Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sage Weil | 12878 | 39.71% | 100 | 21.51% |
Yan Zheng | 6852 | 21.13% | 113 | 24.30% |
Xiubo Li | 6206 | 19.13% | 68 | 14.62% |
Jeff Layton | 3375 | 10.41% | 74 | 15.91% |
Ilya Dryomov | 664 | 2.05% | 22 | 4.73% |
John Spray | 335 | 1.03% | 3 | 0.65% |
Christian Brauner | 318 | 0.98% | 2 | 0.43% |
Luis Henriques | 305 | 0.94% | 7 | 1.51% |
Alex Elder | 254 | 0.78% | 12 | 2.58% |
Yehuda Sadeh Weinraub | 170 | 0.52% | 6 | 1.29% |
Chengguang Xu | 139 | 0.43% | 6 | 1.29% |
Greg Farnum | 109 | 0.34% | 3 | 0.65% |
Herb Shiu | 102 | 0.31% | 1 | 0.22% |
Milind Changire | 96 | 0.30% | 1 | 0.22% |
Sam Lang | 92 | 0.28% | 1 | 0.22% |
Alexander Mikhalitsyn | 80 | 0.25% | 1 | 0.22% |
Jim Schutt | 69 | 0.21% | 2 | 0.43% |
Al Viro | 52 | 0.16% | 5 | 1.08% |
David Disseldorp | 49 | 0.15% | 1 | 0.22% |
Kotresh HR | 46 | 0.14% | 1 | 0.22% |
Zhi Zhang | 46 | 0.14% | 1 | 0.22% |
David Howells | 34 | 0.10% | 2 | 0.43% |
Yanhu Cao | 24 | 0.07% | 1 | 0.22% |
Nathaniel Yazdani | 16 | 0.05% | 1 | 0.22% |
Dan Carpenter | 14 | 0.04% | 2 | 0.43% |
Eric W. Biedermann | 12 | 0.04% | 1 | 0.22% |
Xi Wang | 10 | 0.03% | 1 | 0.22% |
Cheng Renquan | 8 | 0.02% | 1 | 0.22% |
SF Markus Elfring | 8 | 0.02% | 1 | 0.22% |
Nicholas Piggin | 7 | 0.02% | 1 | 0.22% |
Venky Shankar | 6 | 0.02% | 1 | 0.22% |
Max Kellermann | 5 | 0.02% | 1 | 0.22% |
Arnd Bergmann | 5 | 0.02% | 2 | 0.43% |
Jan Kara | 4 | 0.01% | 1 | 0.22% |
Seraphime Kirkovski | 4 | 0.01% | 1 | 0.22% |
Tuo Li | 4 | 0.01% | 1 | 0.22% |
Elena Reshetova | 4 | 0.01% | 1 | 0.22% |
David Zafman | 4 | 0.01% | 1 | 0.22% |
Henry C Chang | 3 | 0.01% | 1 | 0.22% |
Nicholas Mc Guire | 3 | 0.01% | 1 | 0.22% |
Linus Torvalds | 3 | 0.01% | 2 | 0.43% |
Jianpeng Ma | 2 | 0.01% | 1 | 0.22% |
H Hartley Sweeten | 2 | 0.01% | 1 | 0.22% |
Andreas Gruenbacher | 2 | 0.01% | 1 | 0.22% |
Kees Cook | 2 | 0.01% | 1 | 0.22% |
Linus Torvalds (pre-git) | 2 | 0.01% | 1 | 0.22% |
Tobias Klauser | 2 | 0.01% | 1 | 0.22% |
Miklos Szeredi | 2 | 0.01% | 1 | 0.22% |
Greg Kroah-Hartman | 1 | 0.00% | 1 | 0.22% |
Deepa Dinamani | 1 | 0.00% | 1 | 0.22% |
Kirill A. Shutemov | 1 | 0.00% | 1 | 0.22% |
Himangi Saraogi | 1 | 0.00% | 1 | 0.22% |
Total | 32433 | 465 |
// SPDX-License-Identifier: GPL-2.0 #include <linux/ceph/ceph_debug.h> #include <linux/fs.h> #include <linux/wait.h> #include <linux/slab.h> #include <linux/gfp.h> #include <linux/sched.h> #include <linux/debugfs.h> #include <linux/seq_file.h> #include <linux/ratelimit.h> #include <linux/bits.h> #include <linux/ktime.h> #include <linux/bitmap.h> #include <linux/mnt_idmapping.h> #include "super.h" #include "mds_client.h" #include "crypto.h" #include <linux/ceph/ceph_features.h> #include <linux/ceph/messenger.h> #include <linux/ceph/decode.h> #include <linux/ceph/pagelist.h> #include <linux/ceph/auth.h> #include <linux/ceph/debugfs.h> #define RECONNECT_MAX_SIZE (INT_MAX - PAGE_SIZE) /* * A cluster of MDS (metadata server) daemons is responsible for * managing the file system namespace (the directory hierarchy and * inodes) and for coordinating shared access to storage. Metadata is * partitioning hierarchically across a number of servers, and that * partition varies over time as the cluster adjusts the distribution * in order to balance load. * * The MDS client is primarily responsible to managing synchronous * metadata requests for operations like open, unlink, and so forth. * If there is a MDS failure, we find out about it when we (possibly * request and) receive a new MDS map, and can resubmit affected * requests. * * For the most part, though, we take advantage of a lossless * communications channel to the MDS, and do not need to worry about * timing out or resubmitting requests. * * We maintain a stateful "session" with each MDS we interact with. * Within each session, we sent periodic heartbeat messages to ensure * any capabilities or leases we have been issues remain valid. If * the session times out and goes stale, our leases and capabilities * are no longer valid. */ struct ceph_reconnect_state { struct ceph_mds_session *session; int nr_caps, nr_realms; struct ceph_pagelist *pagelist; unsigned msg_version; bool allow_multi; }; static void __wake_requests(struct ceph_mds_client *mdsc, struct list_head *head); static void ceph_cap_release_work(struct work_struct *work); static void ceph_cap_reclaim_work(struct work_struct *work); static const struct ceph_connection_operations mds_con_ops; /* * mds reply parsing */ static int parse_reply_info_quota(void **p, void *end, struct ceph_mds_reply_info_in *info) { u8 struct_v, struct_compat; u32 struct_len; ceph_decode_8_safe(p, end, struct_v, bad); ceph_decode_8_safe(p, end, struct_compat, bad); /* struct_v is expected to be >= 1. we only * understand encoding with struct_compat == 1. */ if (!struct_v || struct_compat != 1) goto bad; ceph_decode_32_safe(p, end, struct_len, bad); ceph_decode_need(p, end, struct_len, bad); end = *p + struct_len; ceph_decode_64_safe(p, end, info->max_bytes, bad); ceph_decode_64_safe(p, end, info->max_files, bad); *p = end; return 0; bad: return -EIO; } /* * parse individual inode info */ static int parse_reply_info_in(void **p, void *end, struct ceph_mds_reply_info_in *info, u64 features) { int err = 0; u8 struct_v = 0; if (features == (u64)-1) { u32 struct_len; u8 struct_compat; ceph_decode_8_safe(p, end, struct_v, bad); ceph_decode_8_safe(p, end, struct_compat, bad); /* struct_v is expected to be >= 1. we only understand * encoding with struct_compat == 1. */ if (!struct_v || struct_compat != 1) goto bad; ceph_decode_32_safe(p, end, struct_len, bad); ceph_decode_need(p, end, struct_len, bad); end = *p + struct_len; } ceph_decode_need(p, end, sizeof(struct ceph_mds_reply_inode), bad); info->in = *p; *p += sizeof(struct ceph_mds_reply_inode) + sizeof(*info->in->fragtree.splits) * le32_to_cpu(info->in->fragtree.nsplits); ceph_decode_32_safe(p, end, info->symlink_len, bad); ceph_decode_need(p, end, info->symlink_len, bad); info->symlink = *p; *p += info->symlink_len; ceph_decode_copy_safe(p, end, &info->dir_layout, sizeof(info->dir_layout), bad); ceph_decode_32_safe(p, end, info->xattr_len, bad); ceph_decode_need(p, end, info->xattr_len, bad); info->xattr_data = *p; *p += info->xattr_len; if (features == (u64)-1) { /* inline data */ ceph_decode_64_safe(p, end, info->inline_version, bad); ceph_decode_32_safe(p, end, info->inline_len, bad); ceph_decode_need(p, end, info->inline_len, bad); info->inline_data = *p; *p += info->inline_len; /* quota */ err = parse_reply_info_quota(p, end, info); if (err < 0) goto out_bad; /* pool namespace */ ceph_decode_32_safe(p, end, info->pool_ns_len, bad); if (info->pool_ns_len > 0) { ceph_decode_need(p, end, info->pool_ns_len, bad); info->pool_ns_data = *p; *p += info->pool_ns_len; } /* btime */ ceph_decode_need(p, end, sizeof(info->btime), bad); ceph_decode_copy(p, &info->btime, sizeof(info->btime)); /* change attribute */ ceph_decode_64_safe(p, end, info->change_attr, bad); /* dir pin */ if (struct_v >= 2) { ceph_decode_32_safe(p, end, info->dir_pin, bad); } else { info->dir_pin = -ENODATA; } /* snapshot birth time, remains zero for v<=2 */ if (struct_v >= 3) { ceph_decode_need(p, end, sizeof(info->snap_btime), bad); ceph_decode_copy(p, &info->snap_btime, sizeof(info->snap_btime)); } else { memset(&info->snap_btime, 0, sizeof(info->snap_btime)); } /* snapshot count, remains zero for v<=3 */ if (struct_v >= 4) { ceph_decode_64_safe(p, end, info->rsnaps, bad); } else { info->rsnaps = 0; } if (struct_v >= 5) { u32 alen; ceph_decode_32_safe(p, end, alen, bad); while (alen--) { u32 len; /* key */ ceph_decode_32_safe(p, end, len, bad); ceph_decode_skip_n(p, end, len, bad); /* value */ ceph_decode_32_safe(p, end, len, bad); ceph_decode_skip_n(p, end, len, bad); } } /* fscrypt flag -- ignore */ if (struct_v >= 6) ceph_decode_skip_8(p, end, bad); info->fscrypt_auth = NULL; info->fscrypt_auth_len = 0; info->fscrypt_file = NULL; info->fscrypt_file_len = 0; if (struct_v >= 7) { ceph_decode_32_safe(p, end, info->fscrypt_auth_len, bad); if (info->fscrypt_auth_len) { info->fscrypt_auth = kmalloc(info->fscrypt_auth_len, GFP_KERNEL); if (!info->fscrypt_auth) return -ENOMEM; ceph_decode_copy_safe(p, end, info->fscrypt_auth, info->fscrypt_auth_len, bad); } ceph_decode_32_safe(p, end, info->fscrypt_file_len, bad); if (info->fscrypt_file_len) { info->fscrypt_file = kmalloc(info->fscrypt_file_len, GFP_KERNEL); if (!info->fscrypt_file) return -ENOMEM; ceph_decode_copy_safe(p, end, info->fscrypt_file, info->fscrypt_file_len, bad); } } *p = end; } else { /* legacy (unversioned) struct */ if (features & CEPH_FEATURE_MDS_INLINE_DATA) { ceph_decode_64_safe(p, end, info->inline_version, bad); ceph_decode_32_safe(p, end, info->inline_len, bad); ceph_decode_need(p, end, info->inline_len, bad); info->inline_data = *p; *p += info->inline_len; } else info->inline_version = CEPH_INLINE_NONE; if (features & CEPH_FEATURE_MDS_QUOTA) { err = parse_reply_info_quota(p, end, info); if (err < 0) goto out_bad; } else { info->max_bytes = 0; info->max_files = 0; } info->pool_ns_len = 0; info->pool_ns_data = NULL; if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) { ceph_decode_32_safe(p, end, info->pool_ns_len, bad); if (info->pool_ns_len > 0) { ceph_decode_need(p, end, info->pool_ns_len, bad); info->pool_ns_data = *p; *p += info->pool_ns_len; } } if (features & CEPH_FEATURE_FS_BTIME) { ceph_decode_need(p, end, sizeof(info->btime), bad); ceph_decode_copy(p, &info->btime, sizeof(info->btime)); ceph_decode_64_safe(p, end, info->change_attr, bad); } info->dir_pin = -ENODATA; /* info->snap_btime and info->rsnaps remain zero */ } return 0; bad: err = -EIO; out_bad: return err; } static int parse_reply_info_dir(void **p, void *end, struct ceph_mds_reply_dirfrag **dirfrag, u64 features) { if (features == (u64)-1) { u8 struct_v, struct_compat; u32 struct_len; ceph_decode_8_safe(p, end, struct_v, bad); ceph_decode_8_safe(p, end, struct_compat, bad); /* struct_v is expected to be >= 1. we only understand * encoding whose struct_compat == 1. */ if (!struct_v || struct_compat != 1) goto bad; ceph_decode_32_safe(p, end, struct_len, bad); ceph_decode_need(p, end, struct_len, bad); end = *p + struct_len; } ceph_decode_need(p, end, sizeof(**dirfrag), bad); *dirfrag = *p; *p += sizeof(**dirfrag) + sizeof(u32) * le32_to_cpu((*dirfrag)->ndist); if (unlikely(*p > end)) goto bad; if (features == (u64)-1) *p = end; return 0; bad: return -EIO; } static int parse_reply_info_lease(void **p, void *end, struct ceph_mds_reply_lease **lease, u64 features, u32 *altname_len, u8 **altname) { u8 struct_v; u32 struct_len; void *lend; if (features == (u64)-1) { u8 struct_compat; ceph_decode_8_safe(p, end, struct_v, bad); ceph_decode_8_safe(p, end, struct_compat, bad); /* struct_v is expected to be >= 1. we only understand * encoding whose struct_compat == 1. */ if (!struct_v || struct_compat != 1) goto bad; ceph_decode_32_safe(p, end, struct_len, bad); } else { struct_len = sizeof(**lease); *altname_len = 0; *altname = NULL; } lend = *p + struct_len; ceph_decode_need(p, end, struct_len, bad); *lease = *p; *p += sizeof(**lease); if (features == (u64)-1) { if (struct_v >= 2) { ceph_decode_32_safe(p, end, *altname_len, bad); ceph_decode_need(p, end, *altname_len, bad); *altname = *p; *p += *altname_len; } else { *altname = NULL; *altname_len = 0; } } *p = lend; return 0; bad: return -EIO; } /* * parse a normal reply, which may contain a (dir+)dentry and/or a * target inode. */ static int parse_reply_info_trace(void **p, void *end, struct ceph_mds_reply_info_parsed *info, u64 features) { int err; if (info->head->is_dentry) { err = parse_reply_info_in(p, end, &info->diri, features); if (err < 0) goto out_bad; err = parse_reply_info_dir(p, end, &info->dirfrag, features); if (err < 0) goto out_bad; ceph_decode_32_safe(p, end, info->dname_len, bad); ceph_decode_need(p, end, info->dname_len, bad); info->dname = *p; *p += info->dname_len; err = parse_reply_info_lease(p, end, &info->dlease, features, &info->altname_len, &info->altname); if (err < 0) goto out_bad; } if (info->head->is_target) { err = parse_reply_info_in(p, end, &info->targeti, features); if (err < 0) goto out_bad; } if (unlikely(*p != end)) goto bad; return 0; bad: err = -EIO; out_bad: pr_err("problem parsing mds trace %d\n", err); return err; } /* * parse readdir results */ static int parse_reply_info_readdir(void **p, void *end, struct ceph_mds_request *req, u64 features) { struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; struct ceph_client *cl = req->r_mdsc->fsc->client; u32 num, i = 0; int err; err = parse_reply_info_dir(p, end, &info->dir_dir, features); if (err < 0) goto out_bad; ceph_decode_need(p, end, sizeof(num) + 2, bad); num = ceph_decode_32(p); { u16 flags = ceph_decode_16(p); info->dir_end = !!(flags & CEPH_READDIR_FRAG_END); info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE); info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER); info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH); } if (num == 0) goto done; BUG_ON(!info->dir_entries); if ((unsigned long)(info->dir_entries + num) > (unsigned long)info->dir_entries + info->dir_buf_size) { pr_err_client(cl, "dir contents are larger than expected\n"); WARN_ON(1); goto bad; } info->dir_nr = num; while (num) { struct inode *inode = d_inode(req->r_dentry); struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i; struct fscrypt_str tname = FSTR_INIT(NULL, 0); struct fscrypt_str oname = FSTR_INIT(NULL, 0); struct ceph_fname fname; u32 altname_len, _name_len; u8 *altname, *_name; /* dentry */ ceph_decode_32_safe(p, end, _name_len, bad); ceph_decode_need(p, end, _name_len, bad); _name = *p; *p += _name_len; doutc(cl, "parsed dir dname '%.*s'\n", _name_len, _name); if (info->hash_order) rde->raw_hash = ceph_str_hash(ci->i_dir_layout.dl_dir_hash, _name, _name_len); /* dentry lease */ err = parse_reply_info_lease(p, end, &rde->lease, features, &altname_len, &altname); if (err) goto out_bad; /* * Try to dencrypt the dentry names and update them * in the ceph_mds_reply_dir_entry struct. */ fname.dir = inode; fname.name = _name; fname.name_len = _name_len; fname.ctext = altname; fname.ctext_len = altname_len; /* * The _name_len maybe larger than altname_len, such as * when the human readable name length is in range of * (CEPH_NOHASH_NAME_MAX, CEPH_NOHASH_NAME_MAX + SHA256_DIGEST_SIZE), * then the copy in ceph_fname_to_usr will corrupt the * data if there has no encryption key. * * Just set the no_copy flag and then if there has no * encryption key the oname.name will be assigned to * _name always. */ fname.no_copy = true; if (altname_len == 0) { /* * Set tname to _name, and this will be used * to do the base64_decode in-place. It's * safe because the decoded string should * always be shorter, which is 3/4 of origin * string. */ tname.name = _name; /* * Set oname to _name too, and this will be * used to do the dencryption in-place. */ oname.name = _name; oname.len = _name_len; } else { /* * This will do the decryption only in-place * from altname cryptext directly. */ oname.name = altname; oname.len = altname_len; } rde->is_nokey = false; err = ceph_fname_to_usr(&fname, &tname, &oname, &rde->is_nokey); if (err) { pr_err_client(cl, "unable to decode %.*s, got %d\n", _name_len, _name, err); goto out_bad; } rde->name = oname.name; rde->name_len = oname.len; /* inode */ err = parse_reply_info_in(p, end, &rde->inode, features); if (err < 0) goto out_bad; /* ceph_readdir_prepopulate() will update it */ rde->offset = 0; i++; num--; } done: /* Skip over any unrecognized fields */ *p = end; return 0; bad: err = -EIO; out_bad: pr_err_client(cl, "problem parsing dir contents %d\n", err); return err; } /* * parse fcntl F_GETLK results */ static int parse_reply_info_filelock(void **p, void *end, struct ceph_mds_reply_info_parsed *info, u64 features) { if (*p + sizeof(*info->filelock_reply) > end) goto bad; info->filelock_reply = *p; /* Skip over any unrecognized fields */ *p = end; return 0; bad: return -EIO; } #if BITS_PER_LONG == 64 #define DELEGATED_INO_AVAILABLE xa_mk_value(1) static int ceph_parse_deleg_inos(void **p, void *end, struct ceph_mds_session *s) { struct ceph_client *cl = s->s_mdsc->fsc->client; u32 sets; ceph_decode_32_safe(p, end, sets, bad); doutc(cl, "got %u sets of delegated inodes\n", sets); while (sets--) { u64 start, len; ceph_decode_64_safe(p, end, start, bad); ceph_decode_64_safe(p, end, len, bad); /* Don't accept a delegation of system inodes */ if (start < CEPH_INO_SYSTEM_BASE) { pr_warn_ratelimited_client(cl, "ignoring reserved inode range delegation (start=0x%llx len=0x%llx)\n", start, len); continue; } while (len--) { int err = xa_insert(&s->s_delegated_inos, start++, DELEGATED_INO_AVAILABLE, GFP_KERNEL); if (!err) { doutc(cl, "added delegated inode 0x%llx\n", start - 1); } else if (err == -EBUSY) { pr_warn_client(cl, "MDS delegated inode 0x%llx more than once.\n", start - 1); } else { return err; } } } return 0; bad: return -EIO; } u64 ceph_get_deleg_ino(struct ceph_mds_session *s) { unsigned long ino; void *val; xa_for_each(&s->s_delegated_inos, ino, val) { val = xa_erase(&s->s_delegated_inos, ino); if (val == DELEGATED_INO_AVAILABLE) return ino; } return 0; } int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino) { return xa_insert(&s->s_delegated_inos, ino, DELEGATED_INO_AVAILABLE, GFP_KERNEL); } #else /* BITS_PER_LONG == 64 */ /* * FIXME: xarrays can't handle 64-bit indexes on a 32-bit arch. For now, just * ignore delegated_inos on 32 bit arch. Maybe eventually add xarrays for top * and bottom words? */ static int ceph_parse_deleg_inos(void **p, void *end, struct ceph_mds_session *s) { u32 sets; ceph_decode_32_safe(p, end, sets, bad); if (sets) ceph_decode_skip_n(p, end, sets * 2 * sizeof(__le64), bad); return 0; bad: return -EIO; } u64 ceph_get_deleg_ino(struct ceph_mds_session *s) { return 0; } int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino) { return 0; } #endif /* BITS_PER_LONG == 64 */ /* * parse create results */ static int parse_reply_info_create(void **p, void *end, struct ceph_mds_reply_info_parsed *info, u64 features, struct ceph_mds_session *s) { int ret; if (features == (u64)-1 || (features & CEPH_FEATURE_REPLY_CREATE_INODE)) { if (*p == end) { /* Malformed reply? */ info->has_create_ino = false; } else if (test_bit(CEPHFS_FEATURE_DELEG_INO, &s->s_features)) { info->has_create_ino = true; /* struct_v, struct_compat, and len */ ceph_decode_skip_n(p, end, 2 + sizeof(u32), bad); ceph_decode_64_safe(p, end, info->ino, bad); ret = ceph_parse_deleg_inos(p, end, s); if (ret) return ret; } else { /* legacy */ ceph_decode_64_safe(p, end, info->ino, bad); info->has_create_ino = true; } } else { if (*p != end) goto bad; } /* Skip over any unrecognized fields */ *p = end; return 0; bad: return -EIO; } static int parse_reply_info_getvxattr(void **p, void *end, struct ceph_mds_reply_info_parsed *info, u64 features) { u32 value_len; ceph_decode_skip_8(p, end, bad); /* skip current version: 1 */ ceph_decode_skip_8(p, end, bad); /* skip first version: 1 */ ceph_decode_skip_32(p, end, bad); /* skip payload length */ ceph_decode_32_safe(p, end, value_len, bad); if (value_len == end - *p) { info->xattr_info.xattr_value = *p; info->xattr_info.xattr_value_len = value_len; *p = end; return value_len; } bad: return -EIO; } /* * parse extra results */ static int parse_reply_info_extra(void **p, void *end, struct ceph_mds_request *req, u64 features, struct ceph_mds_session *s) { struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; u32 op = le32_to_cpu(info->head->op); if (op == CEPH_MDS_OP_GETFILELOCK) return parse_reply_info_filelock(p, end, info, features); else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP) return parse_reply_info_readdir(p, end, req, features); else if (op == CEPH_MDS_OP_CREATE) return parse_reply_info_create(p, end, info, features, s); else if (op == CEPH_MDS_OP_GETVXATTR) return parse_reply_info_getvxattr(p, end, info, features); else return -EIO; } /* * parse entire mds reply */ static int parse_reply_info(struct ceph_mds_session *s, struct ceph_msg *msg, struct ceph_mds_request *req, u64 features) { struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; struct ceph_client *cl = s->s_mdsc->fsc->client; void *p, *end; u32 len; int err; info->head = msg->front.iov_base; p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); /* trace */ ceph_decode_32_safe(&p, end, len, bad); if (len > 0) { ceph_decode_need(&p, end, len, bad); err = parse_reply_info_trace(&p, p+len, info, features); if (err < 0) goto out_bad; } /* extra */ ceph_decode_32_safe(&p, end, len, bad); if (len > 0) { ceph_decode_need(&p, end, len, bad); err = parse_reply_info_extra(&p, p+len, req, features, s); if (err < 0) goto out_bad; } /* snap blob */ ceph_decode_32_safe(&p, end, len, bad); info->snapblob_len = len; info->snapblob = p; p += len; if (p != end) goto bad; return 0; bad: err = -EIO; out_bad: pr_err_client(cl, "mds parse_reply err %d\n", err); ceph_msg_dump(msg); return err; } static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) { int i; kfree(info->diri.fscrypt_auth); kfree(info->diri.fscrypt_file); kfree(info->targeti.fscrypt_auth); kfree(info->targeti.fscrypt_file); if (!info->dir_entries) return; for (i = 0; i < info->dir_nr; i++) { struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i; kfree(rde->inode.fscrypt_auth); kfree(rde->inode.fscrypt_file); } free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size)); } /* * In async unlink case the kclient won't wait for the first reply * from MDS and just drop all the links and unhash the dentry and then * succeeds immediately. * * For any new create/link/rename,etc requests followed by using the * same file names we must wait for the first reply of the inflight * unlink request, or the MDS possibly will fail these following * requests with -EEXIST if the inflight async unlink request was * delayed for some reasons. * * And the worst case is that for the none async openc request it will * successfully open the file if the CDentry hasn't been unlinked yet, * but later the previous delayed async unlink request will remove the * CDenty. That means the just created file is possiblly deleted later * by accident. * * We need to wait for the inflight async unlink requests to finish * when creating new files/directories by using the same file names. */ int ceph_wait_on_conflict_unlink(struct dentry *dentry) { struct ceph_fs_client *fsc = ceph_sb_to_fs_client(dentry->d_sb); struct ceph_client *cl = fsc->client; struct dentry *pdentry = dentry->d_parent; struct dentry *udentry, *found = NULL; struct ceph_dentry_info *di; struct qstr dname; u32 hash = dentry->d_name.hash; int err; dname.name = dentry->d_name.name; dname.len = dentry->d_name.len; rcu_read_lock(); hash_for_each_possible_rcu(fsc->async_unlink_conflict, di, hnode, hash) { udentry = di->dentry; spin_lock(&udentry->d_lock); if (udentry->d_name.hash != hash) goto next; if (unlikely(udentry->d_parent != pdentry)) goto next; if (!hash_hashed(&di->hnode)) goto next; if (!test_bit(CEPH_DENTRY_ASYNC_UNLINK_BIT, &di->flags)) pr_warn_client(cl, "dentry %p:%pd async unlink bit is not set\n", dentry, dentry); if (!d_same_name(udentry, pdentry, &dname)) goto next; found = dget_dlock(udentry); spin_unlock(&udentry->d_lock); break; next: spin_unlock(&udentry->d_lock); } rcu_read_unlock(); if (likely(!found)) return 0; doutc(cl, "dentry %p:%pd conflict with old %p:%pd\n", dentry, dentry, found, found); err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_UNLINK_BIT, TASK_KILLABLE); dput(found); return err; } /* * sessions */ const char *ceph_session_state_name(int s) { switch (s) { case CEPH_MDS_SESSION_NEW: return "new"; case CEPH_MDS_SESSION_OPENING: return "opening"; case CEPH_MDS_SESSION_OPEN: return "open"; case CEPH_MDS_SESSION_HUNG: return "hung"; case CEPH_MDS_SESSION_CLOSING: return "closing"; case CEPH_MDS_SESSION_CLOSED: return "closed"; case CEPH_MDS_SESSION_RESTARTING: return "restarting"; case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; case CEPH_MDS_SESSION_REJECTED: return "rejected"; default: return "???"; } } struct ceph_mds_session *ceph_get_mds_session(struct ceph_mds_session *s) { if (refcount_inc_not_zero(&s->s_ref)) return s; return NULL; } void ceph_put_mds_session(struct ceph_mds_session *s) { if (IS_ERR_OR_NULL(s)) return; if (refcount_dec_and_test(&s->s_ref)) { if (s->s_auth.authorizer) ceph_auth_destroy_authorizer(s->s_auth.authorizer); WARN_ON(mutex_is_locked(&s->s_mutex)); xa_destroy(&s->s_delegated_inos); kfree(s); } } /* * called under mdsc->mutex */ struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, int mds) { if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) return NULL; return ceph_get_mds_session(mdsc->sessions[mds]); } static bool __have_session(struct ceph_mds_client *mdsc, int mds) { if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) return false; else return true; } static int __verify_registered_session(struct ceph_mds_client *mdsc, struct ceph_mds_session *s) { if (s->s_mds >= mdsc->max_sessions || mdsc->sessions[s->s_mds] != s) return -ENOENT; return 0; } /* * create+register a new session for given mds. * called under mdsc->mutex. */ static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, int mds) { struct ceph_client *cl = mdsc->fsc->client; struct ceph_mds_session *s; if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) return ERR_PTR(-EIO); if (mds >= mdsc->mdsmap->possible_max_rank) return ERR_PTR(-EINVAL); s = kzalloc(sizeof(*s), GFP_NOFS); if (!s) return ERR_PTR(-ENOMEM); if (mds >= mdsc->max_sessions) { int newmax = 1 << get_count_order(mds + 1); struct ceph_mds_session **sa; doutc(cl, "realloc to %d\n", newmax); sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); if (!sa) goto fail_realloc; if (mdsc->sessions) { memcpy(sa, mdsc->sessions, mdsc->max_sessions * sizeof(void *)); kfree(mdsc->sessions); } mdsc->sessions = sa; mdsc->max_sessions = newmax; } doutc(cl, "mds%d\n", mds); s->s_mdsc = mdsc; s->s_mds = mds; s->s_state = CEPH_MDS_SESSION_NEW; mutex_init(&s->s_mutex); ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); atomic_set(&s->s_cap_gen, 1); s->s_cap_ttl = jiffies - 1; spin_lock_init(&s->s_cap_lock); INIT_LIST_HEAD(&s->s_caps); refcount_set(&s->s_ref, 1); INIT_LIST_HEAD(&s->s_waiting); INIT_LIST_HEAD(&s->s_unsafe); xa_init(&s->s_delegated_inos); INIT_LIST_HEAD(&s->s_cap_releases); INIT_WORK(&s->s_cap_release_work, ceph_cap_release_work); INIT_LIST_HEAD(&s->s_cap_dirty); INIT_LIST_HEAD(&s->s_cap_flushing); mdsc->sessions[mds] = s; atomic_inc(&mdsc->num_sessions); refcount_inc(&s->s_ref); /* one ref to sessions[], one to caller */ ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); return s; fail_realloc: kfree(s); return ERR_PTR(-ENOMEM); } /* * called under mdsc->mutex */ static void __unregister_session(struct ceph_mds_client *mdsc, struct ceph_mds_session *s) { doutc(mdsc->fsc->client, "mds%d %p\n", s->s_mds, s); BUG_ON(mdsc->sessions[s->s_mds] != s); mdsc->sessions[s->s_mds] = NULL; ceph_con_close(&s->s_con); ceph_put_mds_session(s); atomic_dec(&mdsc->num_sessions); } /* * drop session refs in request. * * should be last request ref, or hold mdsc->mutex */ static void put_request_session(struct ceph_mds_request *req) { if (req->r_session) { ceph_put_mds_session(req->r_session); req->r_session = NULL; } } void ceph_mdsc_iterate_sessions(struct ceph_mds_client *mdsc, void (*cb)(struct ceph_mds_session *), bool check_state) { int mds; mutex_lock(&mdsc->mutex); for (mds = 0; mds < mdsc->max_sessions; ++mds) { struct ceph_mds_session *s; s = __ceph_lookup_mds_session(mdsc, mds); if (!s) continue; if (check_state && !check_session_state(s)) { ceph_put_mds_session(s); continue; } mutex_unlock(&mdsc->mutex); cb(s); ceph_put_mds_session(s); mutex_lock(&mdsc->mutex); } mutex_unlock(&mdsc->mutex); } void ceph_mdsc_release_request(struct kref *kref) { struct ceph_mds_request *req = container_of(kref, struct ceph_mds_request, r_kref); ceph_mdsc_release_dir_caps_async(req); destroy_reply_info(&req->r_reply_info); if (req->r_request) ceph_msg_put(req->r_request); if (req->r_reply) ceph_msg_put(req->r_reply); if (req->r_inode) { ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); iput(req->r_inode); } if (req->r_parent) { ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN); iput(req->r_parent); } iput(req->r_target_inode); iput(req->r_new_inode); if (req->r_dentry) dput(req->r_dentry); if (req->r_old_dentry) dput(req->r_old_dentry); if (req->r_old_dentry_dir) { /* * track (and drop pins for) r_old_dentry_dir * separately, since r_old_dentry's d_parent may have * changed between the dir mutex being dropped and * this request being freed. */ ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), CEPH_CAP_PIN); iput(req->r_old_dentry_dir); } kfree(req->r_path1); kfree(req->r_path2); put_cred(req->r_cred); if (req->r_mnt_idmap) mnt_idmap_put(req->r_mnt_idmap); if (req->r_pagelist) ceph_pagelist_release(req->r_pagelist); kfree(req->r_fscrypt_auth); kfree(req->r_altname); put_request_session(req); ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); WARN_ON_ONCE(!list_empty(&req->r_wait)); kmem_cache_free(ceph_mds_request_cachep, req); } DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node) /* * lookup session, bump ref if found. * * called under mdsc->mutex. */ static struct ceph_mds_request * lookup_get_request(struct ceph_mds_client *mdsc, u64 tid) { struct ceph_mds_request *req; req = lookup_request(&mdsc->request_tree, tid); if (req) ceph_mdsc_get_request(req); return req; } /* * Register an in-flight request, and assign a tid. Link to directory * are modifying (if any). * * Called under mdsc->mutex. */ static void __register_request(struct ceph_mds_client *mdsc, struct ceph_mds_request *req, struct inode *dir) { struct ceph_client *cl = mdsc->fsc->client; int ret = 0; req->r_tid = ++mdsc->last_tid; if (req->r_num_caps) { ret = ceph_reserve_caps(mdsc, &req->r_caps_reservation, req->r_num_caps); if (ret < 0) { pr_err_client(cl, "%p failed to reserve caps: %d\n", req, ret); /* set req->r_err to fail early from __do_request */ req->r_err = ret; return; } } doutc(cl, "%p tid %lld\n", req, req->r_tid); ceph_mdsc_get_request(req); insert_request(&mdsc->request_tree, req); req->r_cred = get_current_cred(); if (!req->r_mnt_idmap) req->r_mnt_idmap = &nop_mnt_idmap; if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK) mdsc->oldest_tid = req->r_tid; if (dir) { struct ceph_inode_info *ci = ceph_inode(dir); ihold(dir); req->r_unsafe_dir = dir; spin_lock(&ci->i_unsafe_lock); list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); spin_unlock(&ci->i_unsafe_lock); } } static void __unregister_request(struct ceph_mds_client *mdsc, struct ceph_mds_request *req) { doutc(mdsc->fsc->client, "%p tid %lld\n", req, req->r_tid); /* Never leave an unregistered request on an unsafe list! */ list_del_init(&req->r_unsafe_item); if (req->r_tid == mdsc->oldest_tid) { struct rb_node *p = rb_next(&req->r_node); mdsc->oldest_tid = 0; while (p) { struct ceph_mds_request *next_req = rb_entry(p, struct ceph_mds_request, r_node); if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) { mdsc->oldest_tid = next_req->r_tid; break; } p = rb_next(p); } } erase_request(&mdsc->request_tree, req); if (req->r_unsafe_dir) { struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); spin_lock(&ci->i_unsafe_lock); list_del_init(&req->r_unsafe_dir_item); spin_unlock(&ci->i_unsafe_lock); } if (req->r_target_inode && test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { struct ceph_inode_info *ci = ceph_inode(req->r_target_inode); spin_lock(&ci->i_unsafe_lock); list_del_init(&req->r_unsafe_target_item); spin_unlock(&ci->i_unsafe_lock); } if (req->r_unsafe_dir) { iput(req->r_unsafe_dir); req->r_unsafe_dir = NULL; } complete_all(&req->r_safe_completion); ceph_mdsc_put_request(req); } /* * Walk back up the dentry tree until we hit a dentry representing a * non-snapshot inode. We do this using the rcu_read_lock (which must be held * when calling this) to ensure that the objects won't disappear while we're * working with them. Once we hit a candidate dentry, we attempt to take a * reference to it, and return that as the result. */ static struct inode *get_nonsnap_parent(struct dentry *dentry) { struct inode *inode = NULL; while (dentry && !IS_ROOT(dentry)) { inode = d_inode_rcu(dentry); if (!inode || ceph_snap(inode) == CEPH_NOSNAP) break; dentry = dentry->d_parent; } if (inode) inode = igrab(inode); return inode; } /* * Choose mds to send request to next. If there is a hint set in the * request (e.g., due to a prior forward hint from the mds), use that. * Otherwise, consult frag tree and/or caps to identify the * appropriate mds. If all else fails, choose randomly. * * Called under mdsc->mutex. */ static int __choose_mds(struct ceph_mds_client *mdsc, struct ceph_mds_request *req, bool *random) { struct inode *inode; struct ceph_inode_info *ci; struct ceph_cap *cap; int mode = req->r_direct_mode; int mds = -1; u32 hash = req->r_direct_hash; bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags); struct ceph_client *cl = mdsc->fsc->client; if (random) *random = false; /* * is there a specific mds we should try? ignore hint if we have * no session and the mds is not up (active or recovering). */ if (req->r_resend_mds >= 0 && (__have_session(mdsc, req->r_resend_mds) || ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { doutc(cl, "using resend_mds mds%d\n", req->r_resend_mds); return req->r_resend_mds; } if (mode == USE_RANDOM_MDS) goto random; inode = NULL; if (req->r_inode) { if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) { inode = req->r_inode; ihold(inode); } else { /* req->r_dentry is non-null for LSSNAP request */ rcu_read_lock(); inode = get_nonsnap_parent(req->r_dentry); rcu_read_unlock(); doutc(cl, "using snapdir's parent %p %llx.%llx\n", inode, ceph_vinop(inode)); } } else if (req->r_dentry) { /* ignore race with rename; old or new d_parent is okay */ struct dentry *parent; struct inode *dir; rcu_read_lock(); parent = READ_ONCE(req->r_dentry->d_parent); dir = req->r_parent ? : d_inode_rcu(parent); if (!dir || dir->i_sb != mdsc->fsc->sb) { /* not this fs or parent went negative */ inode = d_inode(req->r_dentry); if (inode) ihold(inode); } else if (ceph_snap(dir) != CEPH_NOSNAP) { /* direct snapped/virtual snapdir requests * based on parent dir inode */ inode = get_nonsnap_parent(parent); doutc(cl, "using nonsnap parent %p %llx.%llx\n", inode, ceph_vinop(inode)); } else { /* dentry target */ inode = d_inode(req->r_dentry); if (!inode || mode == USE_AUTH_MDS) { /* dir + name */ inode = igrab(dir); hash = ceph_dentry_hash(dir, req->r_dentry); is_hash = true; } else { ihold(inode); } } rcu_read_unlock(); } if (!inode) goto random; doutc(cl, "%p %llx.%llx is_hash=%d (0x%x) mode %d\n", inode, ceph_vinop(inode), (int)is_hash, hash, mode); ci = ceph_inode(inode); if (is_hash && S_ISDIR(inode->i_mode)) { struct ceph_inode_frag frag; int found; ceph_choose_frag(ci, hash, &frag, &found); if (found) { if (mode == USE_ANY_MDS && frag.ndist > 0) { u8 r; /* choose a random replica */ get_random_bytes(&r, 1); r %= frag.ndist; mds = frag.dist[r]; doutc(cl, "%p %llx.%llx frag %u mds%d (%d/%d)\n", inode, ceph_vinop(inode), frag.frag, mds, (int)r, frag.ndist); if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= CEPH_MDS_STATE_ACTIVE && !ceph_mdsmap_is_laggy(mdsc->mdsmap, mds)) goto out; } /* since this file/dir wasn't known to be * replicated, then we want to look for the * authoritative mds. */ if (frag.mds >= 0) { /* choose auth mds */ mds = frag.mds; doutc(cl, "%p %llx.%llx frag %u mds%d (auth)\n", inode, ceph_vinop(inode), frag.frag, mds); if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= CEPH_MDS_STATE_ACTIVE) { if (!ceph_mdsmap_is_laggy(mdsc->mdsmap, mds)) goto out; } } mode = USE_AUTH_MDS; } } spin_lock(&ci->i_ceph_lock); cap = NULL; if (mode == USE_AUTH_MDS) cap = ci->i_auth_cap; if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); if (!cap) { spin_unlock(&ci->i_ceph_lock); iput(inode); goto random; } mds = cap->session->s_mds; doutc(cl, "%p %llx.%llx mds%d (%scap %p)\n", inode, ceph_vinop(inode), mds, cap == ci->i_auth_cap ? "auth " : "", cap); spin_unlock(&ci->i_ceph_lock); out: iput(inode); return mds; random: if (random) *random = true; mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); doutc(cl, "chose random mds%d\n", mds); return mds; } /* * session messages */ struct ceph_msg *ceph_create_session_msg(u32 op, u64 seq) { struct ceph_msg *msg; struct ceph_mds_session_head *h; msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, false); if (!msg) { pr_err("ENOMEM creating session %s msg\n", ceph_session_op_name(op)); return NULL; } h = msg->front.iov_base; h->op = cpu_to_le32(op); h->seq = cpu_to_le64(seq); return msg; } static const unsigned char feature_bits[] = CEPHFS_FEATURES_CLIENT_SUPPORTED; #define FEATURE_BYTES(c) (DIV_ROUND_UP((size_t)feature_bits[c - 1] + 1, 64) * 8) static int encode_supported_features(void **p, void *end) { static const size_t count = ARRAY_SIZE(feature_bits); if (count > 0) { size_t i; size_t size = FEATURE_BYTES(count); unsigned long bit; if (WARN_ON_ONCE(*p + 4 + size > end)) return -ERANGE; ceph_encode_32(p, size); memset(*p, 0, size); for (i = 0; i < count; i++) { bit = feature_bits[i]; ((unsigned char *)(*p))[bit / 8] |= BIT(bit % 8); } *p += size; } else { if (WARN_ON_ONCE(*p + 4 > end)) return -ERANGE; ceph_encode_32(p, 0); } return 0; } static const unsigned char metric_bits[] = CEPHFS_METRIC_SPEC_CLIENT_SUPPORTED; #define METRIC_BYTES(cnt) (DIV_ROUND_UP((size_t)metric_bits[cnt - 1] + 1, 64) * 8) static int encode_metric_spec(void **p, void *end) { static const size_t count = ARRAY_SIZE(metric_bits); /* header */ if (WARN_ON_ONCE(*p + 2 > end)) return -ERANGE; ceph_encode_8(p, 1); /* version */ ceph_encode_8(p, 1); /* compat */ if (count > 0) { size_t i; size_t size = METRIC_BYTES(count); if (WARN_ON_ONCE(*p + 4 + 4 + size > end)) return -ERANGE; /* metric spec info length */ ceph_encode_32(p, 4 + size); /* metric spec */ ceph_encode_32(p, size); memset(*p, 0, size); for (i = 0; i < count; i++) ((unsigned char *)(*p))[i / 8] |= BIT(metric_bits[i] % 8); *p += size; } else { if (WARN_ON_ONCE(*p + 4 + 4 > end)) return -ERANGE; /* metric spec info length */ ceph_encode_32(p, 4); /* metric spec */ ceph_encode_32(p, 0); } return 0; } /* * session message, specialization for CEPH_SESSION_REQUEST_OPEN * to include additional client metadata fields. */ static struct ceph_msg * create_session_full_msg(struct ceph_mds_client *mdsc, int op, u64 seq) { struct ceph_msg *msg; struct ceph_mds_session_head *h; int i; int extra_bytes = 0; int metadata_key_count = 0; struct ceph_options *opt = mdsc->fsc->client->options; struct ceph_mount_options *fsopt = mdsc->fsc->mount_options; struct ceph_client *cl = mdsc->fsc->client; size_t size, count; void *p, *end; int ret; const char* metadata[][2] = { {"hostname", mdsc->nodename}, {"kernel_version", init_utsname()->release}, {"entity_id", opt->name ? : ""}, {"root", fsopt->server_path ? : "/"}, {NULL, NULL} }; /* Calculate serialized length of metadata */ extra_bytes = 4; /* map length */ for (i = 0; metadata[i][0]; ++i) { extra_bytes += 8 + strlen(metadata[i][0]) + strlen(metadata[i][1]); metadata_key_count++; } /* supported feature */ size = 0; count = ARRAY_SIZE(feature_bits); if (count > 0) size = FEATURE_BYTES(count); extra_bytes += 4 + size; /* metric spec */ size = 0; count = ARRAY_SIZE(metric_bits); if (count > 0) size = METRIC_BYTES(count); extra_bytes += 2 + 4 + 4 + size; /* flags, mds auth caps and oldest_client_tid */ extra_bytes += 4 + 4 + 8; /* Allocate the message */ msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + extra_bytes, GFP_NOFS, false); if (!msg) { pr_err_client(cl, "ENOMEM creating session open msg\n"); return ERR_PTR(-ENOMEM); } p = msg->front.iov_base; end = p + msg->front.iov_len; h = p; h->op = cpu_to_le32(op); h->seq = cpu_to_le64(seq); /* * Serialize client metadata into waiting buffer space, using * the format that userspace expects for map<string, string> * * ClientSession messages with metadata are v7 */ msg->hdr.version = cpu_to_le16(7); msg->hdr.compat_version = cpu_to_le16(1); /* The write pointer, following the session_head structure */ p += sizeof(*h); /* Number of entries in the map */ ceph_encode_32(&p, metadata_key_count); /* Two length-prefixed strings for each entry in the map */ for (i = 0; metadata[i][0]; ++i) { size_t const key_len = strlen(metadata[i][0]); size_t const val_len = strlen(metadata[i][1]); ceph_encode_32(&p, key_len); memcpy(p, metadata[i][0], key_len); p += key_len; ceph_encode_32(&p, val_len); memcpy(p, metadata[i][1], val_len); p += val_len; } ret = encode_supported_features(&p, end); if (ret) { pr_err_client(cl, "encode_supported_features failed!\n"); ceph_msg_put(msg); return ERR_PTR(ret); } ret = encode_metric_spec(&p, end); if (ret) { pr_err_client(cl, "encode_metric_spec failed!\n"); ceph_msg_put(msg); return ERR_PTR(ret); } /* version == 5, flags */ ceph_encode_32(&p, 0); /* version == 6, mds auth caps */ ceph_encode_32(&p, 0); /* version == 7, oldest_client_tid */ ceph_encode_64(&p, mdsc->oldest_tid); msg->front.iov_len = p - msg->front.iov_base; msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); return msg; } /* * send session open request. * * called under mdsc->mutex */ static int __open_session(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_msg *msg; int mstate; int mds = session->s_mds; if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) return -EIO; /* wait for mds to go active? */ mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); doutc(mdsc->fsc->client, "open_session to mds%d (%s)\n", mds, ceph_mds_state_name(mstate)); session->s_state = CEPH_MDS_SESSION_OPENING; session->s_renew_requested = jiffies; /* send connect message */ msg = create_session_full_msg(mdsc, CEPH_SESSION_REQUEST_OPEN, session->s_seq); if (IS_ERR(msg)) return PTR_ERR(msg); ceph_con_send(&session->s_con, msg); return 0; } /* * open sessions for any export targets for the given mds * * called under mdsc->mutex */ static struct ceph_mds_session * __open_export_target_session(struct ceph_mds_client *mdsc, int target) { struct ceph_mds_session *session; int ret; session = __ceph_lookup_mds_session(mdsc, target); if (!session) { session = register_session(mdsc, target); if (IS_ERR(session)) return session; } if (session->s_state == CEPH_MDS_SESSION_NEW || session->s_state == CEPH_MDS_SESSION_CLOSING) { ret = __open_session(mdsc, session); if (ret) return ERR_PTR(ret); } return session; } struct ceph_mds_session * ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) { struct ceph_mds_session *session; struct ceph_client *cl = mdsc->fsc->client; doutc(cl, "to mds%d\n", target); mutex_lock(&mdsc->mutex); session = __open_export_target_session(mdsc, target); mutex_unlock(&mdsc->mutex); return session; } static void __open_export_target_sessions(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_mds_info *mi; struct ceph_mds_session *ts; int i, mds = session->s_mds; struct ceph_client *cl = mdsc->fsc->client; if (mds >= mdsc->mdsmap->possible_max_rank) return; mi = &mdsc->mdsmap->m_info[mds]; doutc(cl, "for mds%d (%d targets)\n", session->s_mds, mi->num_export_targets); for (i = 0; i < mi->num_export_targets; i++) { ts = __open_export_target_session(mdsc, mi->export_targets[i]); ceph_put_mds_session(ts); } } void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { mutex_lock(&mdsc->mutex); __open_export_target_sessions(mdsc, session); mutex_unlock(&mdsc->mutex); } /* * session caps */ static void detach_cap_releases(struct ceph_mds_session *session, struct list_head *target) { struct ceph_client *cl = session->s_mdsc->fsc->client; lockdep_assert_held(&session->s_cap_lock); list_splice_init(&session->s_cap_releases, target); session->s_num_cap_releases = 0; doutc(cl, "mds%d\n", session->s_mds); } static void dispose_cap_releases(struct ceph_mds_client *mdsc, struct list_head *dispose) { while (!list_empty(dispose)) { struct ceph_cap *cap; /* zero out the in-progress message */ cap = list_first_entry(dispose, struct ceph_cap, session_caps); list_del(&cap->session_caps); ceph_put_cap(mdsc, cap); } } static void cleanup_session_requests(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_client *cl = mdsc->fsc->client; struct ceph_mds_request *req; struct rb_node *p; doutc(cl, "mds%d\n", session->s_mds); mutex_lock(&mdsc->mutex); while (!list_empty(&session->s_unsafe)) { req = list_first_entry(&session->s_unsafe, struct ceph_mds_request, r_unsafe_item); pr_warn_ratelimited_client(cl, " dropping unsafe request %llu\n", req->r_tid); if (req->r_target_inode) mapping_set_error(req->r_target_inode->i_mapping, -EIO); if (req->r_unsafe_dir) mapping_set_error(req->r_unsafe_dir->i_mapping, -EIO); __unregister_request(mdsc, req); } /* zero r_attempts, so kick_requests() will re-send requests */ p = rb_first(&mdsc->request_tree); while (p) { req = rb_entry(p, struct ceph_mds_request, r_node); p = rb_next(p); if (req->r_session && req->r_session->s_mds == session->s_mds) req->r_attempts = 0; } mutex_unlock(&mdsc->mutex); } /* * Helper to safely iterate over all caps associated with a session, with * special care taken to handle a racing __ceph_remove_cap(). * * Caller must hold session s_mutex. */ int ceph_iterate_session_caps(struct ceph_mds_session *session, int (*cb)(struct inode *, int mds, void *), void *arg) { struct ceph_client *cl = session->s_mdsc->fsc->client; struct list_head *p; struct ceph_cap *cap; struct inode *inode, *last_inode = NULL; struct ceph_cap *old_cap = NULL; int ret; doutc(cl, "%p mds%d\n", session, session->s_mds); spin_lock(&session->s_cap_lock); p = session->s_caps.next; while (p != &session->s_caps) { int mds; cap = list_entry(p, struct ceph_cap, session_caps); inode = igrab(&cap->ci->netfs.inode); if (!inode) { p = p->next; continue; } session->s_cap_iterator = cap; mds = cap->mds; spin_unlock(&session->s_cap_lock); if (last_inode) { iput(last_inode); last_inode = NULL; } if (old_cap) { ceph_put_cap(session->s_mdsc, old_cap); old_cap = NULL; } ret = cb(inode, mds, arg); last_inode = inode; spin_lock(&session->s_cap_lock); p = p->next; if (!cap->ci) { doutc(cl, "finishing cap %p removal\n", cap); BUG_ON(cap->session != session); cap->session = NULL; list_del_init(&cap->session_caps); session->s_nr_caps--; atomic64_dec(&session->s_mdsc->metric.total_caps); if (cap->queue_release) __ceph_queue_cap_release(session, cap); else old_cap = cap; /* put_cap it w/o locks held */ } if (ret < 0) goto out; } ret = 0; out: session->s_cap_iterator = NULL; spin_unlock(&session->s_cap_lock); iput(last_inode); if (old_cap) ceph_put_cap(session->s_mdsc, old_cap); return ret; } static int remove_session_caps_cb(struct inode *inode, int mds, void *arg) { struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_client *cl = ceph_inode_to_client(inode); bool invalidate = false; struct ceph_cap *cap; int iputs = 0; spin_lock(&ci->i_ceph_lock); cap = __get_cap_for_mds(ci, mds); if (cap) { doutc(cl, " removing cap %p, ci is %p, inode is %p\n", cap, ci, &ci->netfs.inode); iputs = ceph_purge_inode_cap(inode, cap, &invalidate); } spin_unlock(&ci->i_ceph_lock); if (cap) wake_up_all(&ci->i_cap_wq); if (invalidate) ceph_queue_invalidate(inode); while (iputs--) iput(inode); return 0; } /* * caller must hold session s_mutex */ static void remove_session_caps(struct ceph_mds_session *session) { struct ceph_fs_client *fsc = session->s_mdsc->fsc; struct super_block *sb = fsc->sb; LIST_HEAD(dispose); doutc(fsc->client, "on %p\n", session); ceph_iterate_session_caps(session, remove_session_caps_cb, fsc); wake_up_all(&fsc->mdsc->cap_flushing_wq); spin_lock(&session->s_cap_lock); if (session->s_nr_caps > 0) { struct inode *inode; struct ceph_cap *cap, *prev = NULL; struct ceph_vino vino; /* * iterate_session_caps() skips inodes that are being * deleted, we need to wait until deletions are complete. * __wait_on_freeing_inode() is designed for the job, * but it is not exported, so use lookup inode function * to access it. */ while (!list_empty(&session->s_caps)) { cap = list_entry(session->s_caps.next, struct ceph_cap, session_caps); if (cap == prev) break; prev = cap; vino = cap->ci->i_vino; spin_unlock(&session->s_cap_lock); inode = ceph_find_inode(sb, vino); iput(inode); spin_lock(&session->s_cap_lock); } } // drop cap expires and unlock s_cap_lock detach_cap_releases(session, &dispose); BUG_ON(session->s_nr_caps > 0); BUG_ON(!list_empty(&session->s_cap_flushing)); spin_unlock(&session->s_cap_lock); dispose_cap_releases(session->s_mdsc, &dispose); } enum { RECONNECT, RENEWCAPS, FORCE_RO, }; /* * wake up any threads waiting on this session's caps. if the cap is * old (didn't get renewed on the client reconnect), remove it now. * * caller must hold s_mutex. */ static int wake_up_session_cb(struct inode *inode, int mds, void *arg) { struct ceph_inode_info *ci = ceph_inode(inode); unsigned long ev = (unsigned long)arg; if (ev == RECONNECT) { spin_lock(&ci->i_ceph_lock); ci->i_wanted_max_size = 0; ci->i_requested_max_size = 0; spin_unlock(&ci->i_ceph_lock); } else if (ev == RENEWCAPS) { struct ceph_cap *cap; spin_lock(&ci->i_ceph_lock); cap = __get_cap_for_mds(ci, mds); /* mds did not re-issue stale cap */ if (cap && cap->cap_gen < atomic_read(&cap->session->s_cap_gen)) cap->issued = cap->implemented = CEPH_CAP_PIN; spin_unlock(&ci->i_ceph_lock); } else if (ev == FORCE_RO) { } wake_up_all(&ci->i_cap_wq); return 0; } static void wake_up_session_caps(struct ceph_mds_session *session, int ev) { struct ceph_client *cl = session->s_mdsc->fsc->client; doutc(cl, "session %p mds%d\n", session, session->s_mds); ceph_iterate_session_caps(session, wake_up_session_cb, (void *)(unsigned long)ev); } /* * Send periodic message to MDS renewing all currently held caps. The * ack will reset the expiration for all caps from this session. * * caller holds s_mutex */ static int send_renew_caps(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_client *cl = mdsc->fsc->client; struct ceph_msg *msg; int state; if (time_after_eq(jiffies, session->s_cap_ttl) && time_after_eq(session->s_cap_ttl, session->s_renew_requested)) pr_info_client(cl, "mds%d caps stale\n", session->s_mds); session->s_renew_requested = jiffies; /* do not try to renew caps until a recovering mds has reconnected * with its clients. */ state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); if (state < CEPH_MDS_STATE_RECONNECT) { doutc(cl, "ignoring mds%d (%s)\n", session->s_mds, ceph_mds_state_name(state)); return 0; } doutc(cl, "to mds%d (%s)\n", session->s_mds, ceph_mds_state_name(state)); msg = create_session_full_msg(mdsc, CEPH_SESSION_REQUEST_RENEWCAPS, ++session->s_renew_seq); if (IS_ERR(msg)) return PTR_ERR(msg); ceph_con_send(&session->s_con, msg); return 0; } static int send_flushmsg_ack(struct ceph_mds_client *mdsc, struct ceph_mds_session *session, u64 seq) { struct ceph_client *cl = mdsc->fsc->client; struct ceph_msg *msg; doutc(cl, "to mds%d (%s)s seq %lld\n", session->s_mds, ceph_session_state_name(session->s_state), seq); msg = ceph_create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); if (!msg) return -ENOMEM; ceph_con_send(&session->s_con, msg); return 0; } /* * Note new cap ttl, and any transition from stale -> not stale (fresh?). * * Called under session->s_mutex */ static void renewed_caps(struct ceph_mds_client *mdsc, struct ceph_mds_session *session, int is_renew) { struct ceph_client *cl = mdsc->fsc->client; int was_stale; int wake = 0; spin_lock(&session->s_cap_lock); was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); session->s_cap_ttl = session->s_renew_requested + mdsc->mdsmap->m_session_timeout*HZ; if (was_stale) { if (time_before(jiffies, session->s_cap_ttl)) { pr_info_client(cl, "mds%d caps renewed\n", session->s_mds); wake = 1; } else { pr_info_client(cl, "mds%d caps still stale\n", session->s_mds); } } doutc(cl, "mds%d ttl now %lu, was %s, now %s\n", session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); spin_unlock(&session->s_cap_lock); if (wake) wake_up_session_caps(session, RENEWCAPS); } /* * send a session close request */ static int request_close_session(struct ceph_mds_session *session) { struct ceph_client *cl = session->s_mdsc->fsc->client; struct ceph_msg *msg; doutc(cl, "mds%d state %s seq %lld\n", session->s_mds, ceph_session_state_name(session->s_state), session->s_seq); msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); if (!msg) return -ENOMEM; ceph_con_send(&session->s_con, msg); return 1; } /* * Called with s_mutex held. */ static int __close_session(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { if (session->s_state >= CEPH_MDS_SESSION_CLOSING) return 0; session->s_state = CEPH_MDS_SESSION_CLOSING; return request_close_session(session); } static bool drop_negative_children(struct dentry *dentry) { struct dentry *child; bool all_negative = true; if (!d_is_dir(dentry)) goto out; spin_lock(&dentry->d_lock); hlist_for_each_entry(child, &dentry->d_children, d_sib) { if (d_really_is_positive(child)) { all_negative = false; break; } } spin_unlock(&dentry->d_lock); if (all_negative) shrink_dcache_parent(dentry); out: return all_negative; } /* * Trim old(er) caps. * * Because we can't cache an inode without one or more caps, we do * this indirectly: if a cap is unused, we prune its aliases, at which * point the inode will hopefully get dropped to. * * Yes, this is a bit sloppy. Our only real goal here is to respond to * memory pressure from the MDS, though, so it needn't be perfect. */ static int trim_caps_cb(struct inode *inode, int mds, void *arg) { struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); struct ceph_client *cl = mdsc->fsc->client; int *remaining = arg; struct ceph_inode_info *ci = ceph_inode(inode); int used, wanted, oissued, mine; struct ceph_cap *cap; if (*remaining <= 0) return -1; spin_lock(&ci->i_ceph_lock); cap = __get_cap_for_mds(ci, mds); if (!cap) { spin_unlock(&ci->i_ceph_lock); return 0; } mine = cap->issued | cap->implemented; used = __ceph_caps_used(ci); wanted = __ceph_caps_file_wanted(ci); oissued = __ceph_caps_issued_other(ci, cap); doutc(cl, "%p %llx.%llx cap %p mine %s oissued %s used %s wanted %s\n", inode, ceph_vinop(inode), cap, ceph_cap_string(mine), ceph_cap_string(oissued), ceph_cap_string(used), ceph_cap_string(wanted)); if (cap == ci->i_auth_cap) { if (ci->i_dirty_caps || ci->i_flushing_caps || !list_empty(&ci->i_cap_snaps)) goto out; if ((used | wanted) & CEPH_CAP_ANY_WR) goto out; /* Note: it's possible that i_filelock_ref becomes non-zero * after dropping auth caps. It doesn't hurt because reply * of lock mds request will re-add auth caps. */ if (atomic_read(&ci->i_filelock_ref) > 0) goto out; } /* The inode has cached pages, but it's no longer used. * we can safely drop it */ if (S_ISREG(inode->i_mode) && wanted == 0 && used == CEPH_CAP_FILE_CACHE && !(oissued & CEPH_CAP_FILE_CACHE)) { used = 0; oissued = 0; } if ((used | wanted) & ~oissued & mine) goto out; /* we need these caps */ if (oissued) { /* we aren't the only cap.. just remove us */ ceph_remove_cap(mdsc, cap, true); (*remaining)--; } else { struct dentry *dentry; /* try dropping referring dentries */ spin_unlock(&ci->i_ceph_lock); dentry = d_find_any_alias(inode); if (dentry && drop_negative_children(dentry)) { int count; dput(dentry); d_prune_aliases(inode); count = atomic_read(&inode->i_count); if (count == 1) (*remaining)--; doutc(cl, "%p %llx.%llx cap %p pruned, count now %d\n", inode, ceph_vinop(inode), cap, count); } else { dput(dentry); } return 0; } out: spin_unlock(&ci->i_ceph_lock); return 0; } /* * Trim session cap count down to some max number. */ int ceph_trim_caps(struct ceph_mds_client *mdsc, struct ceph_mds_session *session, int max_caps) { struct ceph_client *cl = mdsc->fsc->client; int trim_caps = session->s_nr_caps - max_caps; doutc(cl, "mds%d start: %d / %d, trim %d\n", session->s_mds, session->s_nr_caps, max_caps, trim_caps); if (trim_caps > 0) { int remaining = trim_caps; ceph_iterate_session_caps(session, trim_caps_cb, &remaining); doutc(cl, "mds%d done: %d / %d, trimmed %d\n", session->s_mds, session->s_nr_caps, max_caps, trim_caps - remaining); } ceph_flush_cap_releases(mdsc, session); return 0; } static int check_caps_flush(struct ceph_mds_client *mdsc, u64 want_flush_tid) { struct ceph_client *cl = mdsc->fsc->client; int ret = 1; spin_lock(&mdsc->cap_dirty_lock); if (!list_empty(&mdsc->cap_flush_list)) { struct ceph_cap_flush *cf = list_first_entry(&mdsc->cap_flush_list, struct ceph_cap_flush, g_list); if (cf->tid <= want_flush_tid) { doutc(cl, "still flushing tid %llu <= %llu\n", cf->tid, want_flush_tid); ret = 0; } } spin_unlock(&mdsc->cap_dirty_lock); return ret; } /* * flush all dirty inode data to disk. * * returns true if we've flushed through want_flush_tid */ static void wait_caps_flush(struct ceph_mds_client *mdsc, u64 want_flush_tid) { struct ceph_client *cl = mdsc->fsc->client; doutc(cl, "want %llu\n", want_flush_tid); wait_event(mdsc->cap_flushing_wq, check_caps_flush(mdsc, want_flush_tid)); doutc(cl, "ok, flushed thru %llu\n", want_flush_tid); } /* * called under s_mutex */ static void ceph_send_cap_releases(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_client *cl = mdsc->fsc->client; struct ceph_msg *msg = NULL; struct ceph_mds_cap_release *head; struct ceph_mds_cap_item *item; struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc; struct ceph_cap *cap; LIST_HEAD(tmp_list); int num_cap_releases; __le32 barrier, *cap_barrier; down_read(&osdc->lock); barrier = cpu_to_le32(osdc->epoch_barrier); up_read(&osdc->lock); spin_lock(&session->s_cap_lock); again: list_splice_init(&session->s_cap_releases, &tmp_list); num_cap_releases = session->s_num_cap_releases; session->s_num_cap_releases = 0; spin_unlock(&session->s_cap_lock); while (!list_empty(&tmp_list)) { if (!msg) { msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_SIZE, GFP_NOFS, false); if (!msg) goto out_err; head = msg->front.iov_base; head->num = cpu_to_le32(0); msg->front.iov_len = sizeof(*head); msg->hdr.version = cpu_to_le16(2); msg->hdr.compat_version = cpu_to_le16(1); } cap = list_first_entry(&tmp_list, struct ceph_cap, session_caps); list_del(&cap->session_caps); num_cap_releases--; head = msg->front.iov_base; put_unaligned_le32(get_unaligned_le32(&head->num) + 1, &head->num); item = msg->front.iov_base + msg->front.iov_len; item->ino = cpu_to_le64(cap->cap_ino); item->cap_id = cpu_to_le64(cap->cap_id); item->migrate_seq = cpu_to_le32(cap->mseq); item->seq = cpu_to_le32(cap->issue_seq); msg->front.iov_len += sizeof(*item); ceph_put_cap(mdsc, cap); if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { // Append cap_barrier field cap_barrier = msg->front.iov_base + msg->front.iov_len; *cap_barrier = barrier; msg->front.iov_len += sizeof(*cap_barrier); msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); doutc(cl, "mds%d %p\n", session->s_mds, msg); ceph_con_send(&session->s_con, msg); msg = NULL; } } BUG_ON(num_cap_releases != 0); spin_lock(&session->s_cap_lock); if (!list_empty(&session->s_cap_releases)) goto again; spin_unlock(&session->s_cap_lock); if (msg) { // Append cap_barrier field cap_barrier = msg->front.iov_base + msg->front.iov_len; *cap_barrier = barrier; msg->front.iov_len += sizeof(*cap_barrier); msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); doutc(cl, "mds%d %p\n", session->s_mds, msg); ceph_con_send(&session->s_con, msg); } return; out_err: pr_err_client(cl, "mds%d, failed to allocate message\n", session->s_mds); spin_lock(&session->s_cap_lock); list_splice(&tmp_list, &session->s_cap_releases); session->s_num_cap_releases += num_cap_releases; spin_unlock(&session->s_cap_lock); } static void ceph_cap_release_work(struct work_struct *work) { struct ceph_mds_session *session = container_of(work, struct ceph_mds_session, s_cap_release_work); mutex_lock(&session->s_mutex); if (session->s_state == CEPH_MDS_SESSION_OPEN || session->s_state == CEPH_MDS_SESSION_HUNG) ceph_send_cap_releases(session->s_mdsc, session); mutex_unlock(&session->s_mutex); ceph_put_mds_session(session); } void ceph_flush_cap_releases(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_client *cl = mdsc->fsc->client; if (mdsc->stopping) return; ceph_get_mds_session(session); if (queue_work(mdsc->fsc->cap_wq, &session->s_cap_release_work)) { doutc(cl, "cap release work queued\n"); } else { ceph_put_mds_session(session); doutc(cl, "failed to queue cap release work\n"); } } /* * caller holds session->s_cap_lock */ void __ceph_queue_cap_release(struct ceph_mds_session *session, struct ceph_cap *cap) { list_add_tail(&cap->session_caps, &session->s_cap_releases); session->s_num_cap_releases++; if (!(session->s_num_cap_releases % CEPH_CAPS_PER_RELEASE)) ceph_flush_cap_releases(session->s_mdsc, session); } static void ceph_cap_reclaim_work(struct work_struct *work) { struct ceph_mds_client *mdsc = container_of(work, struct ceph_mds_client, cap_reclaim_work); int ret = ceph_trim_dentries(mdsc); if (ret == -EAGAIN) ceph_queue_cap_reclaim_work(mdsc); } void ceph_queue_cap_reclaim_work(struct ceph_mds_client *mdsc) { struct ceph_client *cl = mdsc->fsc->client; if (mdsc->stopping) return; if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_reclaim_work)) { doutc(cl, "caps reclaim work queued\n"); } else { doutc(cl, "failed to queue caps release work\n"); } } void ceph_reclaim_caps_nr(struct ceph_mds_client *mdsc, int nr) { int val; if (!nr) return; val = atomic_add_return(nr, &mdsc->cap_reclaim_pending); if ((val % CEPH_CAPS_PER_RELEASE) < nr) { atomic_set(&mdsc->cap_reclaim_pending, 0); ceph_queue_cap_reclaim_work(mdsc); } } void ceph_queue_cap_unlink_work(struct ceph_mds_client *mdsc) { struct ceph_client *cl = mdsc->fsc->client; if (mdsc->stopping) return; if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_unlink_work)) { doutc(cl, "caps unlink work queued\n"); } else { doutc(cl, "failed to queue caps unlink work\n"); } } static void ceph_cap_unlink_work(struct work_struct *work) { struct ceph_mds_client *mdsc = container_of(work, struct ceph_mds_client, cap_unlink_work); struct ceph_client *cl = mdsc->fsc->client; doutc(cl, "begin\n"); spin_lock(&mdsc->cap_delay_lock); while (!list_empty(&mdsc->cap_unlink_delay_list)) { struct ceph_inode_info *ci; struct inode *inode; ci = list_first_entry(&mdsc->cap_unlink_delay_list, struct ceph_inode_info, i_cap_delay_list); list_del_init(&ci->i_cap_delay_list); inode = igrab(&ci->netfs.inode); if (inode) { spin_unlock(&mdsc->cap_delay_lock); doutc(cl, "on %p %llx.%llx\n", inode, ceph_vinop(inode)); ceph_check_caps(ci, CHECK_CAPS_FLUSH); iput(inode); spin_lock(&mdsc->cap_delay_lock); } } spin_unlock(&mdsc->cap_delay_lock); doutc(cl, "done\n"); } /* * requests */ int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req, struct inode *dir) { struct ceph_inode_info *ci = ceph_inode(dir); struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options; size_t size = sizeof(struct ceph_mds_reply_dir_entry); unsigned int num_entries; int order; spin_lock(&ci->i_ceph_lock); num_entries = ci->i_files + ci->i_subdirs; spin_unlock(&ci->i_ceph_lock); num_entries = max(num_entries, 1U); num_entries = min(num_entries, opt->max_readdir); order = get_order(size * num_entries); while (order >= 0) { rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO, order); if (rinfo->dir_entries) break; order--; } if (!rinfo->dir_entries) return -ENOMEM; num_entries = (PAGE_SIZE << order) / size; num_entries = min(num_entries, opt->max_readdir); rinfo->dir_buf_size = PAGE_SIZE << order; req->r_num_caps = num_entries + 1; req->r_args.readdir.max_entries = cpu_to_le32(num_entries); req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes); return 0; } /* * Create an mds request. */ struct ceph_mds_request * ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) { struct ceph_mds_request *req; req = kmem_cache_zalloc(ceph_mds_request_cachep, GFP_NOFS); if (!req) return ERR_PTR(-ENOMEM); mutex_init(&req->r_fill_mutex); req->r_mdsc = mdsc; req->r_started = jiffies; req->r_start_latency = ktime_get(); req->r_resend_mds = -1; INIT_LIST_HEAD(&req->r_unsafe_dir_item); INIT_LIST_HEAD(&req->r_unsafe_target_item); req->r_fmode = -1; req->r_feature_needed = -1; kref_init(&req->r_kref); RB_CLEAR_NODE(&req->r_node); INIT_LIST_HEAD(&req->r_wait); init_completion(&req->r_completion); init_completion(&req->r_safe_completion); INIT_LIST_HEAD(&req->r_unsafe_item); ktime_get_coarse_real_ts64(&req->r_stamp); req->r_op = op; req->r_direct_mode = mode; return req; } /* * return oldest (lowest) request, tid in request tree, 0 if none. * * called under mdsc->mutex. */ static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) { if (RB_EMPTY_ROOT(&mdsc->request_tree)) return NULL; return rb_entry(rb_first(&mdsc->request_tree), struct ceph_mds_request, r_node); } static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc) { return mdsc->oldest_tid; } #if IS_ENABLED(CONFIG_FS_ENCRYPTION) static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen) { struct inode *dir = req->r_parent; struct dentry *dentry = req->r_dentry; u8 *cryptbuf = NULL; u32 len = 0; int ret = 0; /* only encode if we have parent and dentry */ if (!dir || !dentry) goto success; /* No-op unless this is encrypted */ if (!IS_ENCRYPTED(dir)) goto success; ret = ceph_fscrypt_prepare_readdir(dir); if (ret < 0) return ERR_PTR(ret); /* No key? Just ignore it. */ if (!fscrypt_has_encryption_key(dir)) goto success; if (!fscrypt_fname_encrypted_size(dir, dentry->d_name.len, NAME_MAX, &len)) { WARN_ON_ONCE(1); return ERR_PTR(-ENAMETOOLONG); } /* No need to append altname if name is short enough */ if (len <= CEPH_NOHASH_NAME_MAX) { len = 0; goto success; } cryptbuf = kmalloc(len, GFP_KERNEL); if (!cryptbuf) return ERR_PTR(-ENOMEM); ret = fscrypt_fname_encrypt(dir, &dentry->d_name, cryptbuf, len); if (ret) { kfree(cryptbuf); return ERR_PTR(ret); } success: *plen = len; return cryptbuf; } #else static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen) { *plen = 0; return NULL; } #endif /** * ceph_mdsc_build_path - build a path string to a given dentry * @mdsc: mds client * @dentry: dentry to which path should be built * @plen: returned length of string * @pbase: returned base inode number * @for_wire: is this path going to be sent to the MDS? * * Build a string that represents the path to the dentry. This is mostly called * for two different purposes: * * 1) we need to build a path string to send to the MDS (for_wire == true) * 2) we need a path string for local presentation (e.g. debugfs) * (for_wire == false) * * The path is built in reverse, starting with the dentry. Walk back up toward * the root, building the path until the first non-snapped inode is reached * (for_wire) or the root inode is reached (!for_wire). * * Encode hidden .snap dirs as a double /, i.e. * foo/.snap/bar -> foo//bar */ char *ceph_mdsc_build_path(struct ceph_mds_client *mdsc, struct dentry *dentry, int *plen, u64 *pbase, int for_wire) { struct ceph_client *cl = mdsc->fsc->client; struct dentry *cur; struct inode *inode; char *path; int pos; unsigned seq; u64 base; if (!dentry) return ERR_PTR(-EINVAL); path = __getname(); if (!path) return ERR_PTR(-ENOMEM); retry: pos = PATH_MAX - 1; path[pos] = '\0'; seq = read_seqbegin(&rename_lock); cur = dget(dentry); for (;;) { struct dentry *parent; spin_lock(&cur->d_lock); inode = d_inode(cur); if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { doutc(cl, "path+%d: %p SNAPDIR\n", pos, cur); spin_unlock(&cur->d_lock); parent = dget_parent(cur); } else if (for_wire && inode && dentry != cur && ceph_snap(inode) == CEPH_NOSNAP) { spin_unlock(&cur->d_lock); pos++; /* get rid of any prepended '/' */ break; } else if (!for_wire || !IS_ENCRYPTED(d_inode(cur->d_parent))) { pos -= cur->d_name.len; if (pos < 0) { spin_unlock(&cur->d_lock); break; } memcpy(path + pos, cur->d_name.name, cur->d_name.len); spin_unlock(&cur->d_lock); parent = dget_parent(cur); } else { int len, ret; char buf[NAME_MAX]; /* * Proactively copy name into buf, in case we need to * present it as-is. */ memcpy(buf, cur->d_name.name, cur->d_name.len); len = cur->d_name.len; spin_unlock(&cur->d_lock); parent = dget_parent(cur); ret = ceph_fscrypt_prepare_readdir(d_inode(parent)); if (ret < 0) { dput(parent); dput(cur); return ERR_PTR(ret); } if (fscrypt_has_encryption_key(d_inode(parent))) { len = ceph_encode_encrypted_fname(d_inode(parent), cur, buf); if (len < 0) { dput(parent); dput(cur); return ERR_PTR(len); } } pos -= len; if (pos < 0) { dput(parent); break; } memcpy(path + pos, buf, len); } dput(cur); cur = parent; /* Are we at the root? */ if (IS_ROOT(cur)) break; /* Are we out of buffer? */ if (--pos < 0) break; path[pos] = '/'; } inode = d_inode(cur); base = inode ? ceph_ino(inode) : 0; dput(cur); if (read_seqretry(&rename_lock, seq)) goto retry; if (pos < 0) { /* * A rename didn't occur, but somehow we didn't end up where * we thought we would. Throw a warning and try again. */ pr_warn_client(cl, "did not end path lookup where expected (pos = %d)\n", pos); goto retry; } *pbase = base; *plen = PATH_MAX - 1 - pos; doutc(cl, "on %p %d built %llx '%.*s'\n", dentry, d_count(dentry), base, *plen, path + pos); return path + pos; } static int build_dentry_path(struct ceph_mds_client *mdsc, struct dentry *dentry, struct inode *dir, const char **ppath, int *ppathlen, u64 *pino, bool *pfreepath, bool parent_locked) { char *path; rcu_read_lock(); if (!dir) dir = d_inode_rcu(dentry->d_parent); if (dir && parent_locked && ceph_snap(dir) == CEPH_NOSNAP && !IS_ENCRYPTED(dir)) { *pino = ceph_ino(dir); rcu_read_unlock(); *ppath = dentry->d_name.name; *ppathlen = dentry->d_name.len; return 0; } rcu_read_unlock(); path = ceph_mdsc_build_path(mdsc, dentry, ppathlen, pino, 1); if (IS_ERR(path)) return PTR_ERR(path); *ppath = path; *pfreepath = true; return 0; } static int build_inode_path(struct inode *inode, const char **ppath, int *ppathlen, u64 *pino, bool *pfreepath) { struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); struct dentry *dentry; char *path; if (ceph_snap(inode) == CEPH_NOSNAP) { *pino = ceph_ino(inode); *ppathlen = 0; return 0; } dentry = d_find_alias(inode); path = ceph_mdsc_build_path(mdsc, dentry, ppathlen, pino, 1); dput(dentry); if (IS_ERR(path)) return PTR_ERR(path); *ppath = path; *pfreepath = true; return 0; } /* * request arguments may be specified via an inode *, a dentry *, or * an explicit ino+path. */ static int set_request_path_attr(struct ceph_mds_client *mdsc, struct inode *rinode, struct dentry *rdentry, struct inode *rdiri, const char *rpath, u64 rino, const char **ppath, int *pathlen, u64 *ino, bool *freepath, bool parent_locked) { struct ceph_client *cl = mdsc->fsc->client; int r = 0; if (rinode) { r = build_inode_path(rinode, ppath, pathlen, ino, freepath); doutc(cl, " inode %p %llx.%llx\n", rinode, ceph_ino(rinode), ceph_snap(rinode)); } else if (rdentry) { r = build_dentry_path(mdsc, rdentry, rdiri, ppath, pathlen, ino, freepath, parent_locked); doutc(cl, " dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, *ppath); } else if (rpath || rino) { *ino = rino; *ppath = rpath; *pathlen = rpath ? strlen(rpath) : 0; doutc(cl, " path %.*s\n", *pathlen, rpath); } return r; } static void encode_mclientrequest_tail(void **p, const struct ceph_mds_request *req) { struct ceph_timespec ts; int i; ceph_encode_timespec64(&ts, &req->r_stamp); ceph_encode_copy(p, &ts, sizeof(ts)); /* v4: gid_list */ ceph_encode_32(p, req->r_cred->group_info->ngroups); for (i = 0; i < req->r_cred->group_info->ngroups; i++) ceph_encode_64(p, from_kgid(&init_user_ns, req->r_cred->group_info->gid[i])); /* v5: altname */ ceph_encode_32(p, req->r_altname_len); ceph_encode_copy(p, req->r_altname, req->r_altname_len); /* v6: fscrypt_auth and fscrypt_file */ if (req->r_fscrypt_auth) { u32 authlen = ceph_fscrypt_auth_len(req->r_fscrypt_auth); ceph_encode_32(p, authlen); ceph_encode_copy(p, req->r_fscrypt_auth, authlen); } else { ceph_encode_32(p, 0); } if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags)) { ceph_encode_32(p, sizeof(__le64)); ceph_encode_64(p, req->r_fscrypt_file); } else { ceph_encode_32(p, 0); } } static inline u16 mds_supported_head_version(struct ceph_mds_session *session) { if (!test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD, &session->s_features)) return 1; if (!test_bit(CEPHFS_FEATURE_HAS_OWNER_UIDGID, &session->s_features)) return 2; return CEPH_MDS_REQUEST_HEAD_VERSION; } static struct ceph_mds_request_head_legacy * find_legacy_request_head(void *p, u64 features) { bool legacy = !(features & CEPH_FEATURE_FS_BTIME); struct ceph_mds_request_head_old *ohead; if (legacy) return (struct ceph_mds_request_head_legacy *)p; ohead = (struct ceph_mds_request_head_old *)p; return (struct ceph_mds_request_head_legacy *)&ohead->oldest_client_tid; } /* * called under mdsc->mutex */ static struct ceph_msg *create_request_message(struct ceph_mds_session *session, struct ceph_mds_request *req, bool drop_cap_releases) { int mds = session->s_mds; struct ceph_mds_client *mdsc = session->s_mdsc; struct ceph_client *cl = mdsc->fsc->client; struct ceph_msg *msg; struct ceph_mds_request_head_legacy *lhead; const char *path1 = NULL; const char *path2 = NULL; u64 ino1 = 0, ino2 = 0; int pathlen1 = 0, pathlen2 = 0; bool freepath1 = false, freepath2 = false; struct dentry *old_dentry = NULL; int len; u16 releases; void *p, *end; int ret; bool legacy = !(session->s_con.peer_features & CEPH_FEATURE_FS_BTIME); u16 request_head_version = mds_supported_head_version(session); kuid_t caller_fsuid = req->r_cred->fsuid; kgid_t caller_fsgid = req->r_cred->fsgid; ret = set_request_path_attr(mdsc, req->r_inode, req->r_dentry, req->r_parent, req->r_path1, req->r_ino1.ino, &path1, &pathlen1, &ino1, &freepath1, test_bit(CEPH_MDS_R_PARENT_LOCKED, &req->r_req_flags)); if (ret < 0) { msg = ERR_PTR(ret); goto out; } /* If r_old_dentry is set, then assume that its parent is locked */ if (req->r_old_dentry && !(req->r_old_dentry->d_flags & DCACHE_DISCONNECTED)) old_dentry = req->r_old_dentry; ret = set_request_path_attr(mdsc, NULL, old_dentry, req->r_old_dentry_dir, req->r_path2, req->r_ino2.ino, &path2, &pathlen2, &ino2, &freepath2, true); if (ret < 0) { msg = ERR_PTR(ret); goto out_free1; } req->r_altname = get_fscrypt_altname(req, &req->r_altname_len); if (IS_ERR(req->r_altname)) { msg = ERR_CAST(req->r_altname); req->r_altname = NULL; goto out_free2; } /* * For old cephs without supporting the 32bit retry/fwd feature * it will copy the raw memories directly when decoding the * requests. While new cephs will decode the head depending the * version member, so we need to make sure it will be compatible * with them both. */ if (legacy) len = sizeof(struct ceph_mds_request_head_legacy); else if (request_head_version == 1) len = sizeof(struct ceph_mds_request_head_old); else if (request_head_version == 2) len = offsetofend(struct ceph_mds_request_head, ext_num_fwd); else len = sizeof(struct ceph_mds_request_head); /* filepaths */ len += 2 * (1 + sizeof(u32) + sizeof(u64)); len += pathlen1 + pathlen2; /* cap releases */ len += sizeof(struct ceph_mds_request_release) * (!!req->r_inode_drop + !!req->r_dentry_drop + !!req->r_old_inode_drop + !!req->r_old_dentry_drop); if (req->r_dentry_drop) len += pathlen1; if (req->r_old_dentry_drop) len += pathlen2; /* MClientRequest tail */ /* req->r_stamp */ len += sizeof(struct ceph_timespec); /* gid list */ len += sizeof(u32) + (sizeof(u64) * req->r_cred->group_info->ngroups); /* alternate name */ len += sizeof(u32) + req->r_altname_len; /* fscrypt_auth */ len += sizeof(u32); // fscrypt_auth if (req->r_fscrypt_auth) len += ceph_fscrypt_auth_len(req->r_fscrypt_auth); /* fscrypt_file */ len += sizeof(u32); if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags)) len += sizeof(__le64); msg = ceph_msg_new2(CEPH_MSG_CLIENT_REQUEST, len, 1, GFP_NOFS, false); if (!msg) { msg = ERR_PTR(-ENOMEM); goto out_free2; } msg->hdr.tid = cpu_to_le64(req->r_tid); lhead = find_legacy_request_head(msg->front.iov_base, session->s_con.peer_features); if ((req->r_mnt_idmap != &nop_mnt_idmap) && !test_bit(CEPHFS_FEATURE_HAS_OWNER_UIDGID, &session->s_features)) { WARN_ON_ONCE(!IS_CEPH_MDS_OP_NEWINODE(req->r_op)); if (enable_unsafe_idmap) { pr_warn_once_client(cl, "idmapped mount is used and CEPHFS_FEATURE_HAS_OWNER_UIDGID" " is not supported by MDS. UID/GID-based restrictions may" " not work properly.\n"); caller_fsuid = from_vfsuid(req->r_mnt_idmap, &init_user_ns, VFSUIDT_INIT(req->r_cred->fsuid)); caller_fsgid = from_vfsgid(req->r_mnt_idmap, &init_user_ns, VFSGIDT_INIT(req->r_cred->fsgid)); } else { pr_err_ratelimited_client(cl, "idmapped mount is used and CEPHFS_FEATURE_HAS_OWNER_UIDGID" " is not supported by MDS. Fail request with -EIO.\n"); ret = -EIO; goto out_err; } } /* * The ceph_mds_request_head_legacy didn't contain a version field, and * one was added when we moved the message version from 3->4. */ if (legacy) { msg->hdr.version = cpu_to_le16(3); p = msg->front.iov_base + sizeof(*lhead); } else if (request_head_version == 1) { struct ceph_mds_request_head_old *ohead = msg->front.iov_base; msg->hdr.version = cpu_to_le16(4); ohead->version = cpu_to_le16(1); p = msg->front.iov_base + sizeof(*ohead); } else if (request_head_version == 2) { struct ceph_mds_request_head *nhead = msg->front.iov_base; msg->hdr.version = cpu_to_le16(6); nhead->version = cpu_to_le16(2); p = msg->front.iov_base + offsetofend(struct ceph_mds_request_head, ext_num_fwd); } else { struct ceph_mds_request_head *nhead = msg->front.iov_base; kuid_t owner_fsuid; kgid_t owner_fsgid; msg->hdr.version = cpu_to_le16(6); nhead->version = cpu_to_le16(CEPH_MDS_REQUEST_HEAD_VERSION); nhead->struct_len = cpu_to_le32(sizeof(struct ceph_mds_request_head)); if (IS_CEPH_MDS_OP_NEWINODE(req->r_op)) { owner_fsuid = from_vfsuid(req->r_mnt_idmap, &init_user_ns, VFSUIDT_INIT(req->r_cred->fsuid)); owner_fsgid = from_vfsgid(req->r_mnt_idmap, &init_user_ns, VFSGIDT_INIT(req->r_cred->fsgid)); nhead->owner_uid = cpu_to_le32(from_kuid(&init_user_ns, owner_fsuid)); nhead->owner_gid = cpu_to_le32(from_kgid(&init_user_ns, owner_fsgid)); } else { nhead->owner_uid = cpu_to_le32(-1); nhead->owner_gid = cpu_to_le32(-1); } p = msg->front.iov_base + sizeof(*nhead); } end = msg->front.iov_base + msg->front.iov_len; lhead->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); lhead->op = cpu_to_le32(req->r_op); lhead->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, caller_fsuid)); lhead->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, caller_fsgid)); lhead->ino = cpu_to_le64(req->r_deleg_ino); lhead->args = req->r_args; ceph_encode_filepath(&p, end, ino1, path1); ceph_encode_filepath(&p, end, ino2, path2); /* make note of release offset, in case we need to replay */ req->r_request_release_offset = p - msg->front.iov_base; /* cap releases */ releases = 0; if (req->r_inode_drop) releases += ceph_encode_inode_release(&p, req->r_inode ? req->r_inode : d_inode(req->r_dentry), mds, req->r_inode_drop, req->r_inode_unless, req->r_op == CEPH_MDS_OP_READDIR); if (req->r_dentry_drop) { ret = ceph_encode_dentry_release(&p, req->r_dentry, req->r_parent, mds, req->r_dentry_drop, req->r_dentry_unless); if (ret < 0) goto out_err; releases += ret; } if (req->r_old_dentry_drop) { ret = ceph_encode_dentry_release(&p, req->r_old_dentry, req->r_old_dentry_dir, mds, req->r_old_dentry_drop, req->r_old_dentry_unless); if (ret < 0) goto out_err; releases += ret; } if (req->r_old_inode_drop) releases += ceph_encode_inode_release(&p, d_inode(req->r_old_dentry), mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); if (drop_cap_releases) { releases = 0; p = msg->front.iov_base + req->r_request_release_offset; } lhead->num_releases = cpu_to_le16(releases); encode_mclientrequest_tail(&p, req); if (WARN_ON_ONCE(p > end)) { ceph_msg_put(msg); msg = ERR_PTR(-ERANGE); goto out_free2; } msg->front.iov_len = p - msg->front.iov_base; msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); if (req->r_pagelist) { struct ceph_pagelist *pagelist = req->r_pagelist; ceph_msg_data_add_pagelist(msg, pagelist); msg->hdr.data_len = cpu_to_le32(pagelist->length); } else { msg->hdr.data_len = 0; } msg->hdr.data_off = cpu_to_le16(0); out_free2: if (freepath2) ceph_mdsc_free_path((char *)path2, pathlen2); out_free1: if (freepath1) ceph_mdsc_free_path((char *)path1, pathlen1); out: return msg; out_err: ceph_msg_put(msg); msg = ERR_PTR(ret); goto out_free2; } /* * called under mdsc->mutex if error, under no mutex if * success. */ static void complete_request(struct ceph_mds_client *mdsc, struct ceph_mds_request *req) { req->r_end_latency = ktime_get(); if (req->r_callback) req->r_callback(mdsc, req); complete_all(&req->r_completion); } /* * called under mdsc->mutex */ static int __prepare_send_request(struct ceph_mds_session *session, struct ceph_mds_request *req, bool drop_cap_releases) { int mds = session->s_mds; struct ceph_mds_client *mdsc = session->s_mdsc; struct ceph_client *cl = mdsc->fsc->client; struct ceph_mds_request_head_legacy *lhead; struct ceph_mds_request_head *nhead; struct ceph_msg *msg; int flags = 0, old_max_retry; bool old_version = !test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD, &session->s_features); /* * Avoid inifinite retrying after overflow. The client will * increase the retry count and if the MDS is old version, * so we limit to retry at most 256 times. */ if (req->r_attempts) { old_max_retry = sizeof_field(struct ceph_mds_request_head_old, num_retry); old_max_retry = 1 << (old_max_retry * BITS_PER_BYTE); if ((old_version && req->r_attempts >= old_max_retry) || ((uint32_t)req->r_attempts >= U32_MAX)) { pr_warn_ratelimited_client(cl, "request tid %llu seq overflow\n", req->r_tid); return -EMULTIHOP; } } req->r_attempts++; if (req->r_inode) { struct ceph_cap *cap = ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); if (cap) req->r_sent_on_mseq = cap->mseq; else req->r_sent_on_mseq = -1; } doutc(cl, "%p tid %lld %s (attempt %d)\n", req, req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { void *p; /* * Replay. Do not regenerate message (and rebuild * paths, etc.); just use the original message. * Rebuilding paths will break for renames because * d_move mangles the src name. */ msg = req->r_request; lhead = find_legacy_request_head(msg->front.iov_base, session->s_con.peer_features); flags = le32_to_cpu(lhead->flags); flags |= CEPH_MDS_FLAG_REPLAY; lhead->flags = cpu_to_le32(flags); if (req->r_target_inode) lhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); lhead->num_retry = req->r_attempts - 1; if (!old_version) { nhead = (struct ceph_mds_request_head*)msg->front.iov_base; nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1); } /* remove cap/dentry releases from message */ lhead->num_releases = 0; p = msg->front.iov_base + req->r_request_release_offset; encode_mclientrequest_tail(&p, req); msg->front.iov_len = p - msg->front.iov_base; msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); return 0; } if (req->r_request) { ceph_msg_put(req->r_request); req->r_request = NULL; } msg = create_request_message(session, req, drop_cap_releases); if (IS_ERR(msg)) { req->r_err = PTR_ERR(msg); return PTR_ERR(msg); } req->r_request = msg; lhead = find_legacy_request_head(msg->front.iov_base, session->s_con.peer_features); lhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) flags |= CEPH_MDS_FLAG_REPLAY; if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) flags |= CEPH_MDS_FLAG_ASYNC; if (req->r_parent) flags |= CEPH_MDS_FLAG_WANT_DENTRY; lhead->flags = cpu_to_le32(flags); lhead->num_fwd = req->r_num_fwd; lhead->num_retry = req->r_attempts - 1; if (!old_version) { nhead = (struct ceph_mds_request_head*)msg->front.iov_base; nhead->ext_num_fwd = cpu_to_le32(req->r_num_fwd); nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1); } doutc(cl, " r_parent = %p\n", req->r_parent); return 0; } /* * called under mdsc->mutex */ static int __send_request(struct ceph_mds_session *session, struct ceph_mds_request *req, bool drop_cap_releases) { int err; err = __prepare_send_request(session, req, drop_cap_releases); if (!err) { ceph_msg_get(req->r_request); ceph_con_send(&session->s_con, req->r_request); } return err; } /* * send request, or put it on the appropriate wait list. */ static void __do_request(struct ceph_mds_client *mdsc, struct ceph_mds_request *req) { struct ceph_client *cl = mdsc->fsc->client; struct ceph_mds_session *session = NULL; int mds = -1; int err = 0; bool random; if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) __unregister_request(mdsc, req); return; } if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) { doutc(cl, "metadata corrupted\n"); err = -EIO; goto finish; } if (req->r_timeout && time_after_eq(jiffies, req->r_started + req->r_timeout)) { doutc(cl, "timed out\n"); err = -ETIMEDOUT; goto finish; } if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) { doutc(cl, "forced umount\n"); err = -EIO; goto finish; } if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) { if (mdsc->mdsmap_err) { err = mdsc->mdsmap_err; doutc(cl, "mdsmap err %d\n", err); goto finish; } if (mdsc->mdsmap->m_epoch == 0) { doutc(cl, "no mdsmap, waiting for map\n"); list_add(&req->r_wait, &mdsc->waiting_for_map); return; } if (!(mdsc->fsc->mount_options->flags & CEPH_MOUNT_OPT_MOUNTWAIT) && !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) { err = -EHOSTUNREACH; goto finish; } } put_request_session(req); mds = __choose_mds(mdsc, req, &random); if (mds < 0 || ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) { err = -EJUKEBOX; goto finish; } doutc(cl, "no mds or not active, waiting for map\n"); list_add(&req->r_wait, &mdsc->waiting_for_map); return; } /* get, open session */ session = __ceph_lookup_mds_session(mdsc, mds); if (!session) { session = register_session(mdsc, mds); if (IS_ERR(session)) { err = PTR_ERR(session); goto finish; } } req->r_session = ceph_get_mds_session(session); doutc(cl, "mds%d session %p state %s\n", mds, session, ceph_session_state_name(session->s_state)); /* * The old ceph will crash the MDSs when see unknown OPs */ if (req->r_feature_needed > 0 && !test_bit(req->r_feature_needed, &session->s_features)) { err = -EOPNOTSUPP; goto out_session; } if (session->s_state != CEPH_MDS_SESSION_OPEN && session->s_state != CEPH_MDS_SESSION_HUNG) { /* * We cannot queue async requests since the caps and delegated * inodes are bound to the session. Just return -EJUKEBOX and * let the caller retry a sync request in that case. */ if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) { err = -EJUKEBOX; goto out_session; } /* * If the session has been REJECTED, then return a hard error, * unless it's a CLEANRECOVER mount, in which case we'll queue * it to the mdsc queue. */ if (session->s_state == CEPH_MDS_SESSION_REJECTED) { if (ceph_test_mount_opt(mdsc->fsc, CLEANRECOVER)) list_add(&req->r_wait, &mdsc->waiting_for_map); else err = -EACCES; goto out_session; } if (session->s_state == CEPH_MDS_SESSION_NEW || session->s_state == CEPH_MDS_SESSION_CLOSING) { err = __open_session(mdsc, session); if (err) goto out_session; /* retry the same mds later */ if (random) req->r_resend_mds = mds; } list_add(&req->r_wait, &session->s_waiting); goto out_session; } /* send request */ req->r_resend_mds = -1; /* forget any previous mds hint */ if (req->r_request_started == 0) /* note request start time */ req->r_request_started = jiffies; /* * For async create we will choose the auth MDS of frag in parent * directory to send the request and ususally this works fine, but * if the migrated the dirtory to another MDS before it could handle * it the request will be forwarded. * * And then the auth cap will be changed. */ if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags) && req->r_num_fwd) { struct ceph_dentry_info *di = ceph_dentry(req->r_dentry); struct ceph_inode_info *ci; struct ceph_cap *cap; /* * The request maybe handled very fast and the new inode * hasn't been linked to the dentry yet. We need to wait * for the ceph_finish_async_create(), which shouldn't be * stuck too long or fail in thoery, to finish when forwarding * the request. */ if (!d_inode(req->r_dentry)) { err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_CREATE_BIT, TASK_KILLABLE); if (err) { mutex_lock(&req->r_fill_mutex); set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); mutex_unlock(&req->r_fill_mutex); goto out_session; } } ci = ceph_inode(d_inode(req->r_dentry)); spin_lock(&ci->i_ceph_lock); cap = ci->i_auth_cap; if (ci->i_ceph_flags & CEPH_I_ASYNC_CREATE && mds != cap->mds) { doutc(cl, "session changed for auth cap %d -> %d\n", cap->session->s_mds, session->s_mds); /* Remove the auth cap from old session */ spin_lock(&cap->session->s_cap_lock); cap->session->s_nr_caps--; list_del_init(&cap->session_caps); spin_unlock(&cap->session->s_cap_lock); /* Add the auth cap to the new session */ cap->mds = mds; cap->session = session; spin_lock(&session->s_cap_lock); session->s_nr_caps++; list_add_tail(&cap->session_caps, &session->s_caps); spin_unlock(&session->s_cap_lock); change_auth_cap_ses(ci, session); } spin_unlock(&ci->i_ceph_lock); } err = __send_request(session, req, false); out_session: ceph_put_mds_session(session); finish: if (err) { doutc(cl, "early error %d\n", err); req->r_err = err; complete_request(mdsc, req); __unregister_request(mdsc, req); } return; } /* * called under mdsc->mutex */ static void __wake_requests(struct ceph_mds_client *mdsc, struct list_head *head) { struct ceph_client *cl = mdsc->fsc->client; struct ceph_mds_request *req; LIST_HEAD(tmp_list); list_splice_init(head, &tmp_list); while (!list_empty(&tmp_list)) { req = list_entry(tmp_list.next, struct ceph_mds_request, r_wait); list_del_init(&req->r_wait); doutc(cl, " wake request %p tid %llu\n", req, req->r_tid); __do_request(mdsc, req); } } /* * Wake up threads with requests pending for @mds, so that they can * resubmit their requests to a possibly different mds. */ static void kick_requests(struct ceph_mds_client *mdsc, int mds) { struct ceph_client *cl = mdsc->fsc->client; struct ceph_mds_request *req; struct rb_node *p = rb_first(&mdsc->request_tree); doutc(cl, "kick_requests mds%d\n", mds); while (p) { req = rb_entry(p, struct ceph_mds_request, r_node); p = rb_next(p); if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) continue; if (req->r_attempts > 0) continue; /* only new requests */ if (req->r_session && req->r_session->s_mds == mds) { doutc(cl, " kicking tid %llu\n", req->r_tid); list_del_init(&req->r_wait); __do_request(mdsc, req); } } } int ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, struct inode *dir, struct ceph_mds_request *req) { struct ceph_client *cl = mdsc->fsc->client; int err = 0; /* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */ if (req->r_inode) ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); if (req->r_parent) { struct ceph_inode_info *ci = ceph_inode(req->r_parent); int fmode = (req->r_op & CEPH_MDS_OP_WRITE) ? CEPH_FILE_MODE_WR : CEPH_FILE_MODE_RD; spin_lock(&ci->i_ceph_lock); ceph_take_cap_refs(ci, CEPH_CAP_PIN, false); __ceph_touch_fmode(ci, mdsc, fmode); spin_unlock(&ci->i_ceph_lock); } if (req->r_old_dentry_dir) ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), CEPH_CAP_PIN); if (req->r_inode) { err = ceph_wait_on_async_create(req->r_inode); if (err) { doutc(cl, "wait for async create returned: %d\n", err); return err; } } if (!err && req->r_old_inode) { err = ceph_wait_on_async_create(req->r_old_inode); if (err) { doutc(cl, "wait for async create returned: %d\n", err); return err; } } doutc(cl, "submit_request on %p for inode %p\n", req, dir); mutex_lock(&mdsc->mutex); __register_request(mdsc, req, dir); __do_request(mdsc, req); err = req->r_err; mutex_unlock(&mdsc->mutex); return err; } int ceph_mdsc_wait_request(struct ceph_mds_client *mdsc, struct ceph_mds_request *req, ceph_mds_request_wait_callback_t wait_func) { struct ceph_client *cl = mdsc->fsc->client; int err; /* wait */ doutc(cl, "do_request waiting\n"); if (wait_func) { err = wait_func(mdsc, req); } else { long timeleft = wait_for_completion_killable_timeout( &req->r_completion, ceph_timeout_jiffies(req->r_timeout)); if (timeleft > 0) err = 0; else if (!timeleft) err = -ETIMEDOUT; /* timed out */ else err = timeleft; /* killed */ } doutc(cl, "do_request waited, got %d\n", err); mutex_lock(&mdsc->mutex); /* only abort if we didn't race with a real reply */ if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { err = le32_to_cpu(req->r_reply_info.head->result); } else if (err < 0) { doutc(cl, "aborted request %lld with %d\n", req->r_tid, err); /* * ensure we aren't running concurrently with * ceph_fill_trace or ceph_readdir_prepopulate, which * rely on locks (dir mutex) held by our caller. */ mutex_lock(&req->r_fill_mutex); req->r_err = err; set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); mutex_unlock(&req->r_fill_mutex); if (req->r_parent && (req->r_op & CEPH_MDS_OP_WRITE)) ceph_invalidate_dir_request(req); } else { err = req->r_err; } mutex_unlock(&mdsc->mutex); return err; } /* * Synchrously perform an mds request. Take care of all of the * session setup, forwarding, retry details. */ int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, struct inode *dir, struct ceph_mds_request *req) { struct ceph_client *cl = mdsc->fsc->client; int err; doutc(cl, "do_request on %p\n", req); /* issue */ err = ceph_mdsc_submit_request(mdsc, dir, req); if (!err) err = ceph_mdsc_wait_request(mdsc, req, NULL); doutc(cl, "do_request %p done, result %d\n", req, err); return err; } /* * Invalidate dir's completeness, dentry lease state on an aborted MDS * namespace request. */ void ceph_invalidate_dir_request(struct ceph_mds_request *req) { struct inode *dir = req->r_parent; struct inode *old_dir = req->r_old_dentry_dir; struct ceph_client *cl = req->r_mdsc->fsc->client; doutc(cl, "invalidate_dir_request %p %p (complete, lease(s))\n", dir, old_dir); ceph_dir_clear_complete(dir); if (old_dir) ceph_dir_clear_complete(old_dir); if (req->r_dentry) ceph_invalidate_dentry_lease(req->r_dentry); if (req->r_old_dentry) ceph_invalidate_dentry_lease(req->r_old_dentry); } /* * Handle mds reply. * * We take the session mutex and parse and process the reply immediately. * This preserves the logical ordering of replies, capabilities, etc., sent * by the MDS as they are applied to our local cache. */ static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) { struct ceph_mds_client *mdsc = session->s_mdsc; struct ceph_client *cl = mdsc->fsc->client; struct ceph_mds_request *req; struct ceph_mds_reply_head *head = msg->front.iov_base; struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ struct ceph_snap_realm *realm; u64 tid; int err, result; int mds = session->s_mds; bool close_sessions = false; if (msg->front.iov_len < sizeof(*head)) { pr_err_client(cl, "got corrupt (short) reply\n"); ceph_msg_dump(msg); return; } /* get request, session */ tid = le64_to_cpu(msg->hdr.tid); mutex_lock(&mdsc->mutex); req = lookup_get_request(mdsc, tid); if (!req) { doutc(cl, "on unknown tid %llu\n", tid); mutex_unlock(&mdsc->mutex); return; } doutc(cl, "handle_reply %p\n", req); /* correct session? */ if (req->r_session != session) { pr_err_client(cl, "got %llu on session mds%d not mds%d\n", tid, session->s_mds, req->r_session ? req->r_session->s_mds : -1); mutex_unlock(&mdsc->mutex); goto out; } /* dup? */ if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) || (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) { pr_warn_client(cl, "got a dup %s reply on %llu from mds%d\n", head->safe ? "safe" : "unsafe", tid, mds); mutex_unlock(&mdsc->mutex); goto out; } if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) { pr_warn_client(cl, "got unsafe after safe on %llu from mds%d\n", tid, mds); mutex_unlock(&mdsc->mutex); goto out; } result = le32_to_cpu(head->result); if (head->safe) { set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags); __unregister_request(mdsc, req); /* last request during umount? */ if (mdsc->stopping && !__get_oldest_req(mdsc)) complete_all(&mdsc->safe_umount_waiters); if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { /* * We already handled the unsafe response, now do the * cleanup. No need to examine the response; the MDS * doesn't include any result info in the safe * response. And even if it did, there is nothing * useful we could do with a revised return value. */ doutc(cl, "got safe reply %llu, mds%d\n", tid, mds); mutex_unlock(&mdsc->mutex); goto out; } } else { set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags); list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); } doutc(cl, "tid %lld result %d\n", tid, result); if (test_bit(CEPHFS_FEATURE_REPLY_ENCODING, &session->s_features)) err = parse_reply_info(session, msg, req, (u64)-1); else err = parse_reply_info(session, msg, req, session->s_con.peer_features); mutex_unlock(&mdsc->mutex); /* Must find target inode outside of mutexes to avoid deadlocks */ rinfo = &req->r_reply_info; if ((err >= 0) && rinfo->head->is_target) { struct inode *in = xchg(&req->r_new_inode, NULL); struct ceph_vino tvino = { .ino = le64_to_cpu(rinfo->targeti.in->ino), .snap = le64_to_cpu(rinfo->targeti.in->snapid) }; /* * If we ended up opening an existing inode, discard * r_new_inode */ if (req->r_op == CEPH_MDS_OP_CREATE && !req->r_reply_info.has_create_ino) { /* This should never happen on an async create */ WARN_ON_ONCE(req->r_deleg_ino); iput(in); in = NULL; } in = ceph_get_inode(mdsc->fsc->sb, tvino, in); if (IS_ERR(in)) { err = PTR_ERR(in); mutex_lock(&session->s_mutex); goto out_err; } req->r_target_inode = in; } mutex_lock(&session->s_mutex); if (err < 0) { pr_err_client(cl, "got corrupt reply mds%d(tid:%lld)\n", mds, tid); ceph_msg_dump(msg); goto out_err; } /* snap trace */ realm = NULL; if (rinfo->snapblob_len) { down_write(&mdsc->snap_rwsem); err = ceph_update_snap_trace(mdsc, rinfo->snapblob, rinfo->snapblob + rinfo->snapblob_len, le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP, &realm); if (err) { up_write(&mdsc->snap_rwsem); close_sessions = true; if (err == -EIO) ceph_msg_dump(msg); goto out_err; } downgrade_write(&mdsc->snap_rwsem); } else { down_read(&mdsc->snap_rwsem); } /* insert trace into our cache */ mutex_lock(&req->r_fill_mutex); current->journal_info = req; err = ceph_fill_trace(mdsc->fsc->sb, req); if (err == 0) { if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || req->r_op == CEPH_MDS_OP_LSSNAP)) err = ceph_readdir_prepopulate(req, req->r_session); } current->journal_info = NULL; mutex_unlock(&req->r_fill_mutex); up_read(&mdsc->snap_rwsem); if (realm) ceph_put_snap_realm(mdsc, realm); if (err == 0) { if (req->r_target_inode && test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { struct ceph_inode_info *ci = ceph_inode(req->r_target_inode); spin_lock(&ci->i_unsafe_lock); list_add_tail(&req->r_unsafe_target_item, &ci->i_unsafe_iops); spin_unlock(&ci->i_unsafe_lock); } ceph_unreserve_caps(mdsc, &req->r_caps_reservation); } out_err: mutex_lock(&mdsc->mutex); if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { if (err) { req->r_err = err; } else { req->r_reply = ceph_msg_get(msg); set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags); } } else { doutc(cl, "reply arrived after request %lld was aborted\n", tid); } mutex_unlock(&mdsc->mutex); mutex_unlock(&session->s_mutex); /* kick calling process */ complete_request(mdsc, req); ceph_update_metadata_metrics(&mdsc->metric, req->r_start_latency, req->r_end_latency, err); out: ceph_mdsc_put_request(req); /* Defer closing the sessions after s_mutex lock being released */ if (close_sessions) ceph_mdsc_close_sessions(mdsc); return; } /* * handle mds notification that our request has been forwarded. */ static void handle_forward(struct ceph_mds_client *mdsc, struct ceph_mds_session *session, struct ceph_msg *msg) { struct ceph_client *cl = mdsc->fsc->client; struct ceph_mds_request *req; u64 tid = le64_to_cpu(msg->hdr.tid); u32 next_mds; u32 fwd_seq; int err = -EINVAL; void *p = msg->front.iov_base; void *end = p + msg->front.iov_len; bool aborted = false; ceph_decode_need(&p, end, 2*sizeof(u32), bad); next_mds = ceph_decode_32(&p); fwd_seq = ceph_decode_32(&p); mutex_lock(&mdsc->mutex); req = lookup_get_request(mdsc, tid); if (!req) { mutex_unlock(&mdsc->mutex); doutc(cl, "forward tid %llu to mds%d - req dne\n", tid, next_mds); return; /* dup reply? */ } if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { doutc(cl, "forward tid %llu aborted, unregistering\n", tid); __unregister_request(mdsc, req); } else if (fwd_seq <= req->r_num_fwd || (uint32_t)fwd_seq >= U32_MAX) { /* * Avoid inifinite retrying after overflow. * * The MDS will increase the fwd count and in client side * if the num_fwd is less than the one saved in request * that means the MDS is an old version and overflowed of * 8 bits. */ mutex_lock(&req->r_fill_mutex); req->r_err = -EMULTIHOP; set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); mutex_unlock(&req->r_fill_mutex); aborted = true; pr_warn_ratelimited_client(cl, "forward tid %llu seq overflow\n", tid); } else { /* resend. forward race not possible; mds would drop */ doutc(cl, "forward tid %llu to mds%d (we resend)\n", tid, next_mds); BUG_ON(req->r_err); BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)); req->r_attempts = 0; req->r_num_fwd = fwd_seq; req->r_resend_mds = next_mds; put_request_session(req); __do_request(mdsc, req); } mutex_unlock(&mdsc->mutex); /* kick calling process */ if (aborted) complete_request(mdsc, req); ceph_mdsc_put_request(req); return; bad: pr_err_client(cl, "decode error err=%d\n", err); ceph_msg_dump(msg); } static int __decode_session_metadata(void **p, void *end, bool *blocklisted) { /* map<string,string> */ u32 n; bool err_str; ceph_decode_32_safe(p, end, n, bad); while (n-- > 0) { u32 len; ceph_decode_32_safe(p, end, len, bad); ceph_decode_need(p, end, len, bad); err_str = !strncmp(*p, "error_string", len); *p += len; ceph_decode_32_safe(p, end, len, bad); ceph_decode_need(p, end, len, bad); /* * Match "blocklisted (blacklisted)" from newer MDSes, * or "blacklisted" from older MDSes. */ if (err_str && strnstr(*p, "blacklisted", len)) *blocklisted = true; *p += len; } return 0; bad: return -1; } /* * handle a mds session control message */ static void handle_session(struct ceph_mds_session *session, struct ceph_msg *msg) { struct ceph_mds_client *mdsc = session->s_mdsc; struct ceph_client *cl = mdsc->fsc->client; int mds = session->s_mds; int msg_version = le16_to_cpu(msg->hdr.version); void *p = msg->front.iov_base; void *end = p + msg->front.iov_len; struct ceph_mds_session_head *h; struct ceph_mds_cap_auth *cap_auths = NULL; u32 op, cap_auths_num = 0; u64 seq, features = 0; int wake = 0; bool blocklisted = false; u32 i; /* decode */ ceph_decode_need(&p, end, sizeof(*h), bad); h = p; p += sizeof(*h); op = le32_to_cpu(h->op); seq = le64_to_cpu(h->seq); if (msg_version >= 3) { u32 len; /* version >= 2 and < 5, decode metadata, skip otherwise * as it's handled via flags. */ if (msg_version >= 5) ceph_decode_skip_map(&p, end, string, string, bad); else if (__decode_session_metadata(&p, end, &blocklisted) < 0) goto bad; /* version >= 3, feature bits */ ceph_decode_32_safe(&p, end, len, bad); if (len) { ceph_decode_64_safe(&p, end, features, bad); p += len - sizeof(features); } } if (msg_version >= 5) { u32 flags, len; /* version >= 4 */ ceph_decode_skip_16(&p, end, bad); /* struct_v, struct_cv */ ceph_decode_32_safe(&p, end, len, bad); /* len */ ceph_decode_skip_n(&p, end, len, bad); /* metric_spec */ /* version >= 5, flags */ ceph_decode_32_safe(&p, end, flags, bad); if (flags & CEPH_SESSION_BLOCKLISTED) { pr_warn_client(cl, "mds%d session blocklisted\n", session->s_mds); blocklisted = true; } } if (msg_version >= 6) { ceph_decode_32_safe(&p, end, cap_auths_num, bad); doutc(cl, "cap_auths_num %d\n", cap_auths_num); if (cap_auths_num && op != CEPH_SESSION_OPEN) { WARN_ON_ONCE(op != CEPH_SESSION_OPEN); goto skip_cap_auths; } cap_auths = kcalloc(cap_auths_num, sizeof(struct ceph_mds_cap_auth), GFP_KERNEL); if (!cap_auths) { pr_err_client(cl, "No memory for cap_auths\n"); return; } for (i = 0; i < cap_auths_num; i++) { u32 _len, j; /* struct_v, struct_compat, and struct_len in MDSCapAuth */ ceph_decode_skip_n(&p, end, 2 + sizeof(u32), bad); /* struct_v, struct_compat, and struct_len in MDSCapMatch */ ceph_decode_skip_n(&p, end, 2 + sizeof(u32), bad); ceph_decode_64_safe(&p, end, cap_auths[i].match.uid, bad); ceph_decode_32_safe(&p, end, _len, bad); if (_len) { cap_auths[i].match.gids = kcalloc(_len, sizeof(u32), GFP_KERNEL); if (!cap_auths[i].match.gids) { pr_err_client(cl, "No memory for gids\n"); goto fail; } cap_auths[i].match.num_gids = _len; for (j = 0; j < _len; j++) ceph_decode_32_safe(&p, end, cap_auths[i].match.gids[j], bad); } ceph_decode_32_safe(&p, end, _len, bad); if (_len) { cap_auths[i].match.path = kcalloc(_len + 1, sizeof(char), GFP_KERNEL); if (!cap_auths[i].match.path) { pr_err_client(cl, "No memory for path\n"); goto fail; } ceph_decode_copy(&p, cap_auths[i].match.path, _len); /* Remove the tailing '/' */ while (_len && cap_auths[i].match.path[_len - 1] == '/') { cap_auths[i].match.path[_len - 1] = '\0'; _len -= 1; } } ceph_decode_32_safe(&p, end, _len, bad); if (_len) { cap_auths[i].match.fs_name = kcalloc(_len + 1, sizeof(char), GFP_KERNEL); if (!cap_auths[i].match.fs_name) { pr_err_client(cl, "No memory for fs_name\n"); goto fail; } ceph_decode_copy(&p, cap_auths[i].match.fs_name, _len); } ceph_decode_8_safe(&p, end, cap_auths[i].match.root_squash, bad); ceph_decode_8_safe(&p, end, cap_auths[i].readable, bad); ceph_decode_8_safe(&p, end, cap_auths[i].writeable, bad); doutc(cl, "uid %lld, num_gids %u, path %s, fs_name %s, root_squash %d, readable %d, writeable %d\n", cap_auths[i].match.uid, cap_auths[i].match.num_gids, cap_auths[i].match.path, cap_auths[i].match.fs_name, cap_auths[i].match.root_squash, cap_auths[i].readable, cap_auths[i].writeable); } } skip_cap_auths: mutex_lock(&mdsc->mutex); if (op == CEPH_SESSION_OPEN) { if (mdsc->s_cap_auths) { for (i = 0; i < mdsc->s_cap_auths_num; i++) { kfree(mdsc->s_cap_auths[i].match.gids); kfree(mdsc->s_cap_auths[i].match.path); kfree(mdsc->s_cap_auths[i].match.fs_name); } kfree(mdsc->s_cap_auths); } mdsc->s_cap_auths_num = cap_auths_num; mdsc->s_cap_auths = cap_auths; } if (op == CEPH_SESSION_CLOSE) { ceph_get_mds_session(session); __unregister_session(mdsc, session); } /* FIXME: this ttl calculation is generous */ session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; mutex_unlock(&mdsc->mutex); mutex_lock(&session->s_mutex); doutc(cl, "mds%d %s %p state %s seq %llu\n", mds, ceph_session_op_name(op), session, ceph_session_state_name(session->s_state), seq); if (session->s_state == CEPH_MDS_SESSION_HUNG) { session->s_state = CEPH_MDS_SESSION_OPEN; pr_info_client(cl, "mds%d came back\n", session->s_mds); } switch (op) { case CEPH_SESSION_OPEN: if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) pr_info_client(cl, "mds%d reconnect success\n", session->s_mds); session->s_features = features; if (session->s_state == CEPH_MDS_SESSION_OPEN) { pr_notice_client(cl, "mds%d is already opened\n", session->s_mds); } else { session->s_state = CEPH_MDS_SESSION_OPEN; renewed_caps(mdsc, session, 0); if (test_bit(CEPHFS_FEATURE_METRIC_COLLECT, &session->s_features)) metric_schedule_delayed(&mdsc->metric); } /* * The connection maybe broken and the session in client * side has been reinitialized, need to update the seq * anyway. */ if (!session->s_seq && seq) session->s_seq = seq; wake = 1; if (mdsc->stopping) __close_session(mdsc, session); break; case CEPH_SESSION_RENEWCAPS: if (session->s_renew_seq == seq) renewed_caps(mdsc, session, 1); break; case CEPH_SESSION_CLOSE: if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) pr_info_client(cl, "mds%d reconnect denied\n", session->s_mds); session->s_state = CEPH_MDS_SESSION_CLOSED; cleanup_session_requests(mdsc, session); remove_session_caps(session); wake = 2; /* for good measure */ wake_up_all(&mdsc->session_close_wq); break; case CEPH_SESSION_STALE: pr_info_client(cl, "mds%d caps went stale, renewing\n", session->s_mds); atomic_inc(&session->s_cap_gen); session->s_cap_ttl = jiffies - 1; send_renew_caps(mdsc, session); break; case CEPH_SESSION_RECALL_STATE: ceph_trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); break; case CEPH_SESSION_FLUSHMSG: /* flush cap releases */ spin_lock(&session->s_cap_lock); if (session->s_num_cap_releases) ceph_flush_cap_releases(mdsc, session); spin_unlock(&session->s_cap_lock); send_flushmsg_ack(mdsc, session, seq); break; case CEPH_SESSION_FORCE_RO: doutc(cl, "force_session_readonly %p\n", session); spin_lock(&session->s_cap_lock); session->s_readonly = true; spin_unlock(&session->s_cap_lock); wake_up_session_caps(session, FORCE_RO); break; case CEPH_SESSION_REJECT: WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING); pr_info_client(cl, "mds%d rejected session\n", session->s_mds); session->s_state = CEPH_MDS_SESSION_REJECTED; cleanup_session_requests(mdsc, session); remove_session_caps(session); if (blocklisted) mdsc->fsc->blocklisted = true; wake = 2; /* for good measure */ break; default: pr_err_client(cl, "bad op %d mds%d\n", op, mds); WARN_ON(1); } mutex_unlock(&session->s_mutex); if (wake) { mutex_lock(&mdsc->mutex); __wake_requests(mdsc, &session->s_waiting); if (wake == 2) kick_requests(mdsc, mds); mutex_unlock(&mdsc->mutex); } if (op == CEPH_SESSION_CLOSE) ceph_put_mds_session(session); return; bad: pr_err_client(cl, "corrupt message mds%d len %d\n", mds, (int)msg->front.iov_len); ceph_msg_dump(msg); fail: for (i = 0; i < cap_auths_num; i++) { kfree(cap_auths[i].match.gids); kfree(cap_auths[i].match.path); kfree(cap_auths[i].match.fs_name); } kfree(cap_auths); return; } void ceph_mdsc_release_dir_caps(struct ceph_mds_request *req) { struct ceph_client *cl = req->r_mdsc->fsc->client; int dcaps; dcaps = xchg(&req->r_dir_caps, 0); if (dcaps) { doutc(cl, "releasing r_dir_caps=%s\n", ceph_cap_string(dcaps)); ceph_put_cap_refs(ceph_inode(req->r_parent), dcaps); } } void ceph_mdsc_release_dir_caps_async(struct ceph_mds_request *req) { struct ceph_client *cl = req->r_mdsc->fsc->client; int dcaps; dcaps = xchg(&req->r_dir_caps, 0); if (dcaps) { doutc(cl, "releasing r_dir_caps=%s\n", ceph_cap_string(dcaps)); ceph_put_cap_refs_async(ceph_inode(req->r_parent), dcaps); } } /* * called under session->mutex. */ static void replay_unsafe_requests(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_mds_request *req, *nreq; struct rb_node *p; doutc(mdsc->fsc->client, "mds%d\n", session->s_mds); mutex_lock(&mdsc->mutex); list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) __send_request(session, req, true); /* * also re-send old requests when MDS enters reconnect stage. So that MDS * can process completed request in clientreplay stage. */ p = rb_first(&mdsc->request_tree); while (p) { req = rb_entry(p, struct ceph_mds_request, r_node); p = rb_next(p); if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) continue; if (req->r_attempts == 0) continue; /* only old requests */ if (!req->r_session) continue; if (req->r_session->s_mds != session->s_mds) continue; ceph_mdsc_release_dir_caps_async(req); __send_request(session, req, true); } mutex_unlock(&mdsc->mutex); } static int send_reconnect_partial(struct ceph_reconnect_state *recon_state) { struct ceph_msg *reply; struct ceph_pagelist *_pagelist; struct page *page; __le32 *addr; int err = -ENOMEM; if (!recon_state->allow_multi) return -ENOSPC; /* can't handle message that contains both caps and realm */ BUG_ON(!recon_state->nr_caps == !recon_state->nr_realms); /* pre-allocate new pagelist */ _pagelist = ceph_pagelist_alloc(GFP_NOFS); if (!_pagelist) return -ENOMEM; reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); if (!reply) goto fail_msg; /* placeholder for nr_caps */ err = ceph_pagelist_encode_32(_pagelist, 0); if (err < 0) goto fail; if (recon_state->nr_caps) { /* currently encoding caps */ err = ceph_pagelist_encode_32(recon_state->pagelist, 0); if (err) goto fail; } else { /* placeholder for nr_realms (currently encoding relams) */ err = ceph_pagelist_encode_32(_pagelist, 0); if (err < 0) goto fail; } err = ceph_pagelist_encode_8(recon_state->pagelist, 1); if (err) goto fail; page = list_first_entry(&recon_state->pagelist->head, struct page, lru); addr = kmap_atomic(page); if (recon_state->nr_caps) { /* currently encoding caps */ *addr = cpu_to_le32(recon_state->nr_caps); } else { /* currently encoding relams */ *(addr + 1) = cpu_to_le32(recon_state->nr_realms); } kunmap_atomic(addr); reply->hdr.version = cpu_to_le16(5); reply->hdr.compat_version = cpu_to_le16(4); reply->hdr.data_len = cpu_to_le32(recon_state->pagelist->length); ceph_msg_data_add_pagelist(reply, recon_state->pagelist); ceph_con_send(&recon_state->session->s_con, reply); ceph_pagelist_release(recon_state->pagelist); recon_state->pagelist = _pagelist; recon_state->nr_caps = 0; recon_state->nr_realms = 0; recon_state->msg_version = 5; return 0; fail: ceph_msg_put(reply); fail_msg: ceph_pagelist_release(_pagelist); return err; } static struct dentry* d_find_primary(struct inode *inode) { struct dentry *alias, *dn = NULL; if (hlist_empty(&inode->i_dentry)) return NULL; spin_lock(&inode->i_lock); if (hlist_empty(&inode->i_dentry)) goto out_unlock; if (S_ISDIR(inode->i_mode)) { alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); if (!IS_ROOT(alias)) dn = dget(alias); goto out_unlock; } hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { spin_lock(&alias->d_lock); if (!d_unhashed(alias) && (ceph_dentry(alias)->flags & CEPH_DENTRY_PRIMARY_LINK)) { dn = dget_dlock(alias); } spin_unlock(&alias->d_lock); if (dn) break; } out_unlock: spin_unlock(&inode->i_lock); return dn; } /* * Encode information about a cap for a reconnect with the MDS. */ static int reconnect_caps_cb(struct inode *inode, int mds, void *arg) { struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); struct ceph_client *cl = ceph_inode_to_client(inode); union { struct ceph_mds_cap_reconnect v2; struct ceph_mds_cap_reconnect_v1 v1; } rec; struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_reconnect_state *recon_state = arg; struct ceph_pagelist *pagelist = recon_state->pagelist; struct dentry *dentry; struct ceph_cap *cap; char *path; int pathlen = 0, err; u64 pathbase; u64 snap_follows; dentry = d_find_primary(inode); if (dentry) { /* set pathbase to parent dir when msg_version >= 2 */ path = ceph_mdsc_build_path(mdsc, dentry, &pathlen, &pathbase, recon_state->msg_version >= 2); dput(dentry); if (IS_ERR(path)) { err = PTR_ERR(path); goto out_err; } } else { path = NULL; pathbase = 0; } spin_lock(&ci->i_ceph_lock); cap = __get_cap_for_mds(ci, mds); if (!cap) { spin_unlock(&ci->i_ceph_lock); err = 0; goto out_err; } doutc(cl, " adding %p ino %llx.%llx cap %p %lld %s\n", inode, ceph_vinop(inode), cap, cap->cap_id, ceph_cap_string(cap->issued)); cap->seq = 0; /* reset cap seq */ cap->issue_seq = 0; /* and issue_seq */ cap->mseq = 0; /* and migrate_seq */ cap->cap_gen = atomic_read(&cap->session->s_cap_gen); /* These are lost when the session goes away */ if (S_ISDIR(inode->i_mode)) { if (cap->issued & CEPH_CAP_DIR_CREATE) { ceph_put_string(rcu_dereference_raw(ci->i_cached_layout.pool_ns)); memset(&ci->i_cached_layout, 0, sizeof(ci->i_cached_layout)); } cap->issued &= ~CEPH_CAP_ANY_DIR_OPS; } if (recon_state->msg_version >= 2) { rec.v2.cap_id = cpu_to_le64(cap->cap_id); rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); rec.v2.issued = cpu_to_le32(cap->issued); rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); rec.v2.pathbase = cpu_to_le64(pathbase); rec.v2.flock_len = (__force __le32) ((ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK) ? 0 : 1); } else { struct timespec64 ts; rec.v1.cap_id = cpu_to_le64(cap->cap_id); rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); rec.v1.issued = cpu_to_le32(cap->issued); rec.v1.size = cpu_to_le64(i_size_read(inode)); ts = inode_get_mtime(inode); ceph_encode_timespec64(&rec.v1.mtime, &ts); ts = inode_get_atime(inode); ceph_encode_timespec64(&rec.v1.atime, &ts); rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); rec.v1.pathbase = cpu_to_le64(pathbase); } if (list_empty(&ci->i_cap_snaps)) { snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0; } else { struct ceph_cap_snap *capsnap = list_first_entry(&ci->i_cap_snaps, struct ceph_cap_snap, ci_item); snap_follows = capsnap->follows; } spin_unlock(&ci->i_ceph_lock); if (recon_state->msg_version >= 2) { int num_fcntl_locks, num_flock_locks; struct ceph_filelock *flocks = NULL; size_t struct_len, total_len = sizeof(u64); u8 struct_v = 0; encode_again: if (rec.v2.flock_len) { ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); } else { num_fcntl_locks = 0; num_flock_locks = 0; } if (num_fcntl_locks + num_flock_locks > 0) { flocks = kmalloc_array(num_fcntl_locks + num_flock_locks, sizeof(struct ceph_filelock), GFP_NOFS); if (!flocks) { err = -ENOMEM; goto out_err; } err = ceph_encode_locks_to_buffer(inode, flocks, num_fcntl_locks, num_flock_locks); if (err) { kfree(flocks); flocks = NULL; if (err == -ENOSPC) goto encode_again; goto out_err; } } else { kfree(flocks); flocks = NULL; } if (recon_state->msg_version >= 3) { /* version, compat_version and struct_len */ total_len += 2 * sizeof(u8) + sizeof(u32); struct_v = 2; } /* * number of encoded locks is stable, so copy to pagelist */ struct_len = 2 * sizeof(u32) + (num_fcntl_locks + num_flock_locks) * sizeof(struct ceph_filelock); rec.v2.flock_len = cpu_to_le32(struct_len); struct_len += sizeof(u32) + pathlen + sizeof(rec.v2); if (struct_v >= 2) struct_len += sizeof(u64); /* snap_follows */ total_len += struct_len; if (pagelist->length + total_len > RECONNECT_MAX_SIZE) { err = send_reconnect_partial(recon_state); if (err) goto out_freeflocks; pagelist = recon_state->pagelist; } err = ceph_pagelist_reserve(pagelist, total_len); if (err) goto out_freeflocks; ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); if (recon_state->msg_version >= 3) { ceph_pagelist_encode_8(pagelist, struct_v); ceph_pagelist_encode_8(pagelist, 1); ceph_pagelist_encode_32(pagelist, struct_len); } ceph_pagelist_encode_string(pagelist, path, pathlen); ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2)); ceph_locks_to_pagelist(flocks, pagelist, num_fcntl_locks, num_flock_locks); if (struct_v >= 2) ceph_pagelist_encode_64(pagelist, snap_follows); out_freeflocks: kfree(flocks); } else { err = ceph_pagelist_reserve(pagelist, sizeof(u64) + sizeof(u32) + pathlen + sizeof(rec.v1)); if (err) goto out_err; ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); ceph_pagelist_encode_string(pagelist, path, pathlen); ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1)); } out_err: ceph_mdsc_free_path(path, pathlen); if (!err) recon_state->nr_caps++; return err; } static int encode_snap_realms(struct ceph_mds_client *mdsc, struct ceph_reconnect_state *recon_state) { struct rb_node *p; struct ceph_pagelist *pagelist = recon_state->pagelist; struct ceph_client *cl = mdsc->fsc->client; int err = 0; if (recon_state->msg_version >= 4) { err = ceph_pagelist_encode_32(pagelist, mdsc->num_snap_realms); if (err < 0) goto fail; } /* * snaprealms. we provide mds with the ino, seq (version), and * parent for all of our realms. If the mds has any newer info, * it will tell us. */ for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { struct ceph_snap_realm *realm = rb_entry(p, struct ceph_snap_realm, node); struct ceph_mds_snaprealm_reconnect sr_rec; if (recon_state->msg_version >= 4) { size_t need = sizeof(u8) * 2 + sizeof(u32) + sizeof(sr_rec); if (pagelist->length + need > RECONNECT_MAX_SIZE) { err = send_reconnect_partial(recon_state); if (err) goto fail; pagelist = recon_state->pagelist; } err = ceph_pagelist_reserve(pagelist, need); if (err) goto fail; ceph_pagelist_encode_8(pagelist, 1); ceph_pagelist_encode_8(pagelist, 1); ceph_pagelist_encode_32(pagelist, sizeof(sr_rec)); } doutc(cl, " adding snap realm %llx seq %lld parent %llx\n", realm->ino, realm->seq, realm->parent_ino); sr_rec.ino = cpu_to_le64(realm->ino); sr_rec.seq = cpu_to_le64(realm->seq); sr_rec.parent = cpu_to_le64(realm->parent_ino); err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); if (err) goto fail; recon_state->nr_realms++; } fail: return err; } /* * If an MDS fails and recovers, clients need to reconnect in order to * reestablish shared state. This includes all caps issued through * this session _and_ the snap_realm hierarchy. Because it's not * clear which snap realms the mds cares about, we send everything we * know about.. that ensures we'll then get any new info the * recovering MDS might have. * * This is a relatively heavyweight operation, but it's rare. */ static void send_mds_reconnect(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_client *cl = mdsc->fsc->client; struct ceph_msg *reply; int mds = session->s_mds; int err = -ENOMEM; struct ceph_reconnect_state recon_state = { .session = session, }; LIST_HEAD(dispose); pr_info_client(cl, "mds%d reconnect start\n", mds); recon_state.pagelist = ceph_pagelist_alloc(GFP_NOFS); if (!recon_state.pagelist) goto fail_nopagelist; reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); if (!reply) goto fail_nomsg; xa_destroy(&session->s_delegated_inos); mutex_lock(&session->s_mutex); session->s_state = CEPH_MDS_SESSION_RECONNECTING; session->s_seq = 0; doutc(cl, "session %p state %s\n", session, ceph_session_state_name(session->s_state)); atomic_inc(&session->s_cap_gen); spin_lock(&session->s_cap_lock); /* don't know if session is readonly */ session->s_readonly = 0; /* * notify __ceph_remove_cap() that we are composing cap reconnect. * If a cap get released before being added to the cap reconnect, * __ceph_remove_cap() should skip queuing cap release. */ session->s_cap_reconnect = 1; /* drop old cap expires; we're about to reestablish that state */ detach_cap_releases(session, &dispose); spin_unlock(&session->s_cap_lock); dispose_cap_releases(mdsc, &dispose); /* trim unused caps to reduce MDS's cache rejoin time */ if (mdsc->fsc->sb->s_root) shrink_dcache_parent(mdsc->fsc->sb->s_root); ceph_con_close(&session->s_con); ceph_con_open(&session->s_con, CEPH_ENTITY_TYPE_MDS, mds, ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); /* replay unsafe requests */ replay_unsafe_requests(mdsc, session); ceph_early_kick_flushing_caps(mdsc, session); down_read(&mdsc->snap_rwsem); /* placeholder for nr_caps */ err = ceph_pagelist_encode_32(recon_state.pagelist, 0); if (err) goto fail; if (test_bit(CEPHFS_FEATURE_MULTI_RECONNECT, &session->s_features)) { recon_state.msg_version = 3; recon_state.allow_multi = true; } else if (session->s_con.peer_features & CEPH_FEATURE_MDSENC) { recon_state.msg_version = 3; } else { recon_state.msg_version = 2; } /* trsaverse this session's caps */ err = ceph_iterate_session_caps(session, reconnect_caps_cb, &recon_state); spin_lock(&session->s_cap_lock); session->s_cap_reconnect = 0; spin_unlock(&session->s_cap_lock); if (err < 0) goto fail; /* check if all realms can be encoded into current message */ if (mdsc->num_snap_realms) { size_t total_len = recon_state.pagelist->length + mdsc->num_snap_realms * sizeof(struct ceph_mds_snaprealm_reconnect); if (recon_state.msg_version >= 4) { /* number of realms */ total_len += sizeof(u32); /* version, compat_version and struct_len */ total_len += mdsc->num_snap_realms * (2 * sizeof(u8) + sizeof(u32)); } if (total_len > RECONNECT_MAX_SIZE) { if (!recon_state.allow_multi) { err = -ENOSPC; goto fail; } if (recon_state.nr_caps) { err = send_reconnect_partial(&recon_state); if (err) goto fail; } recon_state.msg_version = 5; } } err = encode_snap_realms(mdsc, &recon_state); if (err < 0) goto fail; if (recon_state.msg_version >= 5) { err = ceph_pagelist_encode_8(recon_state.pagelist, 0); if (err < 0) goto fail; } if (recon_state.nr_caps || recon_state.nr_realms) { struct page *page = list_first_entry(&recon_state.pagelist->head, struct page, lru); __le32 *addr = kmap_atomic(page); if (recon_state.nr_caps) { WARN_ON(recon_state.nr_realms != mdsc->num_snap_realms); *addr = cpu_to_le32(recon_state.nr_caps); } else if (recon_state.msg_version >= 4) { *(addr + 1) = cpu_to_le32(recon_state.nr_realms); } kunmap_atomic(addr); } reply->hdr.version = cpu_to_le16(recon_state.msg_version); if (recon_state.msg_version >= 4) reply->hdr.compat_version = cpu_to_le16(4); reply->hdr.data_len = cpu_to_le32(recon_state.pagelist->length); ceph_msg_data_add_pagelist(reply, recon_state.pagelist); ceph_con_send(&session->s_con, reply); mutex_unlock(&session->s_mutex); mutex_lock(&mdsc->mutex); __wake_requests(mdsc, &session->s_waiting); mutex_unlock(&mdsc->mutex); up_read(&mdsc->snap_rwsem); ceph_pagelist_release(recon_state.pagelist); return; fail: ceph_msg_put(reply); up_read(&mdsc->snap_rwsem); mutex_unlock(&session->s_mutex); fail_nomsg: ceph_pagelist_release(recon_state.pagelist); fail_nopagelist: pr_err_client(cl, "error %d preparing reconnect for mds%d\n", err, mds); return; } /* * compare old and new mdsmaps, kicking requests * and closing out old connections as necessary * * called under mdsc->mutex. */ static void check_new_map(struct ceph_mds_client *mdsc, struct ceph_mdsmap *newmap, struct ceph_mdsmap *oldmap) { int i, j, err; int oldstate, newstate; struct ceph_mds_session *s; unsigned long targets[DIV_ROUND_UP(CEPH_MAX_MDS, sizeof(unsigned long))] = {0}; struct ceph_client *cl = mdsc->fsc->client; doutc(cl, "new %u old %u\n", newmap->m_epoch, oldmap->m_epoch); if (newmap->m_info) { for (i = 0; i < newmap->possible_max_rank; i++) { for (j = 0; j < newmap->m_info[i].num_export_targets; j++) set_bit(newmap->m_info[i].export_targets[j], targets); } } for (i = 0; i < oldmap->possible_max_rank && i < mdsc->max_sessions; i++) { if (!mdsc->sessions[i]) continue; s = mdsc->sessions[i]; oldstate = ceph_mdsmap_get_state(oldmap, i); newstate = ceph_mdsmap_get_state(newmap, i); doutc(cl, "mds%d state %s%s -> %s%s (session %s)\n", i, ceph_mds_state_name(oldstate), ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", ceph_mds_state_name(newstate), ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", ceph_session_state_name(s->s_state)); if (i >= newmap->possible_max_rank) { /* force close session for stopped mds */ ceph_get_mds_session(s); __unregister_session(mdsc, s); __wake_requests(mdsc, &s->s_waiting); mutex_unlock(&mdsc->mutex); mutex_lock(&s->s_mutex); cleanup_session_requests(mdsc, s); remove_session_caps(s); mutex_unlock(&s->s_mutex); ceph_put_mds_session(s); mutex_lock(&mdsc->mutex); kick_requests(mdsc, i); continue; } if (memcmp(ceph_mdsmap_get_addr(oldmap, i), ceph_mdsmap_get_addr(newmap, i), sizeof(struct ceph_entity_addr))) { /* just close it */ mutex_unlock(&mdsc->mutex); mutex_lock(&s->s_mutex); mutex_lock(&mdsc->mutex); ceph_con_close(&s->s_con); mutex_unlock(&s->s_mutex); s->s_state = CEPH_MDS_SESSION_RESTARTING; } else if (oldstate == newstate) { continue; /* nothing new with this mds */ } /* * send reconnect? */ if (s->s_state == CEPH_MDS_SESSION_RESTARTING && newstate >= CEPH_MDS_STATE_RECONNECT) { mutex_unlock(&mdsc->mutex); clear_bit(i, targets); send_mds_reconnect(mdsc, s); mutex_lock(&mdsc->mutex); } /* * kick request on any mds that has gone active. */ if (oldstate < CEPH_MDS_STATE_ACTIVE && newstate >= CEPH_MDS_STATE_ACTIVE) { if (oldstate != CEPH_MDS_STATE_CREATING && oldstate != CEPH_MDS_STATE_STARTING) pr_info_client(cl, "mds%d recovery completed\n", s->s_mds); kick_requests(mdsc, i); mutex_unlock(&mdsc->mutex); mutex_lock(&s->s_mutex); mutex_lock(&mdsc->mutex); ceph_kick_flushing_caps(mdsc, s); mutex_unlock(&s->s_mutex); wake_up_session_caps(s, RECONNECT); } } /* * Only open and reconnect sessions that don't exist yet. */ for (i = 0; i < newmap->possible_max_rank; i++) { /* * In case the import MDS is crashed just after * the EImportStart journal is flushed, so when * a standby MDS takes over it and is replaying * the EImportStart journal the new MDS daemon * will wait the client to reconnect it, but the * client may never register/open the session yet. * * Will try to reconnect that MDS daemon if the * rank number is in the export targets array and * is the up:reconnect state. */ newstate = ceph_mdsmap_get_state(newmap, i); if (!test_bit(i, targets) || newstate != CEPH_MDS_STATE_RECONNECT) continue; /* * The session maybe registered and opened by some * requests which were choosing random MDSes during * the mdsc->mutex's unlock/lock gap below in rare * case. But the related MDS daemon will just queue * that requests and be still waiting for the client's * reconnection request in up:reconnect state. */ s = __ceph_lookup_mds_session(mdsc, i); if (likely(!s)) { s = __open_export_target_session(mdsc, i); if (IS_ERR(s)) { err = PTR_ERR(s); pr_err_client(cl, "failed to open export target session, err %d\n", err); continue; } } doutc(cl, "send reconnect to export target mds.%d\n", i); mutex_unlock(&mdsc->mutex); send_mds_reconnect(mdsc, s); ceph_put_mds_session(s); mutex_lock(&mdsc->mutex); } for (i = 0; i < newmap->possible_max_rank && i < mdsc->max_sessions; i++) { s = mdsc->sessions[i]; if (!s) continue; if (!ceph_mdsmap_is_laggy(newmap, i)) continue; if (s->s_state == CEPH_MDS_SESSION_OPEN || s->s_state == CEPH_MDS_SESSION_HUNG || s->s_state == CEPH_MDS_SESSION_CLOSING) { doutc(cl, " connecting to export targets of laggy mds%d\n", i); __open_export_target_sessions(mdsc, s); } } } /* * leases */ /* * caller must hold session s_mutex, dentry->d_lock */ void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) { struct ceph_dentry_info *di = ceph_dentry(dentry); ceph_put_mds_session(di->lease_session); di->lease_session = NULL; } static void handle_lease(struct ceph_mds_client *mdsc, struct ceph_mds_session *session, struct ceph_msg *msg) { struct ceph_client *cl = mdsc->fsc->client; struct super_block *sb = mdsc->fsc->sb; struct inode *inode; struct dentry *parent, *dentry; struct ceph_dentry_info *di; int mds = session->s_mds; struct ceph_mds_lease *h = msg->front.iov_base; u32 seq; struct ceph_vino vino; struct qstr dname; int release = 0; doutc(cl, "from mds%d\n", mds); if (!ceph_inc_mds_stopping_blocker(mdsc, session)) return; /* decode */ if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) goto bad; vino.ino = le64_to_cpu(h->ino); vino.snap = CEPH_NOSNAP; seq = le32_to_cpu(h->seq); dname.len = get_unaligned_le32(h + 1); if (msg->front.iov_len < sizeof(*h) + sizeof(u32) + dname.len) goto bad; dname.name = (void *)(h + 1) + sizeof(u32); /* lookup inode */ inode = ceph_find_inode(sb, vino); doutc(cl, "%s, ino %llx %p %.*s\n", ceph_lease_op_name(h->action), vino.ino, inode, dname.len, dname.name); mutex_lock(&session->s_mutex); if (!inode) { doutc(cl, "no inode %llx\n", vino.ino); goto release; } /* dentry */ parent = d_find_alias(inode); if (!parent) { doutc(cl, "no parent dentry on inode %p\n", inode); WARN_ON(1); goto release; /* hrm... */ } dname.hash = full_name_hash(parent, dname.name, dname.len); dentry = d_lookup(parent, &dname); dput(parent); if (!dentry) goto release; spin_lock(&dentry->d_lock); di = ceph_dentry(dentry); switch (h->action) { case CEPH_MDS_LEASE_REVOKE: if (di->lease_session == session) { if (ceph_seq_cmp(di->lease_seq, seq) > 0) h->seq = cpu_to_le32(di->lease_seq); __ceph_mdsc_drop_dentry_lease(dentry); } release = 1; break; case CEPH_MDS_LEASE_RENEW: if (di->lease_session == session && di->lease_gen == atomic_read(&session->s_cap_gen) && di->lease_renew_from && di->lease_renew_after == 0) { unsigned long duration = msecs_to_jiffies(le32_to_cpu(h->duration_ms)); di->lease_seq = seq; di->time = di->lease_renew_from + duration; di->lease_renew_after = di->lease_renew_from + (duration >> 1); di->lease_renew_from = 0; } break; } spin_unlock(&dentry->d_lock); dput(dentry); if (!release) goto out; release: /* let's just reuse the same message */ h->action = CEPH_MDS_LEASE_REVOKE_ACK; ceph_msg_get(msg); ceph_con_send(&session->s_con, msg); out: mutex_unlock(&session->s_mutex); iput(inode); ceph_dec_mds_stopping_blocker(mdsc); return; bad: ceph_dec_mds_stopping_blocker(mdsc); pr_err_client(cl, "corrupt lease message\n"); ceph_msg_dump(msg); } void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, struct dentry *dentry, char action, u32 seq) { struct ceph_client *cl = session->s_mdsc->fsc->client; struct ceph_msg *msg; struct ceph_mds_lease *lease; struct inode *dir; int len = sizeof(*lease) + sizeof(u32) + NAME_MAX; doutc(cl, "identry %p %s to mds%d\n", dentry, ceph_lease_op_name(action), session->s_mds); msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); if (!msg) return; lease = msg->front.iov_base; lease->action = action; lease->seq = cpu_to_le32(seq); spin_lock(&dentry->d_lock); dir = d_inode(dentry->d_parent); lease->ino = cpu_to_le64(ceph_ino(dir)); lease->first = lease->last = cpu_to_le64(ceph_snap(dir)); put_unaligned_le32(dentry->d_name.len, lease + 1); memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dentry->d_name.len); spin_unlock(&dentry->d_lock); ceph_con_send(&session->s_con, msg); } /* * lock unlock the session, to wait ongoing session activities */ static void lock_unlock_session(struct ceph_mds_session *s) { mutex_lock(&s->s_mutex); mutex_unlock(&s->s_mutex); } static void maybe_recover_session(struct ceph_mds_client *mdsc) { struct ceph_client *cl = mdsc->fsc->client; struct ceph_fs_client *fsc = mdsc->fsc; if (!ceph_test_mount_opt(fsc, CLEANRECOVER)) return; if (READ_ONCE(fsc->mount_state) != CEPH_MOUNT_MOUNTED) return; if (!READ_ONCE(fsc->blocklisted)) return; pr_info_client(cl, "auto reconnect after blocklisted\n"); ceph_force_reconnect(fsc->sb); } bool check_session_state(struct ceph_mds_session *s) { struct ceph_client *cl = s->s_mdsc->fsc->client; switch (s->s_state) { case CEPH_MDS_SESSION_OPEN: if (s->s_ttl && time_after(jiffies, s->s_ttl)) { s->s_state = CEPH_MDS_SESSION_HUNG; pr_info_client(cl, "mds%d hung\n", s->s_mds); } break; case CEPH_MDS_SESSION_CLOSING: case CEPH_MDS_SESSION_NEW: case CEPH_MDS_SESSION_RESTARTING: case CEPH_MDS_SESSION_CLOSED: case CEPH_MDS_SESSION_REJECTED: return false; } return true; } /* * If the sequence is incremented while we're waiting on a REQUEST_CLOSE reply, * then we need to retransmit that request. */ void inc_session_sequence(struct ceph_mds_session *s) { struct ceph_client *cl = s->s_mdsc->fsc->client; lockdep_assert_held(&s->s_mutex); s->s_seq++; if (s->s_state == CEPH_MDS_SESSION_CLOSING) { int ret; doutc(cl, "resending session close request for mds%d\n", s->s_mds); ret = request_close_session(s); if (ret < 0) pr_err_client(cl, "unable to close session to mds%d: %d\n", s->s_mds, ret); } } /* * delayed work -- periodically trim expired leases, renew caps with mds. If * the @delay parameter is set to 0 or if it's more than 5 secs, the default * workqueue delay value of 5 secs will be used. */ static void schedule_delayed(struct ceph_mds_client *mdsc, unsigned long delay) { unsigned long max_delay = HZ * 5; /* 5 secs default delay */ if (!delay || (delay > max_delay)) delay = max_delay; schedule_delayed_work(&mdsc->delayed_work, round_jiffies_relative(delay)); } static void delayed_work(struct work_struct *work) { struct ceph_mds_client *mdsc = container_of(work, struct ceph_mds_client, delayed_work.work); unsigned long delay; int renew_interval; int renew_caps; int i; doutc(mdsc->fsc->client, "mdsc delayed_work\n"); if (mdsc->stopping >= CEPH_MDSC_STOPPING_FLUSHED) return; mutex_lock(&mdsc->mutex); renew_interval = mdsc->mdsmap->m_session_timeout >> 2; renew_caps = time_after_eq(jiffies, HZ*renew_interval + mdsc->last_renew_caps); if (renew_caps) mdsc->last_renew_caps = jiffies; for (i = 0; i < mdsc->max_sessions; i++) { struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); if (!s) continue; if (!check_session_state(s)) { ceph_put_mds_session(s); continue; } mutex_unlock(&mdsc->mutex); ceph_flush_cap_releases(mdsc, s); mutex_lock(&s->s_mutex); if (renew_caps) send_renew_caps(mdsc, s); else ceph_con_keepalive(&s->s_con); if (s->s_state == CEPH_MDS_SESSION_OPEN || s->s_state == CEPH_MDS_SESSION_HUNG) ceph_send_cap_releases(mdsc, s); mutex_unlock(&s->s_mutex); ceph_put_mds_session(s); mutex_lock(&mdsc->mutex); } mutex_unlock(&mdsc->mutex); delay = ceph_check_delayed_caps(mdsc); ceph_queue_cap_reclaim_work(mdsc); ceph_trim_snapid_map(mdsc); maybe_recover_session(mdsc); schedule_delayed(mdsc, delay); } int ceph_mdsc_init(struct ceph_fs_client *fsc) { struct ceph_mds_client *mdsc; int err; mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); if (!mdsc) return -ENOMEM; mdsc->fsc = fsc; mutex_init(&mdsc->mutex); mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); if (!mdsc->mdsmap) { err = -ENOMEM; goto err_mdsc; } init_completion(&mdsc->safe_umount_waiters); spin_lock_init(&mdsc->stopping_lock); atomic_set(&mdsc->stopping_blockers, 0); init_completion(&mdsc->stopping_waiter); init_waitqueue_head(&mdsc->session_close_wq); INIT_LIST_HEAD(&mdsc->waiting_for_map); mdsc->quotarealms_inodes = RB_ROOT; mutex_init(&mdsc->quotarealms_inodes_mutex); init_rwsem(&mdsc->snap_rwsem); mdsc->snap_realms = RB_ROOT; INIT_LIST_HEAD(&mdsc->snap_empty); spin_lock_init(&mdsc->snap_empty_lock); mdsc->request_tree = RB_ROOT; INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); mdsc->last_renew_caps = jiffies; INIT_LIST_HEAD(&mdsc->cap_delay_list); #ifdef CONFIG_DEBUG_FS INIT_LIST_HEAD(&mdsc->cap_wait_list); #endif spin_lock_init(&mdsc->cap_delay_lock); INIT_LIST_HEAD(&mdsc->cap_unlink_delay_list); INIT_LIST_HEAD(&mdsc->snap_flush_list); spin_lock_init(&mdsc->snap_flush_lock); mdsc->last_cap_flush_tid = 1; INIT_LIST_HEAD(&mdsc->cap_flush_list); INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); spin_lock_init(&mdsc->cap_dirty_lock); init_waitqueue_head(&mdsc->cap_flushing_wq); INIT_WORK(&mdsc->cap_reclaim_work, ceph_cap_reclaim_work); INIT_WORK(&mdsc->cap_unlink_work, ceph_cap_unlink_work); err = ceph_metric_init(&mdsc->metric); if (err) goto err_mdsmap; spin_lock_init(&mdsc->dentry_list_lock); INIT_LIST_HEAD(&mdsc->dentry_leases); INIT_LIST_HEAD(&mdsc->dentry_dir_leases); ceph_caps_init(mdsc); ceph_adjust_caps_max_min(mdsc, fsc->mount_options); spin_lock_init(&mdsc->snapid_map_lock); mdsc->snapid_map_tree = RB_ROOT; INIT_LIST_HEAD(&mdsc->snapid_map_lru); init_rwsem(&mdsc->pool_perm_rwsem); mdsc->pool_perm_tree = RB_ROOT; strscpy(mdsc->nodename, utsname()->nodename, sizeof(mdsc->nodename)); fsc->mdsc = mdsc; return 0; err_mdsmap: kfree(mdsc->mdsmap); err_mdsc: kfree(mdsc); return err; } /* * Wait for safe replies on open mds requests. If we time out, drop * all requests from the tree to avoid dangling dentry refs. */ static void wait_requests(struct ceph_mds_client *mdsc) { struct ceph_client *cl = mdsc->fsc->client; struct ceph_options *opts = mdsc->fsc->client->options; struct ceph_mds_request *req; mutex_lock(&mdsc->mutex); if (__get_oldest_req(mdsc)) { mutex_unlock(&mdsc->mutex); doutc(cl, "waiting for requests\n"); wait_for_completion_timeout(&mdsc->safe_umount_waiters, ceph_timeout_jiffies(opts->mount_timeout)); /* tear down remaining requests */ mutex_lock(&mdsc->mutex); while ((req = __get_oldest_req(mdsc))) { doutc(cl, "timed out on tid %llu\n", req->r_tid); list_del_init(&req->r_wait); __unregister_request(mdsc, req); } } mutex_unlock(&mdsc->mutex); doutc(cl, "done\n"); } void send_flush_mdlog(struct ceph_mds_session *s) { struct ceph_client *cl = s->s_mdsc->fsc->client; struct ceph_msg *msg; /* * Pre-luminous MDS crashes when it sees an unknown session request */ if (!CEPH_HAVE_FEATURE(s->s_con.peer_features, SERVER_LUMINOUS)) return; mutex_lock(&s->s_mutex); doutc(cl, "request mdlog flush to mds%d (%s)s seq %lld\n", s->s_mds, ceph_session_state_name(s->s_state), s->s_seq); msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_FLUSH_MDLOG, s->s_seq); if (!msg) { pr_err_client(cl, "failed to request mdlog flush to mds%d (%s) seq %lld\n", s->s_mds, ceph_session_state_name(s->s_state), s->s_seq); } else { ceph_con_send(&s->s_con, msg); } mutex_unlock(&s->s_mutex); } static int ceph_mds_auth_match(struct ceph_mds_client *mdsc, struct ceph_mds_cap_auth *auth, char *tpath) { const struct cred *cred = get_current_cred(); u32 caller_uid = from_kuid(&init_user_ns, cred->fsuid); u32 caller_gid = from_kgid(&init_user_ns, cred->fsgid); struct ceph_client *cl = mdsc->fsc->client; const char *spath = mdsc->fsc->mount_options->server_path; bool gid_matched = false; u32 gid, tlen, len; int i, j; doutc(cl, "match.uid %lld\n", auth->match.uid); if (auth->match.uid != MDS_AUTH_UID_ANY) { if (auth->match.uid != caller_uid) return 0; if (auth->match.num_gids) { for (i = 0; i < auth->match.num_gids; i++) { if (caller_gid == auth->match.gids[i]) gid_matched = true; } if (!gid_matched && cred->group_info->ngroups) { for (i = 0; i < cred->group_info->ngroups; i++) { gid = from_kgid(&init_user_ns, cred->group_info->gid[i]); for (j = 0; j < auth->match.num_gids; j++) { if (gid == auth->match.gids[j]) { gid_matched = true; break; } } if (gid_matched) break; } } if (!gid_matched) return 0; } } /* path match */ if (auth->match.path) { if (!tpath) return 0; tlen = strlen(tpath); len = strlen(auth->match.path); if (len) { char *_tpath = tpath; bool free_tpath = false; int m, n; doutc(cl, "server path %s, tpath %s, match.path %s\n", spath, tpath, auth->match.path); if (spath && (m = strlen(spath)) != 1) { /* mount path + '/' + tpath + an extra space */ n = m + 1 + tlen + 1; _tpath = kmalloc(n, GFP_NOFS); if (!_tpath) return -ENOMEM; /* remove the leading '/' */ snprintf(_tpath, n, "%s/%s", spath + 1, tpath); free_tpath = true; tlen = strlen(_tpath); } /* * Please note the tailing '/' for match.path has already * been removed when parsing. * * Remove the tailing '/' for the target path. */ while (tlen && _tpath[tlen - 1] == '/') { _tpath[tlen - 1] = '\0'; tlen -= 1; } doutc(cl, "_tpath %s\n", _tpath); /* * In case first == _tpath && tlen == len: * match.path=/foo --> /foo _path=/foo --> match * match.path=/foo/ --> /foo _path=/foo --> match * * In case first == _tmatch.path && tlen > len: * match.path=/foo/ --> /foo _path=/foo/ --> match * match.path=/foo --> /foo _path=/foo/ --> match * match.path=/foo/ --> /foo _path=/foo/d --> match * match.path=/foo --> /foo _path=/food --> mismatch * * All the other cases --> mismatch */ char *first = strstr(_tpath, auth->match.path); if (first != _tpath) { if (free_tpath) kfree(_tpath); return 0; } if (tlen > len && _tpath[len] != '/') { if (free_tpath) kfree(_tpath); return 0; } } } doutc(cl, "matched\n"); return 1; } int ceph_mds_check_access(struct ceph_mds_client *mdsc, char *tpath, int mask) { const struct cred *cred = get_current_cred(); u32 caller_uid = from_kuid(&init_user_ns, cred->fsuid); u32 caller_gid = from_kgid(&init_user_ns, cred->fsgid); struct ceph_mds_cap_auth *rw_perms_s = NULL; struct ceph_client *cl = mdsc->fsc->client; bool root_squash_perms = true; int i, err; doutc(cl, "tpath '%s', mask %d, caller_uid %d, caller_gid %d\n", tpath, mask, caller_uid, caller_gid); for (i = 0; i < mdsc->s_cap_auths_num; i++) { struct ceph_mds_cap_auth *s = &mdsc->s_cap_auths[i]; err = ceph_mds_auth_match(mdsc, s, tpath); if (err < 0) { return err; } else if (err > 0) { /* always follow the last auth caps' permision */ root_squash_perms = true; rw_perms_s = NULL; if ((mask & MAY_WRITE) && s->writeable && s->match.root_squash && (!caller_uid || !caller_gid)) root_squash_perms = false; if (((mask & MAY_WRITE) && !s->writeable) || ((mask & MAY_READ) && !s->readable)) rw_perms_s = s; } } doutc(cl, "root_squash_perms %d, rw_perms_s %p\n", root_squash_perms, rw_perms_s); if (root_squash_perms && rw_perms_s == NULL) { doutc(cl, "access allowed\n"); return 0; } if (!root_squash_perms) { doutc(cl, "root_squash is enabled and user(%d %d) isn't allowed to write", caller_uid, caller_gid); } if (rw_perms_s) { doutc(cl, "mds auth caps readable/writeable %d/%d while request r/w %d/%d", rw_perms_s->readable, rw_perms_s->writeable, !!(mask & MAY_READ), !!(mask & MAY_WRITE)); } doutc(cl, "access denied\n"); return -EACCES; } /* * called before mount is ro, and before dentries are torn down. * (hmm, does this still race with new lookups?) */ void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) { doutc(mdsc->fsc->client, "begin\n"); mdsc->stopping = CEPH_MDSC_STOPPING_BEGIN; ceph_mdsc_iterate_sessions(mdsc, send_flush_mdlog, true); ceph_mdsc_iterate_sessions(mdsc, lock_unlock_session, false); ceph_flush_dirty_caps(mdsc); wait_requests(mdsc); /* * wait for reply handlers to drop their request refs and * their inode/dcache refs */ ceph_msgr_flush(); ceph_cleanup_quotarealms_inodes(mdsc); doutc(mdsc->fsc->client, "done\n"); } /* * flush the mdlog and wait for all write mds requests to flush. */ static void flush_mdlog_and_wait_mdsc_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) { struct ceph_client *cl = mdsc->fsc->client; struct ceph_mds_request *req = NULL, *nextreq; struct ceph_mds_session *last_session = NULL; struct rb_node *n; mutex_lock(&mdsc->mutex); doutc(cl, "want %lld\n", want_tid); restart: req = __get_oldest_req(mdsc); while (req && req->r_tid <= want_tid) { /* find next request */ n = rb_next(&req->r_node); if (n) nextreq = rb_entry(n, struct ceph_mds_request, r_node); else nextreq = NULL; if (req->r_op != CEPH_MDS_OP_SETFILELOCK && (req->r_op & CEPH_MDS_OP_WRITE)) { struct ceph_mds_session *s = req->r_session; if (!s) { req = nextreq; continue; } /* write op */ ceph_mdsc_get_request(req); if (nextreq) ceph_mdsc_get_request(nextreq); s = ceph_get_mds_session(s); mutex_unlock(&mdsc->mutex); /* send flush mdlog request to MDS */ if (last_session != s) { send_flush_mdlog(s); ceph_put_mds_session(last_session); last_session = s; } else { ceph_put_mds_session(s); } doutc(cl, "wait on %llu (want %llu)\n", req->r_tid, want_tid); wait_for_completion(&req->r_safe_completion); mutex_lock(&mdsc->mutex); ceph_mdsc_put_request(req); if (!nextreq) break; /* next dne before, so we're done! */ if (RB_EMPTY_NODE(&nextreq->r_node)) { /* next request was removed from tree */ ceph_mdsc_put_request(nextreq); goto restart; } ceph_mdsc_put_request(nextreq); /* won't go away */ } req = nextreq; } mutex_unlock(&mdsc->mutex); ceph_put_mds_session(last_session); doutc(cl, "done\n"); } void ceph_mdsc_sync(struct ceph_mds_client *mdsc) { struct ceph_client *cl = mdsc->fsc->client; u64 want_tid, want_flush; if (READ_ONCE(mdsc->fsc->mount_state) >= CEPH_MOUNT_SHUTDOWN) return; doutc(cl, "sync\n"); mutex_lock(&mdsc->mutex); want_tid = mdsc->last_tid; mutex_unlock(&mdsc->mutex); ceph_flush_dirty_caps(mdsc); spin_lock(&mdsc->cap_dirty_lock); want_flush = mdsc->last_cap_flush_tid; if (!list_empty(&mdsc->cap_flush_list)) { struct ceph_cap_flush *cf = list_last_entry(&mdsc->cap_flush_list, struct ceph_cap_flush, g_list); cf->wake = true; } spin_unlock(&mdsc->cap_dirty_lock); doutc(cl, "sync want tid %lld flush_seq %lld\n", want_tid, want_flush); flush_mdlog_and_wait_mdsc_unsafe_requests(mdsc, want_tid); wait_caps_flush(mdsc, want_flush); } /* * true if all sessions are closed, or we force unmount */ static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped) { if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) return true; return atomic_read(&mdsc->num_sessions) <= skipped; } /* * called after sb is ro or when metadata corrupted. */ void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) { struct ceph_options *opts = mdsc->fsc->client->options; struct ceph_client *cl = mdsc->fsc->client; struct ceph_mds_session *session; int i; int skipped = 0; doutc(cl, "begin\n"); /* close sessions */ mutex_lock(&mdsc->mutex); for (i = 0; i < mdsc->max_sessions; i++) { session = __ceph_lookup_mds_session(mdsc, i); if (!session) continue; mutex_unlock(&mdsc->mutex); mutex_lock(&session->s_mutex); if (__close_session(mdsc, session) <= 0) skipped++; mutex_unlock(&session->s_mutex); ceph_put_mds_session(session); mutex_lock(&mdsc->mutex); } mutex_unlock(&mdsc->mutex); doutc(cl, "waiting for sessions to close\n"); wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc, skipped), ceph_timeout_jiffies(opts->mount_timeout)); /* tear down remaining sessions */ mutex_lock(&mdsc->mutex); for (i = 0; i < mdsc->max_sessions; i++) { if (mdsc->sessions[i]) { session = ceph_get_mds_session(mdsc->sessions[i]); __unregister_session(mdsc, session); mutex_unlock(&mdsc->mutex); mutex_lock(&session->s_mutex); remove_session_caps(session); mutex_unlock(&session->s_mutex); ceph_put_mds_session(session); mutex_lock(&mdsc->mutex); } } WARN_ON(!list_empty(&mdsc->cap_delay_list)); mutex_unlock(&mdsc->mutex); ceph_cleanup_snapid_map(mdsc); ceph_cleanup_global_and_empty_realms(mdsc); cancel_work_sync(&mdsc->cap_reclaim_work); cancel_work_sync(&mdsc->cap_unlink_work); cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ doutc(cl, "done\n"); } void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc) { struct ceph_mds_session *session; int mds; doutc(mdsc->fsc->client, "force umount\n"); mutex_lock(&mdsc->mutex); for (mds = 0; mds < mdsc->max_sessions; mds++) { session = __ceph_lookup_mds_session(mdsc, mds); if (!session) continue; if (session->s_state == CEPH_MDS_SESSION_REJECTED) __unregister_session(mdsc, session); __wake_requests(mdsc, &session->s_waiting); mutex_unlock(&mdsc->mutex); mutex_lock(&session->s_mutex); __close_session(mdsc, session); if (session->s_state == CEPH_MDS_SESSION_CLOSING) { cleanup_session_requests(mdsc, session); remove_session_caps(session); } mutex_unlock(&session->s_mutex); ceph_put_mds_session(session); mutex_lock(&mdsc->mutex); kick_requests(mdsc, mds); } __wake_requests(mdsc, &mdsc->waiting_for_map); mutex_unlock(&mdsc->mutex); } static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) { doutc(mdsc->fsc->client, "stop\n"); /* * Make sure the delayed work stopped before releasing * the resources. * * Because the cancel_delayed_work_sync() will only * guarantee that the work finishes executing. But the * delayed work will re-arm itself again after that. */ flush_delayed_work(&mdsc->delayed_work); if (mdsc->mdsmap) ceph_mdsmap_destroy(mdsc->mdsmap); kfree(mdsc->sessions); ceph_caps_finalize(mdsc); ceph_pool_perm_destroy(mdsc); } void ceph_mdsc_destroy(struct ceph_fs_client *fsc) { struct ceph_mds_client *mdsc = fsc->mdsc; doutc(fsc->client, "%p\n", mdsc); if (!mdsc) return; /* flush out any connection work with references to us */ ceph_msgr_flush(); ceph_mdsc_stop(mdsc); ceph_metric_destroy(&mdsc->metric); fsc->mdsc = NULL; kfree(mdsc); doutc(fsc->client, "%p done\n", mdsc); } void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) { struct ceph_fs_client *fsc = mdsc->fsc; struct ceph_client *cl = fsc->client; const char *mds_namespace = fsc->mount_options->mds_namespace; void *p = msg->front.iov_base; void *end = p + msg->front.iov_len; u32 epoch; u32 num_fs; u32 mount_fscid = (u32)-1; int err = -EINVAL; ceph_decode_need(&p, end, sizeof(u32), bad); epoch = ceph_decode_32(&p); doutc(cl, "epoch %u\n", epoch); /* struct_v, struct_cv, map_len, epoch, legacy_client_fscid */ ceph_decode_skip_n(&p, end, 2 + sizeof(u32) * 3, bad); ceph_decode_32_safe(&p, end, num_fs, bad); while (num_fs-- > 0) { void *info_p, *info_end; u32 info_len; u32 fscid, namelen; ceph_decode_need(&p, end, 2 + sizeof(u32), bad); p += 2; // info_v, info_cv info_len = ceph_decode_32(&p); ceph_decode_need(&p, end, info_len, bad); info_p = p; info_end = p + info_len; p = info_end; ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad); fscid = ceph_decode_32(&info_p); namelen = ceph_decode_32(&info_p); ceph_decode_need(&info_p, info_end, namelen, bad); if (mds_namespace && strlen(mds_namespace) == namelen && !strncmp(mds_namespace, (char *)info_p, namelen)) { mount_fscid = fscid; break; } } ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch); if (mount_fscid != (u32)-1) { fsc->client->monc.fs_cluster_id = mount_fscid; ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP, 0, true); ceph_monc_renew_subs(&fsc->client->monc); } else { err = -ENOENT; goto err_out; } return; bad: pr_err_client(cl, "error decoding fsmap %d. Shutting down mount.\n", err); ceph_umount_begin(mdsc->fsc->sb); ceph_msg_dump(msg); err_out: mutex_lock(&mdsc->mutex); mdsc->mdsmap_err = err; __wake_requests(mdsc, &mdsc->waiting_for_map); mutex_unlock(&mdsc->mutex); } /* * handle mds map update. */ void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) { struct ceph_client *cl = mdsc->fsc->client; u32 epoch; u32 maplen; void *p = msg->front.iov_base; void *end = p + msg->front.iov_len; struct ceph_mdsmap *newmap, *oldmap; struct ceph_fsid fsid; int err = -EINVAL; ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); ceph_decode_copy(&p, &fsid, sizeof(fsid)); if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) return; epoch = ceph_decode_32(&p); maplen = ceph_decode_32(&p); doutc(cl, "epoch %u len %d\n", epoch, (int)maplen); /* do we need it? */ mutex_lock(&mdsc->mutex); if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { doutc(cl, "epoch %u <= our %u\n", epoch, mdsc->mdsmap->m_epoch); mutex_unlock(&mdsc->mutex); return; } newmap = ceph_mdsmap_decode(mdsc, &p, end, ceph_msgr2(mdsc->fsc->client)); if (IS_ERR(newmap)) { err = PTR_ERR(newmap); goto bad_unlock; } /* swap into place */ if (mdsc->mdsmap) { oldmap = mdsc->mdsmap; mdsc->mdsmap = newmap; check_new_map(mdsc, newmap, oldmap); ceph_mdsmap_destroy(oldmap); } else { mdsc->mdsmap = newmap; /* first mds map */ } mdsc->fsc->max_file_size = min((loff_t)mdsc->mdsmap->m_max_file_size, MAX_LFS_FILESIZE); __wake_requests(mdsc, &mdsc->waiting_for_map); ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP, mdsc->mdsmap->m_epoch); mutex_unlock(&mdsc->mutex); schedule_delayed(mdsc, 0); return; bad_unlock: mutex_unlock(&mdsc->mutex); bad: pr_err_client(cl, "error decoding mdsmap %d. Shutting down mount.\n", err); ceph_umount_begin(mdsc->fsc->sb); ceph_msg_dump(msg); return; } static struct ceph_connection *mds_get_con(struct ceph_connection *con) { struct ceph_mds_session *s = con->private; if (ceph_get_mds_session(s)) return con; return NULL; } static void mds_put_con(struct ceph_connection *con) { struct ceph_mds_session *s = con->private; ceph_put_mds_session(s); } /* * if the client is unresponsive for long enough, the mds will kill * the session entirely. */ static void mds_peer_reset(struct ceph_connection *con) { struct ceph_mds_session *s = con->private; struct ceph_mds_client *mdsc = s->s_mdsc; pr_warn_client(mdsc->fsc->client, "mds%d closed our session\n", s->s_mds); if (READ_ONCE(mdsc->fsc->mount_state) != CEPH_MOUNT_FENCE_IO && ceph_mdsmap_get_state(mdsc->mdsmap, s->s_mds) >= CEPH_MDS_STATE_RECONNECT) send_mds_reconnect(mdsc, s); } static void mds_dispatch(struct ceph_connection *con, struct ceph_msg *msg) { struct ceph_mds_session *s = con->private; struct ceph_mds_client *mdsc = s->s_mdsc; struct ceph_client *cl = mdsc->fsc->client; int type = le16_to_cpu(msg->hdr.type); mutex_lock(&mdsc->mutex); if (__verify_registered_session(mdsc, s) < 0) { mutex_unlock(&mdsc->mutex); goto out; } mutex_unlock(&mdsc->mutex); switch (type) { case CEPH_MSG_MDS_MAP: ceph_mdsc_handle_mdsmap(mdsc, msg); break; case CEPH_MSG_FS_MAP_USER: ceph_mdsc_handle_fsmap(mdsc, msg); break; case CEPH_MSG_CLIENT_SESSION: handle_session(s, msg); break; case CEPH_MSG_CLIENT_REPLY: handle_reply(s, msg); break; case CEPH_MSG_CLIENT_REQUEST_FORWARD: handle_forward(mdsc, s, msg); break; case CEPH_MSG_CLIENT_CAPS: ceph_handle_caps(s, msg); break; case CEPH_MSG_CLIENT_SNAP: ceph_handle_snap(mdsc, s, msg); break; case CEPH_MSG_CLIENT_LEASE: handle_lease(mdsc, s, msg); break; case CEPH_MSG_CLIENT_QUOTA: ceph_handle_quota(mdsc, s, msg); break; default: pr_err_client(cl, "received unknown message type %d %s\n", type, ceph_msg_type_name(type)); } out: ceph_msg_put(msg); } /* * authentication */ /* * Note: returned pointer is the address of a structure that's * managed separately. Caller must *not* attempt to free it. */ static struct ceph_auth_handshake * mds_get_authorizer(struct ceph_connection *con, int *proto, int force_new) { struct ceph_mds_session *s = con->private; struct ceph_mds_client *mdsc = s->s_mdsc; struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; struct ceph_auth_handshake *auth = &s->s_auth; int ret; ret = __ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS, force_new, proto, NULL, NULL); if (ret) return ERR_PTR(ret); return auth; } static int mds_add_authorizer_challenge(struct ceph_connection *con, void *challenge_buf, int challenge_buf_len) { struct ceph_mds_session *s = con->private; struct ceph_mds_client *mdsc = s->s_mdsc; struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; return ceph_auth_add_authorizer_challenge(ac, s->s_auth.authorizer, challenge_buf, challenge_buf_len); } static int mds_verify_authorizer_reply(struct ceph_connection *con) { struct ceph_mds_session *s = con->private; struct ceph_mds_client *mdsc = s->s_mdsc; struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; struct ceph_auth_handshake *auth = &s->s_auth; return ceph_auth_verify_authorizer_reply(ac, auth->authorizer, auth->authorizer_reply_buf, auth->authorizer_reply_buf_len, NULL, NULL, NULL, NULL); } static int mds_invalidate_authorizer(struct ceph_connection *con) { struct ceph_mds_session *s = con->private; struct ceph_mds_client *mdsc = s->s_mdsc; struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); return ceph_monc_validate_auth(&mdsc->fsc->client->monc); } static int mds_get_auth_request(struct ceph_connection *con, void *buf, int *buf_len, void **authorizer, int *authorizer_len) { struct ceph_mds_session *s = con->private; struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; struct ceph_auth_handshake *auth = &s->s_auth; int ret; ret = ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS, buf, buf_len); if (ret) return ret; *authorizer = auth->authorizer_buf; *authorizer_len = auth->authorizer_buf_len; return 0; } static int mds_handle_auth_reply_more(struct ceph_connection *con, void *reply, int reply_len, void *buf, int *buf_len, void **authorizer, int *authorizer_len) { struct ceph_mds_session *s = con->private; struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; struct ceph_auth_handshake *auth = &s->s_auth; int ret; ret = ceph_auth_handle_svc_reply_more(ac, auth, reply, reply_len, buf, buf_len); if (ret) return ret; *authorizer = auth->authorizer_buf; *authorizer_len = auth->authorizer_buf_len; return 0; } static int mds_handle_auth_done(struct ceph_connection *con, u64 global_id, void *reply, int reply_len, u8 *session_key, int *session_key_len, u8 *con_secret, int *con_secret_len) { struct ceph_mds_session *s = con->private; struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; struct ceph_auth_handshake *auth = &s->s_auth; return ceph_auth_handle_svc_reply_done(ac, auth, reply, reply_len, session_key, session_key_len, con_secret, con_secret_len); } static int mds_handle_auth_bad_method(struct ceph_connection *con, int used_proto, int result, const int *allowed_protos, int proto_cnt, const int *allowed_modes, int mode_cnt) { struct ceph_mds_session *s = con->private; struct ceph_mon_client *monc = &s->s_mdsc->fsc->client->monc; int ret; if (ceph_auth_handle_bad_authorizer(monc->auth, CEPH_ENTITY_TYPE_MDS, used_proto, result, allowed_protos, proto_cnt, allowed_modes, mode_cnt)) { ret = ceph_monc_validate_auth(monc); if (ret) return ret; } return -EACCES; } static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, struct ceph_msg_header *hdr, int *skip) { struct ceph_msg *msg; int type = (int) le16_to_cpu(hdr->type); int front_len = (int) le32_to_cpu(hdr->front_len); if (con->in_msg) return con->in_msg; *skip = 0; msg = ceph_msg_new(type, front_len, GFP_NOFS, false); if (!msg) { pr_err("unable to allocate msg type %d len %d\n", type, front_len); return NULL; } return msg; } static int mds_sign_message(struct ceph_msg *msg) { struct ceph_mds_session *s = msg->con->private; struct ceph_auth_handshake *auth = &s->s_auth; return ceph_auth_sign_message(auth, msg); } static int mds_check_message_signature(struct ceph_msg *msg) { struct ceph_mds_session *s = msg->con->private; struct ceph_auth_handshake *auth = &s->s_auth; return ceph_auth_check_message_signature(auth, msg); } static const struct ceph_connection_operations mds_con_ops = { .get = mds_get_con, .put = mds_put_con, .alloc_msg = mds_alloc_msg, .dispatch = mds_dispatch, .peer_reset = mds_peer_reset, .get_authorizer = mds_get_authorizer, .add_authorizer_challenge = mds_add_authorizer_challenge, .verify_authorizer_reply = mds_verify_authorizer_reply, .invalidate_authorizer = mds_invalidate_authorizer, .sign_message = mds_sign_message, .check_message_signature = mds_check_message_signature, .get_auth_request = mds_get_auth_request, .handle_auth_reply_more = mds_handle_auth_reply_more, .handle_auth_done = mds_handle_auth_done, .handle_auth_bad_method = mds_handle_auth_bad_method, }; /* eof */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1