fscrypt_auth_len = 0; inode_set_flags(inode, S_ENCRYPTED, S_ENCRYPTED); } #endif if ((new_version || (new_issued & CEPH_CAP_AUTH_SHARED)) && (issued & CEPH_CAP_AUTH_EXCL) == 0) { inode->i_mode = mode; inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(info->uid)); inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(info->gid)); doutc(cl, "%p %llx.%llx mode 0%o uid.gid %d.%d\n", inode, ceph_vinop(inode), inode->i_mode, from_kuid(&init_user_ns, inode->i_uid), from_kgid(&init_user_ns, inode->i_gid)); ceph_decode_timespec64(&ci->i_btime, &iinfo->btime); ceph_decode_timespec64(&ci->i_snap_btime, &iinfo->snap_btime); } /* directories have fl_stripe_unit set to zero */ if (IS_ENCRYPTED(inode)) inode->i_blkbits = CEPH_FSCRYPT_BLOCK_SHIFT; else if (le32_to_cpu(info->layout.fl_stripe_unit)) inode->i_blkbits = fls(le32_to_cpu(info->layout.fl_stripe_unit)) - 1; else inode->i_blkbits = CEPH_BLOCK_SHIFT; if ((new_version || (new_issued & CEPH_CAP_LINK_SHARED)) && (issued & CEPH_CAP_LINK_EXCL) == 0) set_nlink(inode, le32_to_cpu(info->nlink)); if (new_version || (new_issued & CEPH_CAP_ANY_RD)) { /* be careful with mtime, atime, size */ ceph_decode_timespec64(&atime, &info->atime); ceph_decode_timespec64(&mtime, &info->mtime); ceph_decode_timespec64(&ctime, &info->ctime); ceph_fill_file_time(inode, issued, le32_to_cpu(info->time_warp_seq), &ctime, &mtime, &atime); } if (new_version || (info_caps & CEPH_CAP_FILE_SHARED)) { ci->i_files = le64_to_cpu(info->files); ci->i_subdirs = le64_to_cpu(info->subdirs); } if (new_version || (new_issued & (CEPH_CAP_ANY_FILE_RD | CEPH_CAP_ANY_FILE_WR))) { u64 size = le64_to_cpu(info->size); s64 old_pool = ci->i_layout.pool_id; struct ceph_string *old_ns; ceph_file_layout_from_legacy(&ci->i_layout, &info->layout); old_ns = rcu_dereference_protected(ci->i_layout.pool_ns, lockdep_is_held(&ci->i_ceph_lock)); rcu_assign_pointer(ci->i_layout.pool_ns, pool_ns); if (ci->i_layout.pool_id != old_pool || pool_ns != old_ns) ci->i_ceph_flags &= ~CEPH_I_POOL_PERM; pool_ns = old_ns; if (IS_ENCRYPTED(inode) && size && iinfo->fscrypt_file_len == sizeof(__le64)) { u64 fsize = __le64_to_cpu(*(__le64 *)iinfo->fscrypt_file); if (size == round_up(fsize, CEPH_FSCRYPT_BLOCK_SIZE)) { size = fsize; } else { pr_warn_client(cl, "fscrypt size mismatch: size=%llu fscrypt_file=%llu, discarding fscrypt_file size.\n", info->size, size); } } queue_trunc = ceph_fill_file_size(inode, issued, le32_to_cpu(info->truncate_seq), le64_to_cpu(info->truncate_size), size); /* only update max_size on auth cap */ if ((info->cap.flags & CEPH_CAP_FLAG_AUTH) && ci->i_max_size != le64_to_cpu(info->max_size)) { doutc(cl, "max_size %lld -> %llu\n", ci->i_max_size, le64_to_cpu(info->max_size)); ci->i_max_size = le64_to_cpu(info->max_size); } } /* layout and rstat are not tracked by capability, update them if * the inode info is from auth mds */ if (new_version || (info->cap.flags & CEPH_CAP_FLAG_AUTH)) { if (S_ISDIR(inode->i_mode)) { ci->i_dir_layout = iinfo->dir_layout; ci->i_rbytes = le64_to_cpu(info->rbytes); ci->i_rfiles = le64_to_cpu(info->rfiles); ci->i_rsubdirs = le64_to_cpu(info->rsubdirs); ci->i_dir_pin = iinfo->dir_pin; ci->i_rsnaps = iinfo->rsnaps; ceph_decode_timespec64(&ci->i_rctime, &info->rctime); } } /* xattrs */ /* note that if i_xattrs.len <= 4, i_xattrs.data will still be NULL. */ if ((ci->i_xattrs.version == 0 || !(issued & CEPH_CAP_XATTR_EXCL)) && le64_to_cpu(info->xattr_version) > ci->i_xattrs.version) { if (ci->i_xattrs.blob) old_blob = ci->i_xattrs.blob; ci->i_xattrs.blob = xattr_blob; if (xattr_blob) memcpy(ci->i_xattrs.blob->vec.iov_base, iinfo->xattr_data, iinfo->xattr_len); ci->i_xattrs.version = le64_to_cpu(info->xattr_version); ceph_forget_all_cached_acls(inode); ceph_security_invalidate_secctx(inode); xattr_blob = NULL; } /* finally update i_version */ if (le64_to_cpu(info->version) > ci->i_version) ci->i_version = le64_to_cpu(info->version); inode->i_mapping->a_ops = &ceph_aops; switch (inode->i_mode & S_IFMT) { case S_IFIFO: case S_IFBLK: case S_IFCHR: case S_IFSOCK: inode->i_blkbits = PAGE_SHIFT; init_special_inode(inode, inode->i_mode, rdev); inode->i_op = &ceph_file_iops; break; case S_IFREG: inode->i_op = &ceph_file_iops; inode->i_fop = &ceph_file_fops; break; case S_IFLNK: if (!ci->i_symlink) { u32 symlen = iinfo->symlink_len; char *sym; spin_unlock(&ci->i_ceph_lock); if (IS_ENCRYPTED(inode)) { if (symlen != i_size_read(inode)) pr_err_client(cl, "%p %llx.%llx BAD symlink size %lld\n", inode, ceph_vinop(inode), i_size_read(inode)); err = decode_encrypted_symlink(mdsc, iinfo->symlink, symlen, (u8 **)&sym); if (err < 0) { pr_err_client(cl, "decoding encrypted symlink failed: %d\n", err); goto out; } symlen = err; i_size_write(inode, symlen); inode->i_blocks = calc_inode_blocks(symlen); } else { if (symlen != i_size_read(inode)) { pr_err_client(cl, "%p %llx.%llx BAD symlink size %lld\n", inode, ceph_vinop(inode), i_size_read(inode)); i_size_write(inode, symlen); inode->i_blocks = calc_inode_blocks(symlen); } err = -ENOMEM; sym = kstrndup(iinfo->symlink, symlen, GFP_NOFS); if (!sym) goto out; } spin_lock(&ci->i_ceph_lock); if (!ci->i_symlink) ci->i_symlink = sym; else kfree(sym); /* lost a race */ } if (IS_ENCRYPTED(inode)) { /* * Encrypted symlinks need to be decrypted before we can * cache their targets in i_link. Don't touch it here. */ inode->i_op = &ceph_encrypted_symlink_iops; } else { inode->i_link = ci->i_symlink; inode->i_op = &ceph_symlink_iops; } break; case S_IFDIR: inode->i_op = &ceph_dir_iops; inode->i_fop = &ceph_dir_fops; break; default: pr_err_client(cl, "%p %llx.%llx BAD mode 0%o\n", inode, ceph_vinop(inode), inode->i_mode); } /* were we issued a capability? */ if (info_caps) { if (ceph_snap(inode) == CEPH_NOSNAP) { ceph_add_cap(inode, session, le64_to_cpu(info->cap.cap_id), info_caps, le32_to_cpu(info->cap.wanted), le32_to_cpu(info->cap.seq), le32_to_cpu(info->cap.mseq), le64_to_cpu(info->cap.realm), info->cap.flags, &new_cap); /* set dir completion flag? */ if (S_ISDIR(inode->i_mode) && ci->i_files == 0 && ci->i_subdirs == 0 && (info_caps & CEPH_CAP_FILE_SHARED) && (issued & CEPH_CAP_FILE_EXCL) == 0 && !__ceph_dir_is_complete(ci)) { doutc(cl, " marking %p complete (empty)\n", inode); i_size_write(inode, 0); __ceph_dir_set_complete(ci, atomic64_read(&ci->i_release_count), atomic64_read(&ci->i_ordered_count)); } wake = true; } else { doutc(cl, " %p got snap_caps %s\n", inode, ceph_cap_string(info_caps)); ci->i_snap_caps |= info_caps; } } if (iinfo->inline_version > 0 && iinfo->inline_version >= ci->i_inline_version) { int cache_caps = CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO; ci->i_inline_version = iinfo->inline_version; if (ceph_has_inline_data(ci) && (locked_page || (info_caps & cache_caps))) fill_inline = true; } if (cap_fmode >= 0) { if (!info_caps) pr_warn_client(cl, "mds issued no caps on %llx.%llx\n", ceph_vinop(inode)); __ceph_touch_fmode(ci, mdsc, cap_fmode); } spin_unlock(&ci->i_ceph_lock); ceph_fscache_register_inode_cookie(inode); if (fill_inline) ceph_fill_inline_data(inode, locked_page, iinfo->inline_data, iinfo->inline_len); if (wake) wake_up_all(&ci->i_cap_wq); /* queue truncate if we saw i_size decrease */ if (queue_trunc) ceph_queue_vmtruncate(inode); /* populate frag tree */ if (S_ISDIR(inode->i_mode)) ceph_fill_fragtree(inode, &info->fragtree, dirinfo); /* update delegation info? */ if (dirinfo) ceph_fill_dirfrag(inode, dirinfo); err = 0; out: if (new_cap) ceph_put_cap(mdsc, new_cap); ceph_buffer_put(old_blob); ceph_buffer_put(xattr_blob); ceph_put_string(pool_ns); return err; } /* * caller should hold session s_mutex and dentry->d_lock. */ static void __update_dentry_lease(struct inode *dir, struct dentry *dentry, struct ceph_mds_reply_lease *lease, struct ceph_mds_session *session, unsigned long from_time, struct ceph_mds_session **old_lease_session) { struct ceph_client *cl = ceph_inode_to_client(dir); struct ceph_dentry_info *di = ceph_dentry(dentry); unsigned mask = le16_to_cpu(lease->mask); long unsigned duration = le32_to_cpu(lease->duration_ms); long unsigned ttl = from_time + (duration * HZ) / 1000; long unsigned half_ttl = from_time + (duration * HZ / 2) / 1000; doutc(cl, "%p duration %lu ms ttl %lu\n", dentry, duration, ttl); /* only track leases on regular dentries */ if (ceph_snap(dir) != CEPH_NOSNAP) return; if (mask & CEPH_LEASE_PRIMARY_LINK) di->flags |= CEPH_DENTRY_PRIMARY_LINK; else di->flags &= ~CEPH_DENTRY_PRIMARY_LINK; di->lease_shared_gen = atomic_read(&ceph_inode(dir)->i_shared_gen); if (!(mask & CEPH_LEASE_VALID)) { __ceph_dentry_dir_lease_touch(di); return; } if (di->lease_gen == atomic_read(&session->s_cap_gen) && time_before(ttl, di->time)) return; /* we already have a newer lease. */ if (di->lease_session && di->lease_session != session) { *old_lease_session = di->lease_session; di->lease_session = NULL; } if (!di->lease_session) di->lease_session = ceph_get_mds_session(session); di->lease_gen = atomic_read(&session->s_cap_gen); di->lease_seq = le32_to_cpu(lease->seq); di->lease_renew_after = half_ttl; di->lease_renew_from = 0; di->time = ttl; __ceph_dentry_lease_touch(di); } static inline void update_dentry_lease(struct inode *dir, struct dentry *dentry, struct ceph_mds_reply_lease *lease, struct ceph_mds_session *session, unsigned long from_time) { struct ceph_mds_session *old_lease_session = NULL; spin_lock(&dentry->d_lock); __update_dentry_lease(dir, dentry, lease, session, from_time, &old_lease_session); spin_unlock(&dentry->d_lock); ceph_put_mds_session(old_lease_session); } /* * update dentry lease without having parent inode locked */ static void update_dentry_lease_careful(struct dentry *dentry, struct ceph_mds_reply_lease *lease, struct ceph_mds_session *session, unsigned long from_time, char *dname, u32 dname_len, struct ceph_vino *pdvino, struct ceph_vino *ptvino) { struct inode *dir; struct ceph_mds_session *old_lease_session = NULL; spin_lock(&dentry->d_lock); /* make sure dentry's name matches target */ if (dentry->d_name.len != dname_len || memcmp(dentry->d_name.name, dname, dname_len)) goto out_unlock; dir = d_inode(dentry->d_parent); /* make sure parent matches dvino */ if (!ceph_ino_compare(dir, pdvino)) goto out_unlock; /* make sure dentry's inode matches target. NULL ptvino means that * we expect a negative dentry */ if (ptvino) { if (d_really_is_negative(dentry)) goto out_unlock; if (!ceph_ino_compare(d_inode(dentry), ptvino)) goto out_unlock; } else { if (d_really_is_positive(dentry)) goto out_unlock; } __update_dentry_lease(dir, dentry, lease, session, from_time, &old_lease_session); out_unlock: spin_unlock(&dentry->d_lock); ceph_put_mds_session(old_lease_session); } /* * splice a dentry to an inode. * caller must hold directory i_rwsem for this to be safe. */ static int splice_dentry(struct dentry **pdn, struct inode *in) { struct ceph_client *cl = ceph_inode_to_client(in); struct dentry *dn = *pdn; struct dentry *realdn; BUG_ON(d_inode(dn)); if (S_ISDIR(in->i_mode)) { /* If inode is directory, d_splice_alias() below will remove * 'realdn' from its origin parent. We need to ensure that * origin parent's readdir cache will not reference 'realdn' */ realdn = d_find_any_alias(in); if (realdn) { struct ceph_dentry_info *di = ceph_dentry(realdn); spin_lock(&realdn->d_lock); realdn->d_op->d_prune(realdn); di->time = jiffies; di->lease_shared_gen = 0; di->offset = 0; spin_unlock(&realdn->d_lock); dput(realdn); } } /* dn must be unhashed */ if (!d_unhashed(dn)) d_drop(dn); realdn = d_splice_alias(in, dn); if (IS_ERR(realdn)) { pr_err_client(cl, "error %ld %p inode %p ino %llx.%llx\n", PTR_ERR(realdn), dn, in, ceph_vinop(in)); return PTR_ERR(realdn); } if (realdn) { doutc(cl, "dn %p (%d) spliced with %p (%d) inode %p ino %llx.%llx\n", dn, d_count(dn), realdn, d_count(realdn), d_inode(realdn), ceph_vinop(d_inode(realdn))); dput(dn); *pdn = realdn; } else { BUG_ON(!ceph_dentry(dn)); doutc(cl, "dn %p attached to %p ino %llx.%llx\n", dn, d_inode(dn), ceph_vinop(d_inode(dn))); } return 0; } /* * Incorporate results into the local cache. This is either just * one inode, or a directory, dentry, and possibly linked-to inode (e.g., * after a lookup). * * A reply may contain * a directory inode along with a dentry. * and/or a target inode * * Called with snap_rwsem (read). */ int ceph_fill_trace(struct super_block *sb, struct ceph_mds_request *req) { struct ceph_mds_session *session = req->r_session; struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; struct inode *in = NULL; struct ceph_vino tvino, dvino; struct ceph_fs_client *fsc = ceph_sb_to_fs_client(sb); struct ceph_client *cl = fsc->client; int err = 0; doutc(cl, "%p is_dentry %d is_target %d\n", req, rinfo->head->is_dentry, rinfo->head->is_target); if (!rinfo->head->is_target && !rinfo->head->is_dentry) { doutc(cl, "reply is empty!\n"); if (rinfo->head->result == 0 && req->r_parent) ceph_invalidate_dir_request(req); return 0; } if (rinfo->head->is_dentry) { struct inode *dir = req->r_parent; if (dir) { err = ceph_fill_inode(dir, NULL, &rinfo->diri, rinfo->dirfrag, session, -1, &req->r_caps_reservation); if (err < 0) goto done; } else { WARN_ON_ONCE(1); } if (dir && req->r_op == CEPH_MDS_OP_LOOKUPNAME && test_bit(CEPH_MDS_R_PARENT_LOCKED, &req->r_req_flags) && !test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { bool is_nokey = false; struct qstr dname; struct dentry *dn, *parent; struct fscrypt_str oname = FSTR_INIT(NULL, 0); struct ceph_fname fname = { .dir = dir, .name = rinfo->dname, .ctext = rinfo->altname, .name_len = rinfo->dname_len, .ctext_len = rinfo->altname_len }; BUG_ON(!rinfo->head->is_target); BUG_ON(req->r_dentry); parent = d_find_any_alias(dir); BUG_ON(!parent); err = ceph_fname_alloc_buffer(dir, &oname); if (err < 0) { dput(parent); goto done; } err = ceph_fname_to_usr(&fname, NULL, &oname, &is_nokey); if (err < 0) { dput(parent); ceph_fname_free_buffer(dir, &oname); goto done; } dname.name = oname.name; dname.len = oname.len; dname.hash = full_name_hash(parent, dname.name, dname.len); tvino.ino = le64_to_cpu(rinfo->targeti.in->ino); tvino.snap = le64_to_cpu(rinfo->targeti.in->snapid); retry_lookup: dn = d_lookup(parent, &dname); doutc(cl, "d_lookup on parent=%p name=%.*s got %p\n", parent, dname.len, dname.name, dn); if (!dn) { dn = d_alloc(parent, &dname); doutc(cl, "d_alloc %p '%.*s' = %p\n", parent, dname.len, dname.name, dn); if (!dn) { dput(parent); ceph_fname_free_buffer(dir, &oname); err = -ENOMEM; goto done; } if (is_nokey) { spin_lock(&dn->d_lock); dn->d_flags |= DCACHE_NOKEY_NAME; spin_unlock(&dn->d_lock); } err = 0; } else if (d_really_is_positive(dn) && (ceph_ino(d_inode(dn)) != tvino.ino || ceph_snap(d_inode(dn)) != tvino.snap)) { doutc(cl, " dn %p points to wrong inode %p\n", dn, d_inode(dn)); ceph_dir_clear_ordered(dir); d_delete(dn); dput(dn); goto retry_lookup; } ceph_fname_free_buffer(dir, &oname); req->r_dentry = dn; dput(parent); } } if (rinfo->head->is_target) { /* Should be filled in by handle_reply */ BUG_ON(!req->r_target_inode); in = req->r_target_inode; err = ceph_fill_inode(in, req->r_locked_page, &rinfo->targeti, NULL, session, (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags) && !test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags) && rinfo->head->result == 0) ? req->r_fmode : -1, &req->r_caps_reservation); if (err < 0) { pr_err_client(cl, "badness %p %llx.%llx\n", in, ceph_vinop(in)); req->r_target_inode = NULL; if (in->i_state & I_NEW) discard_new_inode(in); else iput(in); goto done; } if (in->i_state & I_NEW) unlock_new_inode(in); } /* * ignore null lease/binding on snapdir ENOENT, or else we * will have trouble splicing in the virtual snapdir later */ if (rinfo->head->is_dentry && !test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags) && test_bit(CEPH_MDS_R_PARENT_LOCKED, &req->r_req_flags) && (rinfo->head->is_target || strncmp(req->r_dentry->d_name.name, fsc->mount_options->snapdir_name, req->r_dentry->d_name.len))) { /* * lookup link rename : null -> possibly existing inode * mknod symlink mkdir : null -> new inode * unlink : linked -> null */ struct inode *dir = req->r_parent; struct dentry *dn = req->r_dentry; bool have_dir_cap, have_lease; BUG_ON(!dn); BUG_ON(!dir); BUG_ON(d_inode(dn->d_parent) != dir); dvino.ino = le64_to_cpu(rinfo->diri.in->ino); dvino.snap = le64_to_cpu(rinfo->diri.in->snapid); BUG_ON(ceph_ino(dir) != dvino.ino); BUG_ON(ceph_snap(dir) != dvino.snap); /* do we have a lease on the whole dir? */ have_dir_cap = (le32_to_cpu(rinfo->diri.in->cap.caps) & CEPH_CAP_FILE_SHARED); /* do we have a dn lease? */ have_lease = have_dir_cap || le32_to_cpu(rinfo->dlease->duration_ms); if (!have_lease) doutc(cl, "no dentry lease or dir cap\n"); /* rename? */ if (req->r_old_dentry && req->r_op == CEPH_MDS_OP_RENAME) { struct inode *olddir = req->r_old_dentry_dir; BUG_ON(!olddir); doutc(cl, " src %p '%pd' dst %p '%pd'\n", req->r_old_dentry, req->r_old_dentry, dn, dn); doutc(cl, "doing d_move %p -> %p\n", req->r_old_dentry, dn); /* d_move screws up sibling dentries' offsets */ ceph_dir_clear_ordered(dir); ceph_dir_clear_ordered(olddir); d_move(req->r_old_dentry, dn); doutc(cl, " src %p '%pd' dst %p '%pd'\n", req->r_old_dentry, req->r_old_dentry, dn, dn); /* ensure target dentry is invalidated, despite rehashing bug in vfs_rename_dir */ ceph_invalidate_dentry_lease(dn); doutc(cl, "dn %p gets new offset %lld\n", req->r_old_dentry, ceph_dentry(req->r_old_dentry)->offset); /* swap r_dentry and r_old_dentry in case that * splice_dentry() gets called later. This is safe * because no other place will use them */ req->r_dentry = req->r_old_dentry; req->r_old_dentry = dn; dn = req->r_dentry; } /* null dentry? */ if (!rinfo->head->is_target) { doutc(cl, "null dentry\n"); if (d_really_is_positive(dn)) { doutc(cl, "d_delete %p\n", dn); ceph_dir_clear_ordered(dir); d_delete(dn); } else if (have_lease) { if (d_unhashed(dn)) d_add(dn, NULL); } if (!d_unhashed(dn) && have_lease) update_dentry_lease(dir, dn, rinfo->dlease, session, req->r_request_started); goto done; } /* attach proper inode */ if (d_really_is_negative(dn)) { ceph_dir_clear_ordered(dir); ihold(in); err = splice_dentry(&req->r_dentry, in); if (err < 0) goto done; dn = req->r_dentry; /* may have spliced */ } else if (d_really_is_positive(dn) && d_inode(dn) != in) { doutc(cl, " %p links to %p %llx.%llx, not %llx.%llx\n", dn, d_inode(dn), ceph_vinop(d_inode(dn)), ceph_vinop(in)); d_invalidate(dn); have_lease = false; } if (have_lease) { update_dentry_lease(dir, dn, rinfo->dlease, session, req->r_request_started); } doutc(cl, " final dn %p\n", dn); } else if ((req->r_op == CEPH_MDS_OP_LOOKUPSNAP || req->r_op == CEPH_MDS_OP_MKSNAP) && test_bit(CEPH_MDS_R_PARENT_LOCKED, &req->r_req_flags) && !test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { struct inode *dir = req->r_parent; /* fill out a snapdir LOOKUPSNAP dentry */ BUG_ON(!dir); BUG_ON(ceph_snap(dir) != CEPH_SNAPDIR); BUG_ON(!req->r_dentry); doutc(cl, " linking snapped dir %p to dn %p\n", in, req->r_dentry); ceph_dir_clear_ordered(dir); ihold(in); err = splice_dentry(&req->r_dentry, in); if (err < 0) goto done; } else if (rinfo->head->is_dentry && req->r_dentry) { /* parent inode is not locked, be carefull */ struct ceph_vino *ptvino = NULL; dvino.ino = le64_to_cpu(rinfo->diri.in->ino); dvino.snap = le64_to_cpu(rinfo->diri.in->snapid); if (rinfo->head->is_target) { tvino.ino = le64_to_cpu(rinfo->targeti.in->ino); tvino.snap = le64_to_cpu(rinfo->targeti.in->snapid); ptvino = &tvino; } update_dentry_lease_careful(req->r_dentry, rinfo->dlease, session, req->r_request_started, rinfo->dname, rinfo->dname_len, &dvino, ptvino); } done: doutc(cl, "done err=%d\n", err); return err; } /* * Prepopulate our cache with readdir results, leases, etc. */ static int readdir_prepopulate_inodes_only(struct ceph_mds_request *req, struct ceph_mds_session *session) { struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; struct ceph_client *cl = session->s_mdsc->fsc->client; int i, err = 0; for (i = 0; i < rinfo->dir_nr; i++) { struct ceph_mds_reply_dir_entry *rde = rinfo->dir_entries + i; struct ceph_vino vino; struct inode *in; int rc; vino.ino = le64_to_cpu(rde->inode.in->ino); vino.snap = le64_to_cpu(rde->inode.in->snapid); in = ceph_get_inode(req->r_dentry->d_sb, vino, NULL); if (IS_ERR(in)) { err = PTR_ERR(in); doutc(cl, "badness got %d\n", err); continue; } rc = ceph_fill_inode(in, NULL, &rde->inode, NULL, session, -1, &req->r_caps_reservation); if (rc < 0) { pr_err_client(cl, "inode badness on %p got %d\n", in, rc); err = rc; if (in->i_state & I_NEW) { ihold(in); discard_new_inode(in); } } else if (in->i_state & I_NEW) { unlock_new_inode(in); } iput(in); } return err; } void ceph_readdir_cache_release(struct ceph_readdir_cache_control *ctl) { if (ctl->page) { kunmap(ctl->page); put_page(ctl->page); ctl->page = NULL; } } static int fill_readdir_cache(struct inode *dir, struct dentry *dn, struct ceph_readdir_cache_control *ctl, struct ceph_mds_request *req) { struct ceph_client *cl = ceph_inode_to_client(dir); struct ceph_inode_info *ci = ceph_inode(dir); unsigned nsize = PAGE_SIZE / sizeof(struct dentry*); unsigned idx = ctl->index % nsize; pgoff_t pgoff = ctl->index / nsize; if (!ctl->page || pgoff != ctl->page->index) { ceph_readdir_cache_release(ctl); if (idx == 0) ctl->page = grab_cache_page(&dir->i_data, pgoff); else ctl->page = find_lock_page(&dir->i_data, pgoff); if (!ctl->page) { ctl->index = -1; return idx == 0 ? -ENOMEM : 0; } /* reading/filling the cache are serialized by * i_rwsem, no need to use page lock */ unlock_page(ctl->page); ctl->dentries = kmap(ctl->page); if (idx == 0) memset(ctl->dentries, 0, PAGE_SIZE); } if (req->r_dir_release_cnt == atomic64_read(&ci->i_release_count) && req->r_dir_ordered_cnt == atomic64_read(&ci->i_ordered_count)) { doutc(cl, "dn %p idx %d\n", dn, ctl->index); ctl->dentries[idx] = dn; ctl->index++; } else { doutc(cl, "disable readdir cache\n"); ctl->index = -1; } return 0; } int ceph_readdir_prepopulate(struct ceph_mds_request *req, struct ceph_mds_session *session) { struct dentry *parent = req->r_dentry; struct inode *inode = d_inode(parent); struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; struct ceph_client *cl = session->s_mdsc->fsc->client; struct qstr dname; struct dentry *dn; struct inode *in; int err = 0, skipped = 0, ret, i; u32 frag = le32_to_cpu(req->r_args.readdir.frag); u32 last_hash = 0; u32 fpos_offset; struct ceph_readdir_cache_control cache_ctl = {}; if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) return readdir_prepopulate_inodes_only(req, session); if (rinfo->hash_order) { if (req->r_path2) { last_hash = ceph_str_hash(ci->i_dir_layout.dl_dir_hash, req->r_path2, strlen(req->r_path2)); last_hash = ceph_frag_value(last_hash); } else if (rinfo->offset_hash) { /* mds understands offset_hash */ WARN_ON_ONCE(req->r_readdir_offset != 2); last_hash = le32_to_cpu(req->r_args.readdir.offset_hash); } } if (rinfo->dir_dir && le32_to_cpu(rinfo->dir_dir->frag) != frag) { doutc(cl, "got new frag %x -> %x\n", frag, le32_to_cpu(rinfo->dir_dir->frag)); frag = le32_to_cpu(rinfo->dir_dir->frag); if (!rinfo->hash_order) req->r_readdir_offset = 2; } if (le32_to_cpu(rinfo->head->op) == CEPH_MDS_OP_LSSNAP) { doutc(cl, "%d items under SNAPDIR dn %p\n", rinfo->dir_nr, parent); } else { doutc(cl, "%d items under dn %p\n", rinfo->dir_nr, parent); if (rinfo->dir_dir) ceph_fill_dirfrag(d_inode(parent), rinfo->dir_dir); if (ceph_frag_is_leftmost(frag) && req->r_readdir_offset == 2 && !(rinfo->hash_order && last_hash)) { /* note dir version at start of readdir so we can * tell if any dentries get dropped */ req->r_dir_release_cnt = atomic64_read(&ci->i_release_count); req->r_dir_ordered_cnt = atomic64_read(&ci->i_ordered_count); req->r_readdir_cache_idx = 0; } } cache_ctl.index = req->r_readdir_cache_idx; fpos_offset = req->r_readdir_offset; /* FIXME: release caps/leases if error occurs */ for (i = 0; i < rinfo->dir_nr; i++) { struct ceph_mds_reply_dir_entry *rde = rinfo->dir_entries + i; struct ceph_vino tvino; dname.name = rde->name; dname.len = rde->name_len; dname.hash = full_name_hash(parent, dname.name, dname.len); tvino.ino = le64_to_cpu(rde->inode.in->ino); tvino.snap = le64_to_cpu(rde->inode.in->snapid); if (rinfo->hash_order) { u32 hash = ceph_frag_value(rde->raw_hash); if (hash != last_hash) fpos_offset = 2; last_hash = hash; rde->offset = ceph_make_fpos(hash, fpos_offset++, true); } else { rde->offset = ceph_make_fpos(frag, fpos_offset++, false); } retry_lookup: dn = d_lookup(parent, &dname); doutc(cl, "d_lookup on parent=%p name=%.*s got %p\n", parent, dname.len, dname.name, dn); if (!dn) { dn = d_alloc(parent, &dname); doutc(cl, "d_alloc %p '%.*s' = %p\n", parent, dname.len, dname.name, dn); if (!dn) { doutc(cl, "d_alloc badness\n"); err = -ENOMEM; goto out; } if (rde->is_nokey) { spin_lock(&dn->d_lock); dn->d_flags |= DCACHE_NOKEY_NAME; spin_unlock(&dn->d_lock); } } else if (d_really_is_positive(dn) && (ceph_ino(d_inode(dn)) != tvino.ino || ceph_snap(d_inode(dn)) != tvino.snap)) { struct ceph_dentry_info *di = ceph_dentry(dn); doutc(cl, " dn %p points to wrong inode %p\n", dn, d_inode(dn)); spin_lock(&dn->d_lock); if (di->offset > 0 && di->lease_shared_gen == atomic_read(&ci->i_shared_gen)) { __ceph_dir_clear_ordered(ci); di->offset = 0; } spin_unlock(&dn->d_lock); d_delete(dn); dput(dn); goto retry_lookup; } /* inode */ if (d_really_is_positive(dn)) { in = d_inode(dn); } else { in = ceph_get_inode(parent->d_sb, tvino, NULL); if (IS_ERR(in)) { doutc(cl, "new_inode badness\n"); d_drop(dn); dput(dn); err = PTR_ERR(in); goto out; } } ret = ceph_fill_inode(in, NULL, &rde->inode, NULL, session, -1, &req->r_caps_reservation); if (ret < 0) { pr_err_client(cl, "badness on %p %llx.%llx\n", in, ceph_vinop(in)); if (d_really_is_negative(dn)) { if (in->i_state & I_NEW) { ihold(in); discard_new_inode(in); } iput(in); } d_drop(dn); err = ret; goto next_item; } if (in->i_state & I_NEW) unlock_new_inode(in); if (d_really_is_negative(dn)) { if (ceph_security_xattr_deadlock(in)) { doutc(cl, " skip splicing dn %p to inode %p" " (security xattr deadlock)\n", dn, in); iput(in); skipped++; goto next_item; } err = splice_dentry(&dn, in); if (err < 0) goto next_item; } ceph_dentry(dn)->offset = rde->offset; update_dentry_lease(d_inode(parent), dn, rde->lease, req->r_session, req->r_request_started); if (err == 0 && skipped == 0 && cache_ctl.index >= 0) { ret = fill_readdir_cache(d_inode(parent), dn, &cache_ctl, req); if (ret < 0) err = ret; } next_item: dput(dn); } out: if (err == 0 && skipped == 0) { set_bit(CEPH_MDS_R_DID_PREPOPULATE, &req->r_req_flags); req->r_readdir_cache_idx = cache_ctl.index; } ceph_readdir_cache_release(&cache_ctl); doutc(cl, "done\n"); return err; } bool ceph_inode_set_size(struct inode *inode, loff_t size) { struct ceph_client *cl = ceph_inode_to_client(inode); struct ceph_inode_info *ci = ceph_inode(inode); bool ret; spin_lock(&ci->i_ceph_lock); doutc(cl, "set_size %p %llu -> %llu\n", inode, i_size_read(inode), size); i_size_write(inode, size); ceph_fscache_update(inode); inode->i_blocks = calc_inode_blocks(size); ret = __ceph_should_report_size(ci); spin_unlock(&ci->i_ceph_lock); return ret; } void ceph_queue_inode_work(struct inode *inode, int work_bit) { struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode); struct ceph_client *cl = fsc->client; struct ceph_inode_info *ci = ceph_inode(inode); set_bit(work_bit, &ci->i_work_mask); ihold(inode); if (queue_work(fsc->inode_wq, &ci->i_work)) { doutc(cl, "%p %llx.%llx mask=%lx\n", inode, ceph_vinop(inode), ci->i_work_mask); } else { doutc(cl, "%p %llx.%llx already queued, mask=%lx\n", inode, ceph_vinop(inode), ci->i_work_mask); iput(inode); } } static void ceph_do_invalidate_pages(struct inode *inode) { struct ceph_client *cl = ceph_inode_to_client(inode); struct ceph_inode_info *ci = ceph_inode(inode); u32 orig_gen; int check = 0; ceph_fscache_invalidate(inode, false); mutex_lock(&ci->i_truncate_mutex); if (ceph_inode_is_shutdown(inode)) { pr_warn_ratelimited_client(cl, "%p %llx.%llx is shut down\n", inode, ceph_vinop(inode)); mapping_set_error(inode->i_mapping, -EIO); truncate_pagecache(inode, 0); mutex_unlock(&ci->i_truncate_mutex); goto out; } spin_lock(&ci->i_ceph_lock); doutc(cl, "%p %llx.%llx gen %d revoking %d\n", inode, ceph_vinop(inode), ci->i_rdcache_gen, ci->i_rdcache_revoking); if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { if (__ceph_caps_revoking_other(ci, NULL, CEPH_CAP_FILE_CACHE)) check = 1; spin_unlock(&ci->i_ceph_lock); mutex_unlock(&ci->i_truncate_mutex); goto out; } orig_gen = ci->i_rdcache_gen; spin_unlock(&ci->i_ceph_lock); if (invalidate_inode_pages2(inode->i_mapping) < 0) { pr_err_client(cl, "invalidate_inode_pages2 %llx.%llx failed\n", ceph_vinop(inode)); } spin_lock(&ci->i_ceph_lock); if (orig_gen == ci->i_rdcache_gen && orig_gen == ci->i_rdcache_revoking) { doutc(cl, "%p %llx.%llx gen %d successful\n", inode, ceph_vinop(inode), ci->i_rdcache_gen); ci->i_rdcache_revoking--; check = 1; } else { doutc(cl, "%p %llx.%llx gen %d raced, now %d revoking %d\n", inode, ceph_vinop(inode), orig_gen, ci->i_rdcache_gen, ci->i_rdcache_revoking); if (__ceph_caps_revoking_other(ci, NULL, CEPH_CAP_FILE_CACHE)) check = 1; } spin_unlock(&ci->i_ceph_lock); mutex_unlock(&ci->i_truncate_mutex); out: if (check) ceph_check_caps(ci, 0); } /* * Make sure any pending truncation is applied before doing anything * that may depend on it. */ void __ceph_do_pending_vmtruncate(struct inode *inode) { struct ceph_client *cl = ceph_inode_to_client(inode); struct ceph_inode_info *ci = ceph_inode(inode); u64 to; int wrbuffer_refs, finish = 0; mutex_lock(&ci->i_truncate_mutex); retry: spin_lock(&ci->i_ceph_lock); if (ci->i_truncate_pending == 0) { doutc(cl, "%p %llx.%llx none pending\n", inode, ceph_vinop(inode)); spin_unlock(&ci->i_ceph_lock); mutex_unlock(&ci->i_truncate_mutex); return; } /* * make sure any dirty snapped pages are flushed before we * possibly truncate them.. so write AND block! */ if (ci->i_wrbuffer_ref_head < ci->i_wrbuffer_ref) { spin_unlock(&ci->i_ceph_lock); doutc(cl, "%p %llx.%llx flushing snaps first\n", inode, ceph_vinop(inode)); filemap_write_and_wait_range(&inode->i_data, 0, inode->i_sb->s_maxbytes); goto retry; } /* there should be no reader or writer */ WARN_ON_ONCE(ci->i_rd_ref || ci->i_wr_ref); to = ci->i_truncate_pagecache_size; wrbuffer_refs = ci->i_wrbuffer_ref; doutc(cl, "%p %llx.%llx (%d) to %lld\n", inode, ceph_vinop(inode), ci->i_truncate_pending, to); spin_unlock(&ci->i_ceph_lock); ceph_fscache_resize(inode, to); truncate_pagecache(inode, to); spin_lock(&ci->i_ceph_lock); if (to == ci->i_truncate_pagecache_size) { ci->i_truncate_pending = 0; finish = 1; } spin_unlock(&ci->i_ceph_lock); if (!finish) goto retry; mutex_unlock(&ci->i_truncate_mutex); if (wrbuffer_refs == 0) ceph_check_caps(ci, 0); wake_up_all(&ci->i_cap_wq); } static void ceph_inode_work(struct work_struct *work) { struct ceph_inode_info *ci = container_of(work, struct ceph_inode_info, i_work); struct inode *inode = &ci->netfs.inode; struct ceph_client *cl = ceph_inode_to_client(inode); if (test_and_clear_bit(CEPH_I_WORK_WRITEBACK, &ci->i_work_mask)) { doutc(cl, "writeback %p %llx.%llx\n", inode, ceph_vinop(inode)); filemap_fdatawrite(&inode->i_data); } if (test_and_clear_bit(CEPH_I_WORK_INVALIDATE_PAGES, &ci->i_work_mask)) ceph_do_invalidate_pages(inode); if (test_and_clear_bit(CEPH_I_WORK_VMTRUNCATE, &ci->i_work_mask)) __ceph_do_pending_vmtruncate(inode); if (test_and_clear_bit(CEPH_I_WORK_CHECK_CAPS, &ci->i_work_mask)) ceph_check_caps(ci, 0); if (test_and_clear_bit(CEPH_I_WORK_FLUSH_SNAPS, &ci->i_work_mask)) ceph_flush_snaps(ci, NULL); iput(inode); } static const char *ceph_encrypted_get_link(struct dentry *dentry, struct inode *inode, struct delayed_call *done) { struct ceph_inode_info *ci = ceph_inode(inode); if (!dentry) return ERR_PTR(-ECHILD); return fscrypt_get_symlink(inode, ci->i_symlink, i_size_read(inode), done); } static int ceph_encrypted_symlink_getattr(struct mnt_idmap *idmap, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { int ret; ret = ceph_getattr(idmap, path, stat, request_mask, query_flags); if (ret) return ret; return fscrypt_symlink_getattr(path, stat); } /* * symlinks */ static const struct inode_operations ceph_symlink_iops = { .get_link = simple_get_link, .setattr = ceph_setattr, .getattr = ceph_getattr, .listxattr = ceph_listxattr, }; static const struct inode_operations ceph_encrypted_symlink_iops = { .get_link = ceph_encrypted_get_link, .setattr = ceph_setattr, .getattr = ceph_encrypted_symlink_getattr, .listxattr = ceph_listxattr, }; /* * Transfer the encrypted last block to the MDS and the MDS * will help update it when truncating a smaller size. * * We don't support a PAGE_SIZE that is smaller than the * CEPH_FSCRYPT_BLOCK_SIZE. */ static int fill_fscrypt_truncate(struct inode *inode, struct ceph_mds_request *req, struct iattr *attr) { struct ceph_client *cl = ceph_inode_to_client(inode); struct ceph_inode_info *ci = ceph_inode(inode); int boff = attr->ia_size % CEPH_FSCRYPT_BLOCK_SIZE; loff_t pos, orig_pos = round_down(attr->ia_size, CEPH_FSCRYPT_BLOCK_SIZE); u64 block = orig_pos >> CEPH_FSCRYPT_BLOCK_SHIFT; struct ceph_pagelist *pagelist = NULL; struct kvec iov = {0}; struct iov_iter iter; struct page *page = NULL; struct ceph_fscrypt_truncate_size_header header; int retry_op = 0; int len = CEPH_FSCRYPT_BLOCK_SIZE; loff_t i_size = i_size_read(inode); int got, ret, issued; u64 objver; ret = __ceph_get_caps(inode, NULL, CEPH_CAP_FILE_RD, 0, -1, &got); if (ret < 0) return ret; issued = __ceph_caps_issued(ci, NULL); doutc(cl, "size %lld -> %lld got cap refs on %s, issued %s\n", i_size, attr->ia_size, ceph_cap_string(got), ceph_cap_string(issued)); /* Try to writeback the dirty pagecaches */ if (issued & (CEPH_CAP_FILE_BUFFER)) { loff_t lend = orig_pos + CEPH_FSCRYPT_BLOCK_SHIFT - 1; ret = filemap_write_and_wait_range(inode->i_mapping, orig_pos, lend); if (ret < 0) goto out; } page = __page_cache_alloc(GFP_KERNEL); if (page == NULL) { ret = -ENOMEM; goto out; } pagelist = ceph_pagelist_alloc(GFP_KERNEL); if (!pagelist) { ret = -ENOMEM; goto out; } iov.iov_base = kmap_local_page(page); iov.iov_len = len; iov_iter_kvec(&iter, READ, &iov, 1, len); pos = orig_pos; ret = __ceph_sync_read(inode, &pos, &iter, &retry_op, &objver); if (ret < 0) goto out; /* Insert the header first */ header.ver = 1; header.compat = 1; header.change_attr = cpu_to_le64(inode_peek_iversion_raw(inode)); /* * Always set the block_size to CEPH_FSCRYPT_BLOCK_SIZE, * because in MDS it may need this to do the truncate. */ header.block_size = cpu_to_le32(CEPH_FSCRYPT_BLOCK_SIZE); /* * If we hit a hole here, we should just skip filling * the fscrypt for the request, because once the fscrypt * is enabled, the file will be split into many blocks * with the size of CEPH_FSCRYPT_BLOCK_SIZE, if there * has a hole, the hole size should be multiple of block * size. * * If the Rados object doesn't exist, it will be set to 0. */ if (!objver) { doutc(cl, "hit hole, ppos %lld < size %lld\n", pos, i_size); header.data_len = cpu_to_le32(8 + 8 + 4); header.file_offset = 0; ret = 0; } else { header.data_len = cpu_to_le32(8 + 8 + 4 + CEPH_FSCRYPT_BLOCK_SIZE); header.file_offset = cpu_to_le64(orig_pos); doutc(cl, "encrypt block boff/bsize %d/%lu\n", boff, CEPH_FSCRYPT_BLOCK_SIZE); /* truncate and zero out the extra contents for the last block */ memset(iov.iov_base + boff, 0, PAGE_SIZE - boff); /* encrypt the last block */ ret = ceph_fscrypt_encrypt_block_inplace(inode, page, CEPH_FSCRYPT_BLOCK_SIZE, 0, block, GFP_KERNEL); if (ret) goto out; } /* Insert the header */ ret = ceph_pagelist_append(pagelist, &header, sizeof(header)); if (ret) goto out; if (header.block_size) { /* Append the last block contents to pagelist */ ret = ceph_pagelist_append(pagelist, iov.iov_base, CEPH_FSCRYPT_BLOCK_SIZE); if (ret) goto out; } req->r_pagelist = pagelist; out: doutc(cl, "%p %llx.%llx size dropping cap refs on %s\n", inode, ceph_vinop(inode), ceph_cap_string(got)); ceph_put_cap_refs(ci, got); if (iov.iov_base) kunmap_local(iov.iov_base); if (page) __free_pages(page, 0); if (ret && pagelist) ceph_pagelist_release(pagelist); return ret; } int __ceph_setattr(struct mnt_idmap *idmap, struct inode *inode, struct iattr *attr, struct ceph_iattr *cia) { struct ceph_inode_info *ci = ceph_inode(inode); unsigned int ia_valid = attr->ia_valid; struct ceph_mds_request *req; struct ceph_mds_client *mdsc = ceph_sb_to_fs_client(inode->i_sb)->mdsc; struct ceph_client *cl = ceph_inode_to_client(inode); struct ceph_cap_flush *prealloc_cf; loff_t isize = i_size_read(inode); int issued; int release = 0, dirtied = 0; int mask = 0; int err = 0; int inode_dirty_flags = 0; bool lock_snap_rwsem = false; bool fill_fscrypt; int truncate_retry = 20; /* The RMW will take around 50ms */ struct dentry *dentry; char *path; int pathlen; u64 pathbase; bool do_sync = false; dentry = d_find_alias(inode); if (!dentry) { do_sync = true; } else { path = ceph_mdsc_build_path(mdsc, dentry, &pathlen, &pathbase, 0); if (IS_ERR(path)) { do_sync = true; err = 0; } else { err = ceph_mds_check_access(mdsc, path, MAY_WRITE); } ceph_mdsc_free_path(path, pathlen); dput(dentry); /* For none EACCES cases will let the MDS do the mds auth check */ if (err == -EACCES) { return err; } else if (err < 0) { do_sync = true; err = 0; } } retry: prealloc_cf = ceph_alloc_cap_flush(); if (!prealloc_cf) return -ENOMEM; req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_SETATTR, USE_AUTH_MDS); if (IS_ERR(req)) { ceph_free_cap_flush(prealloc_cf); return PTR_ERR(req); } fill_fscrypt = false; spin_lock(&ci->i_ceph_lock); issued = __ceph_caps_issued(ci, NULL); if (!ci->i_head_snapc && (issued & (CEPH_CAP_ANY_EXCL | CEPH_CAP_FILE_WR))) { lock_snap_rwsem = true; if (!down_read_trylock(&mdsc->snap_rwsem)) { spin_unlock(&ci->i_ceph_lock); down_read(&mdsc->snap_rwsem); spin_lock(&ci->i_ceph_lock); issued = __ceph_caps_issued(ci, NULL); } } doutc(cl, "%p %llx.%llx issued %s\n", inode, ceph_vinop(inode), ceph_cap_string(issued)); #if IS_ENABLED(CONFIG_FS_ENCRYPTION) if (cia && cia->fscrypt_auth) { u32 len = ceph_fscrypt_auth_len(cia->fscrypt_auth); if (len > sizeof(*cia->fscrypt_auth)) { err = -EINVAL; spin_unlock(&ci->i_ceph_lock); goto out; } doutc(cl, "%p %llx.%llx fscrypt_auth len %u to %u)\n", inode, ceph_vinop(inode), ci->fscrypt_auth_len, len); /* It should never be re-set once set */ WARN_ON_ONCE(ci->fscrypt_auth); if (!do_sync && (issued & CEPH_CAP_AUTH_EXCL)) { dirtied |= CEPH_CAP_AUTH_EXCL; kfree(ci->fscrypt_auth); ci->fscrypt_auth = (u8 *)cia->fscrypt_auth; ci->fscrypt_auth_len = len; } else if ((issued & CEPH_CAP_AUTH_SHARED) == 0 || ci->fscrypt_auth_len != len || memcmp(ci->fscrypt_auth, cia->fscrypt_auth, len)) { req->r_fscrypt_auth = cia->fscrypt_auth; mask |= CEPH_SETATTR_FSCRYPT_AUTH; release |= CEPH_CAP_AUTH_SHARED; } cia->fscrypt_auth = NULL; } #else if (cia && cia->fscrypt_auth) { err = -EINVAL; spin_unlock(&ci->i_ceph_lock); goto out; } #endif /* CONFIG_FS_ENCRYPTION */ if (ia_valid & ATTR_UID) { kuid_t fsuid = from_vfsuid(idmap, i_user_ns(inode), attr->ia_vfsuid); doutc(cl, "%p %llx.%llx uid %d -> %d\n", inode, ceph_vinop(inode), from_kuid(&init_user_ns, inode->i_uid), from_kuid(&init_user_ns, attr->ia_uid)); if (!do_sync && (issued & CEPH_CAP_AUTH_EXCL)) { inode->i_uid = fsuid; dirtied |= CEPH_CAP_AUTH_EXCL; } else if ((issued & CEPH_CAP_AUTH_SHARED) == 0 || !uid_eq(fsuid, inode->i_uid)) { req->r_args.setattr.uid = cpu_to_le32( from_kuid(&init_user_ns, fsuid)); mask |= CEPH_SETATTR_UID; release |= CEPH_CAP_AUTH_SHARED; } } if (ia_valid & ATTR_GID) { kgid_t fsgid = from_vfsgid(idmap, i_user_ns(inode), attr->ia_vfsgid); doutc(cl, "%p %llx.%llx gid %d -> %d\n", inode, ceph_vinop(inode), from_kgid(&init_user_ns, inode->i_gid), from_kgid(&init_user_ns, attr->ia_gid)); if (!do_sync && (issued & CEPH_CAP_AUTH_EXCL)) { inode->i_gid = fsgid; dirtied |= CEPH_CAP_AUTH_EXCL; } else if ((issued & CEPH_CAP_AUTH_SHARED) == 0 || !gid_eq(fsgid, inode->i_gid)) { req->r_args.setattr.gid = cpu_to_le32( from_kgid(&init_user_ns, fsgid)); mask |= CEPH_SETATTR_GID; release |= CEPH_CAP_AUTH_SHARED; } } if (ia_valid & ATTR_MODE) { doutc(cl, "%p %llx.%llx mode 0%o -> 0%o\n", inode, ceph_vinop(inode), inode->i_mode, attr->ia_mode); if (!do_sync && (issued & CEPH_CAP_AUTH_EXCL)) { inode->i_mode = attr->ia_mode; dirtied |= CEPH_CAP_AUTH_EXCL; } else if ((issued & CEPH_CAP_AUTH_SHARED) == 0 || attr->ia_mode != inode->i_mode) { inode->i_mode = attr->ia_mode; req->r_args.setattr.mode = cpu_to_le32(attr->ia_mode); mask |= CEPH_SETATTR_MODE; release |= CEPH_CAP_AUTH_SHARED; } } if (ia_valid & ATTR_ATIME) { struct timespec64 atime = inode_get_atime(inode); doutc(cl, "%p %llx.%llx atime %lld.%09ld -> %lld.%09ld\n", inode, ceph_vinop(inode), atime.tv_sec, atime.tv_nsec, attr->ia_atime.tv_sec, attr->ia_atime.tv_nsec); if (!do_sync && (issued & CEPH_CAP_FILE_EXCL)) { ci->i_time_warp_seq++; inode_set_atime_to_ts(inode, attr->ia_atime); dirtied |= CEPH_CAP_FILE_EXCL; } else if (!do_sync && (issued & CEPH_CAP_FILE_WR) && timespec64_compare(&atime, &attr->ia_atime) < 0) { inode_set_atime_to_ts(inode, attr->ia_atime); dirtied |= CEPH_CAP_FILE_WR; } else if ((issued & CEPH_CAP_FILE_SHARED) == 0 || !timespec64_equal(&atime, &attr->ia_atime)) { ceph_encode_timespec64(&req->r_args.setattr.atime, &attr->ia_atime); mask |= CEPH_SETATTR_ATIME; release |= CEPH_CAP_FILE_SHARED | CEPH_CAP_FILE_RD | CEPH_CAP_FILE_WR; } } if (ia_valid & ATTR_SIZE) { doutc(cl, "%p %llx.%llx size %lld -> %lld\n", inode, ceph_vinop(inode), isize, attr->ia_size); /* * Only when the new size is smaller and not aligned to * CEPH_FSCRYPT_BLOCK_SIZE will the RMW is needed. */ if (IS_ENCRYPTED(inode) && attr->ia_size < isize && (attr->ia_size % CEPH_FSCRYPT_BLOCK_SIZE)) { mask |= CEPH_SETATTR_SIZE; release |= CEPH_CAP_FILE_SHARED | CEPH_CAP_FILE_EXCL | CEPH_CAP_FILE_RD | CEPH_CAP_FILE_WR; set_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags); mask |= CEPH_SETATTR_FSCRYPT_FILE; req->r_args.setattr.size = cpu_to_le64(round_up(attr->ia_size, CEPH_FSCRYPT_BLOCK_SIZE)); req->r_args.setattr.old_size = cpu_to_le64(round_up(isize, CEPH_FSCRYPT_BLOCK_SIZE)); req->r_fscrypt_file = attr->ia_size; fill_fscrypt = true; } else if (!do_sync && (issued & CEPH_CAP_FILE_EXCL) && attr->ia_size >= isize) { if (attr->ia_size > isize) { i_size_write(inode, attr->ia_size); inode->i_blocks = calc_inode_blocks(attr->ia_size); ci->i_reported_size = attr->ia_size; dirtied |= CEPH_CAP_FILE_EXCL; ia_valid |= ATTR_MTIME; } } else if ((issued & CEPH_CAP_FILE_SHARED) == 0 || attr->ia_size != isize) { mask |= CEPH_SETATTR_SIZE; release |= CEPH_CAP_FILE_SHARED | CEPH_CAP_FILE_EXCL | CEPH_CAP_FILE_RD | CEPH_CAP_FILE_WR; if (IS_ENCRYPTED(inode) && attr->ia_size) { set_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags); mask |= CEPH_SETATTR_FSCRYPT_FILE; req->r_args.setattr.size = cpu_to_le64(round_up(attr->ia_size, CEPH_FSCRYPT_BLOCK_SIZE)); req->r_args.setattr.old_size = cpu_to_le64(round_up(isize, CEPH_FSCRYPT_BLOCK_SIZE)); req->r_fscrypt_file = attr->ia_size; } else { req->r_args.setattr.size = cpu_to_le64(attr->ia_size); req->r_args.setattr.old_size = cpu_to_le64(isize); req->r_fscrypt_file = 0; } } } if (ia_valid & ATTR_MTIME) { struct timespec64 mtime = inode_get_mtime(inode); doutc(cl, "%p %llx.%llx mtime %lld.%09ld -> %lld.%09ld\n", inode, ceph_vinop(inode), mtime.tv_sec, mtime.tv_nsec, attr->ia_mtime.tv_sec, attr->ia_mtime.tv_nsec); if (!do_sync && (issued & CEPH_CAP_FILE_EXCL)) { ci->i_time_warp_seq++; inode_set_mtime_to_ts(inode, attr->ia_mtime); dirtied |= CEPH_CAP_FILE_EXCL; } else if (!do_sync && (issued & CEPH_CAP_FILE_WR) && timespec64_compare(&mtime, &attr->ia_mtime) < 0) { inode_set_mtime_to_ts(inode, attr->ia_mtime); dirtied |= CEPH_CAP_FILE_WR; } else if ((issued & CEPH_CAP_FILE_SHARED) == 0 || !timespec64_equal(&mtime, &attr->ia_mtime)) { ceph_encode_timespec64(&req->r_args.setattr.mtime, &attr->ia_mtime); mask |= CEPH_SETATTR_MTIME; release |= CEPH_CAP_FILE_SHARED | CEPH_CAP_FILE_RD | CEPH_CAP_FILE_WR; } } /* these do nothing */ if (ia_valid & ATTR_CTIME) { bool only = (ia_valid & (ATTR_SIZE|ATTR_MTIME|ATTR_ATIME| ATTR_MODE|ATTR_UID|ATTR_GID)) == 0; doutc(cl, "%p %llx.%llx ctime %lld.%09ld -> %lld.%09ld (%s)\n", inode, ceph_vinop(inode), inode_get_ctime_sec(inode), inode_get_ctime_nsec(inode), attr->ia_ctime.tv_sec, attr->ia_ctime.tv_nsec, only ? "ctime only" : "ignored"); if (only) { /* * if kernel wants to dirty ctime but nothing else, * we need to choose a cap to dirty under, or do * a almost-no-op setattr */ if (issued & CEPH_CAP_AUTH_EXCL) dirtied |= CEPH_CAP_AUTH_EXCL; else if (issued & CEPH_CAP_FILE_EXCL) dirtied |= CEPH_CAP_FILE_EXCL; else if (issued & CEPH_CAP_XATTR_EXCL) dirtied |= CEPH_CAP_XATTR_EXCL; else mask |= CEPH_SETATTR_CTIME; } } if (ia_valid & ATTR_FILE) doutc(cl, "%p %llx.%llx ATTR_FILE ... hrm!\n", inode, ceph_vinop(inode)); if (dirtied) { inode_dirty_flags = __ceph_mark_dirty_caps(ci, dirtied, &prealloc_cf); inode_set_ctime_to_ts(inode, attr->ia_ctime); inode_inc_iversion_raw(inode); } release &= issued; spin_unlock(&ci->i_ceph_lock); if (lock_snap_rwsem) { up_read(&mdsc->snap_rwsem); lock_snap_rwsem = false; } if (inode_dirty_flags) __mark_inode_dirty(inode, inode_dirty_flags); if (mask) { req->r_inode = inode; ihold(inode); req->r_inode_drop = release; req->r_args.setattr.mask = cpu_to_le32(mask); req->r_num_caps = 1; req->r_stamp = attr->ia_ctime; if (fill_fscrypt) { err = fill_fscrypt_truncate(inode, req, attr); if (err) goto out; } /* * The truncate request will return -EAGAIN when the * last block has been updated just before the MDS * successfully gets the xlock for the FILE lock. To * avoid corrupting the file contents we need to retry * it. */ err = ceph_mdsc_do_request(mdsc, NULL, req); if (err == -EAGAIN && truncate_retry--) { doutc(cl, "%p %llx.%llx result=%d (%s locally, %d remote), retry it!\n", inode, ceph_vinop(inode), err, ceph_cap_string(dirtied), mask); ceph_mdsc_put_request(req); ceph_free_cap_flush(prealloc_cf); goto retry; } } out: doutc(cl, "%p %llx.%llx result=%d (%s locally, %d remote)\n", inode, ceph_vinop(inode), err, ceph_cap_string(dirtied), mask); ceph_mdsc_put_request(req); ceph_free_cap_flush(prealloc_cf); if (err >= 0 && (mask & CEPH_SETATTR_SIZE)) __ceph_do_pending_vmtruncate(inode); return err; } /* * setattr */ int ceph_setattr(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *attr) { struct inode *inode = d_inode(dentry); struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode); int err; if (ceph_snap(inode) != CEPH_NOSNAP) return -EROFS; if (ceph_inode_is_shutdown(inode)) return -ESTALE; err = fscrypt_prepare_setattr(dentry, attr); if (err) return err; err = setattr_prepare(idmap, dentry, attr); if (err != 0) return err; if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size > max(i_size_read(inode), fsc->max_file_size)) return -EFBIG; if ((attr->ia_valid & ATTR_SIZE) && ceph_quota_is_max_bytes_exceeded(inode, attr->ia_size)) return -EDQUOT; err = __ceph_setattr(idmap, inode, attr, NULL); if (err >= 0 && (attr->ia_valid & ATTR_MODE)) err = posix_acl_chmod(idmap, dentry, attr->ia_mode); return err; } int ceph_try_to_choose_auth_mds(struct inode *inode, int mask) { int issued = ceph_caps_issued(ceph_inode(inode)); /* * If any 'x' caps is issued we can just choose the auth MDS * instead of the random replica MDSes. Because only when the * Locker is in LOCK_EXEC state will the loner client could * get the 'x' caps. And if we send the getattr requests to * any replica MDS it must auth pin and tries to rdlock from * the auth MDS, and then the auth MDS need to do the Locker * state transition to LOCK_SYNC. And after that the lock state * will change back. * * This cost much when doing the Locker state transition and * usually will need to revoke caps from clients. * * And for the 'Xs' caps for getxattr we will also choose the * auth MDS, because the MDS side code is buggy due to setxattr * won't notify the replica MDSes when the values changed and * the replica MDS will return the old values. Though we will * fix it in MDS code, but this still makes sense for old ceph. */ if (((mask & CEPH_CAP_ANY_SHARED) && (issued & CEPH_CAP_ANY_EXCL)) || (mask & (CEPH_STAT_RSTAT | CEPH_STAT_CAP_XATTR))) return USE_AUTH_MDS; else return USE_ANY_MDS; } /* * Verify that we have a lease on the given mask. If not, * do a getattr against an mds. */ int __ceph_do_getattr(struct inode *inode, struct page *locked_page, int mask, bool force) { struct ceph_fs_client *fsc = ceph_sb_to_fs_client(inode->i_sb); struct ceph_client *cl = fsc->client; struct ceph_mds_client *mdsc = fsc->mdsc; struct ceph_mds_request *req; int mode; int err; if (ceph_snap(inode) == CEPH_SNAPDIR) { doutc(cl, "inode %p %llx.%llx SNAPDIR\n", inode, ceph_vinop(inode)); return 0; } doutc(cl, "inode %p %llx.%llx mask %s mode 0%o\n", inode, ceph_vinop(inode), ceph_cap_string(mask), inode->i_mode); if (!force && ceph_caps_issued_mask_metric(ceph_inode(inode), mask, 1)) return 0; mode = ceph_try_to_choose_auth_mds(inode, mask); req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_GETATTR, mode); if (IS_ERR(req)) return PTR_ERR(req); req->r_inode = inode; ihold(inode); req->r_num_caps = 1; req->r_args.getattr.mask = cpu_to_le32(mask); req->r_locked_page = locked_page; err = ceph_mdsc_do_request(mdsc, NULL, req); if (locked_page && err == 0) { u64 inline_version = req->r_reply_info.targeti.inline_version; if (inline_version == 0) { /* the reply is supposed to contain inline data */ err = -EINVAL; } else if (inline_version == CEPH_INLINE_NONE || inline_version == 1) { err = -ENODATA; } else { err = req->r_reply_info.targeti.inline_len; } } ceph_mdsc_put_request(req); doutc(cl, "result=%d\n", err); return err; } int ceph_do_getvxattr(struct inode *inode, const char *name, void *value, size_t size) { struct ceph_fs_client *fsc = ceph_sb_to_fs_client(inode->i_sb); struct ceph_client *cl = fsc->client; struct ceph_mds_client *mdsc = fsc->mdsc; struct ceph_mds_request *req; int mode = USE_AUTH_MDS; int err; char *xattr_value; size_t xattr_value_len; req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_GETVXATTR, mode); if (IS_ERR(req)) { err = -ENOMEM; goto out; } req->r_feature_needed = CEPHFS_FEATURE_OP_GETVXATTR; req->r_path2 = kstrdup(name, GFP_NOFS); if (!req->r_path2) { err = -ENOMEM; goto put; } ihold(inode); req->r_inode = inode; err = ceph_mdsc_do_request(mdsc, NULL, req); if (err < 0) goto put; xattr_value = req->r_reply_info.xattr_info.xattr_value; xattr_value_len = req->r_reply_info.xattr_info.xattr_value_len; doutc(cl, "xattr_value_len:%zu, size:%zu\n", xattr_value_len, size); err = (int)xattr_value_len; if (size == 0) goto put; if (xattr_value_len > size) { err = -ERANGE; goto put; } memcpy(value, xattr_value, xattr_value_len); put: ceph_mdsc_put_request(req); out: doutc(cl, "result=%d\n", err); return err; } /* * Check inode permissions. We verify we have a valid value for * the AUTH cap, then call the generic handler. */ int ceph_permission(struct mnt_idmap *idmap, struct inode *inode, int mask) { int err; if (mask & MAY_NOT_BLOCK) return -ECHILD; err = ceph_do_getattr(inode, CEPH_CAP_AUTH_SHARED, false); if (!err) err = generic_permission(idmap, inode, mask); return err; } /* Craft a mask of needed caps given a set of requested statx attrs. */ static int statx_to_caps(u32 want, umode_t mode) { int mask = 0; if (want & (STATX_MODE|STATX_UID|STATX_GID|STATX_CTIME|STATX_BTIME|STATX_CHANGE_COOKIE)) mask |= CEPH_CAP_AUTH_SHARED; if (want & (STATX_NLINK|STATX_CTIME|STATX_CHANGE_COOKIE)) { /* * The link count for directories depends on inode->i_subdirs, * and that is only updated when Fs caps are held. */ if (S_ISDIR(mode)) mask |= CEPH_CAP_FILE_SHARED; else mask |= CEPH_CAP_LINK_SHARED; } if (want & (STATX_ATIME|STATX_MTIME|STATX_CTIME|STATX_SIZE|STATX_BLOCKS|STATX_CHANGE_COOKIE)) mask |= CEPH_CAP_FILE_SHARED; if (want & (STATX_CTIME|STATX_CHANGE_COOKIE)) mask |= CEPH_CAP_XATTR_SHARED; return mask; } /* * Get all the attributes. If we have sufficient caps for the requested attrs, * then we can avoid talking to the MDS at all. */ int ceph_getattr(struct mnt_idmap *idmap, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int flags) { struct inode *inode = d_inode(path->dentry); struct super_block *sb = inode->i_sb; struct ceph_inode_info *ci = ceph_inode(inode); u32 valid_mask = STATX_BASIC_STATS; int err = 0; if (ceph_inode_is_shutdown(inode)) return -ESTALE; /* Skip the getattr altogether if we're asked not to sync */ if ((flags & AT_STATX_SYNC_TYPE) != AT_STATX_DONT_SYNC) { err = ceph_do_getattr(inode, statx_to_caps(request_mask, inode->i_mode), flags & AT_STATX_FORCE_SYNC); if (err) return err; } generic_fillattr(idmap, request_mask, inode, stat); stat->ino = ceph_present_inode(inode); /* * btime on newly-allocated inodes is 0, so if this is still set to * that, then assume that it's not valid. */ if (ci->i_btime.tv_sec || ci->i_btime.tv_nsec) { stat->btime = ci->i_btime; valid_mask |= STATX_BTIME; } if (request_mask & STATX_CHANGE_COOKIE) { stat->change_cookie = inode_peek_iversion_raw(inode); valid_mask |= STATX_CHANGE_COOKIE; } if (ceph_snap(inode) == CEPH_NOSNAP) stat->dev = sb->s_dev; else stat->dev = ci->i_snapid_map ? ci->i_snapid_map->dev : 0; if (S_ISDIR(inode->i_mode)) { if (ceph_test_mount_opt(ceph_sb_to_fs_client(sb), RBYTES)) { stat->size = ci->i_rbytes; } else if (ceph_snap(inode) == CEPH_SNAPDIR) { struct ceph_inode_info *pci; struct ceph_snap_realm *realm; struct inode *parent; parent = ceph_lookup_inode(sb, ceph_ino(inode)); if (IS_ERR(parent)) return PTR_ERR(parent); pci = ceph_inode(parent); spin_lock(&pci->i_ceph_lock); realm = pci->i_snap_realm; if (realm) stat->size = realm->num_snaps; else stat->size = 0; spin_unlock(&pci->i_ceph_lock); iput(parent); } else { stat->size = ci->i_files + ci->i_subdirs; } stat->blocks = 0; stat->blksize = 65536; /* * Some applications rely on the number of st_nlink * value on directories to be either 0 (if unlinked) * or 2 + number of subdirectories. */ if (stat->nlink == 1) /* '.' + '..' + subdirs */ stat->nlink = 1 + 1 + ci->i_subdirs; } stat->attributes |= STATX_ATTR_CHANGE_MONOTONIC; if (IS_ENCRYPTED(inode)) stat->attributes |= STATX_ATTR_ENCRYPTED; stat->attributes_mask |= (STATX_ATTR_CHANGE_MONOTONIC | STATX_ATTR_ENCRYPTED); stat->result_mask = request_mask & valid_mask; return err; } void ceph_inode_shutdown(struct inode *inode) { struct ceph_inode_info *ci = ceph_inode(inode); struct rb_node *p; int iputs = 0; bool invalidate = false; spin_lock(&ci->i_ceph_lock); ci->i_ceph_flags |= CEPH_I_SHUTDOWN; p = rb_first(&ci->i_caps); while (p) { struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); p = rb_next(p); iputs += ceph_purge_inode_cap(inode, cap, &invalidate); } spin_unlock(&ci->i_ceph_lock); if (invalidate) ceph_queue_invalidate(inode); while (iputs--) iput(inode); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1