Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexander Aring | 5408 | 62.11% | 78 | 53.42% |
David Teigland | 1336 | 15.34% | 8 | 5.48% |
Patrick Caulfield | 756 | 8.68% | 10 | 6.85% |
Marcelo Ricardo Leitner | 338 | 3.88% | 2 | 1.37% |
Robert S Peterson | 255 | 2.93% | 5 | 3.42% |
Christine Caulfield | 165 | 1.90% | 2 | 1.37% |
tsutomu.owa@toshiba.co.jp | 104 | 1.19% | 8 | 5.48% |
Michael Christie | 97 | 1.11% | 2 | 1.37% |
David S. Miller | 75 | 0.86% | 1 | 0.68% |
David Howells | 50 | 0.57% | 1 | 0.68% |
Christoph Hellwig | 21 | 0.24% | 3 | 2.05% |
Benjamin Coddington | 14 | 0.16% | 1 | 0.68% |
Eric Dumazet | 11 | 0.13% | 2 | 1.37% |
Peilin Ye | 10 | 0.11% | 1 | 0.68% |
Denys Vlasenko | 8 | 0.09% | 1 | 0.68% |
Lars Marowsky-Bree | 7 | 0.08% | 1 | 0.68% |
Al Viro | 7 | 0.08% | 1 | 0.68% |
Steven Whitehouse | 6 | 0.07% | 2 | 1.37% |
David Windsor | 5 | 0.06% | 1 | 0.68% |
Jordan Rife | 5 | 0.06% | 1 | 0.68% |
Joe Perches | 4 | 0.05% | 2 | 1.37% |
Dan Carpenter | 3 | 0.03% | 1 | 0.68% |
Satoru Moriya | 3 | 0.03% | 1 | 0.68% |
Lon Hohberger | 3 | 0.03% | 1 | 0.68% |
Matthias Kaehlcke | 3 | 0.03% | 1 | 0.68% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.68% |
Namhyung Kim | 2 | 0.02% | 1 | 0.68% |
Benjamin Poirier | 2 | 0.02% | 1 | 0.68% |
Linus Torvalds (pre-git) | 2 | 0.02% | 1 | 0.68% |
Dongmao Zhang | 1 | 0.01% | 1 | 0.68% |
Linus Torvalds | 1 | 0.01% | 1 | 0.68% |
Daniel Borkmann | 1 | 0.01% | 1 | 0.68% |
Edwin Török | 1 | 0.01% | 1 | 0.68% |
Kunwu Chan | 1 | 0.01% | 1 | 0.68% |
Total | 8707 | 146 |
// SPDX-License-Identifier: GPL-2.0-only /****************************************************************************** ******************************************************************************* ** ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved. ** ** ******************************************************************************* ******************************************************************************/ /* * lowcomms.c * * This is the "low-level" comms layer. * * It is responsible for sending/receiving messages * from other nodes in the cluster. * * Cluster nodes are referred to by their nodeids. nodeids are * simply 32 bit numbers to the locking module - if they need to * be expanded for the cluster infrastructure then that is its * responsibility. It is this layer's * responsibility to resolve these into IP address or * whatever it needs for inter-node communication. * * The comms level is two kernel threads that deal mainly with * the receiving of messages from other nodes and passing them * up to the mid-level comms layer (which understands the * message format) for execution by the locking core, and * a send thread which does all the setting up of connections * to remote nodes and the sending of data. Threads are not allowed * to send their own data because it may cause them to wait in times * of high load. Also, this way, the sending thread can collect together * messages bound for one node and send them in one block. * * lowcomms will choose to use either TCP or SCTP as its transport layer * depending on the configuration variable 'protocol'. This should be set * to 0 (default) for TCP or 1 for SCTP. It should be configured using a * cluster-wide mechanism as it must be the same on all nodes of the cluster * for the DLM to function. * */ #include <asm/ioctls.h> #include <net/sock.h> #include <net/tcp.h> #include <linux/pagemap.h> #include <linux/file.h> #include <linux/mutex.h> #include <linux/sctp.h> #include <linux/slab.h> #include <net/sctp/sctp.h> #include <net/ipv6.h> #include <trace/events/dlm.h> #include <trace/events/sock.h> #include "dlm_internal.h" #include "lowcomms.h" #include "midcomms.h" #include "memory.h" #include "config.h" #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000) #define DLM_MAX_PROCESS_BUFFERS 24 #define NEEDED_RMEM (4*1024*1024) struct connection { struct socket *sock; /* NULL if not connected */ uint32_t nodeid; /* So we know who we are in the list */ /* this semaphore is used to allow parallel recv/send in read * lock mode. When we release a sock we need to held the write lock. * * However this is locking code and not nice. When we remove the * othercon handling we can look into other mechanism to synchronize * io handling to call sock_release() at the right time. */ struct rw_semaphore sock_lock; unsigned long flags; #define CF_APP_LIMITED 0 #define CF_RECV_PENDING 1 #define CF_SEND_PENDING 2 #define CF_RECV_INTR 3 #define CF_IO_STOP 4 #define CF_IS_OTHERCON 5 struct list_head writequeue; /* List of outgoing writequeue_entries */ spinlock_t writequeue_lock; int retries; struct hlist_node list; /* due some connect()/accept() races we currently have this cross over * connection attempt second connection for one node. * * There is a solution to avoid the race by introducing a connect * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to * connect. Otherside can connect but will only be considered that * the other side wants to have a reconnect. * * However changing to this behaviour will break backwards compatible. * In a DLM protocol major version upgrade we should remove this! */ struct connection *othercon; struct work_struct rwork; /* receive worker */ struct work_struct swork; /* send worker */ wait_queue_head_t shutdown_wait; unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE]; int rx_leftover; int mark; int addr_count; int curr_addr_index; struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT]; spinlock_t addrs_lock; struct rcu_head rcu; }; #define sock2con(x) ((struct connection *)(x)->sk_user_data) struct listen_connection { struct socket *sock; struct work_struct rwork; }; #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end) #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset) /* An entry waiting to be sent */ struct writequeue_entry { struct list_head list; struct page *page; int offset; int len; int end; int users; bool dirty; struct connection *con; struct list_head msgs; struct kref ref; }; struct dlm_msg { struct writequeue_entry *entry; struct dlm_msg *orig_msg; bool retransmit; void *ppc; int len; int idx; /* new()/commit() idx exchange */ struct list_head list; struct kref ref; }; struct processqueue_entry { unsigned char *buf; int nodeid; int buflen; struct list_head list; }; struct dlm_proto_ops { bool try_new_addr; const char *name; int proto; int (*connect)(struct connection *con, struct socket *sock, struct sockaddr *addr, int addr_len); void (*sockopts)(struct socket *sock); int (*bind)(struct socket *sock); int (*listen_validate)(void); void (*listen_sockopts)(struct socket *sock); int (*listen_bind)(struct socket *sock); }; static struct listen_sock_callbacks { void (*sk_error_report)(struct sock *); void (*sk_data_ready)(struct sock *); void (*sk_state_change)(struct sock *); void (*sk_write_space)(struct sock *); } listen_sock; static struct listen_connection listen_con; static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT]; static int dlm_local_count; /* Work queues */ static struct workqueue_struct *io_workqueue; static struct workqueue_struct *process_workqueue; static struct hlist_head connection_hash[CONN_HASH_SIZE]; static DEFINE_SPINLOCK(connections_lock); DEFINE_STATIC_SRCU(connections_srcu); static const struct dlm_proto_ops *dlm_proto_ops; #define DLM_IO_SUCCESS 0 #define DLM_IO_END 1 #define DLM_IO_EOF 2 #define DLM_IO_RESCHED 3 #define DLM_IO_FLUSH 4 static void process_recv_sockets(struct work_struct *work); static void process_send_sockets(struct work_struct *work); static void process_dlm_messages(struct work_struct *work); static DECLARE_WORK(process_work, process_dlm_messages); static DEFINE_SPINLOCK(processqueue_lock); static bool process_dlm_messages_pending; static DECLARE_WAIT_QUEUE_HEAD(processqueue_wq); static atomic_t processqueue_count; static LIST_HEAD(processqueue); bool dlm_lowcomms_is_running(void) { return !!listen_con.sock; } static void lowcomms_queue_swork(struct connection *con) { assert_spin_locked(&con->writequeue_lock); if (!test_bit(CF_IO_STOP, &con->flags) && !test_bit(CF_APP_LIMITED, &con->flags) && !test_and_set_bit(CF_SEND_PENDING, &con->flags)) queue_work(io_workqueue, &con->swork); } static void lowcomms_queue_rwork(struct connection *con) { #ifdef CONFIG_LOCKDEP WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk)); #endif if (!test_bit(CF_IO_STOP, &con->flags) && !test_and_set_bit(CF_RECV_PENDING, &con->flags)) queue_work(io_workqueue, &con->rwork); } static void writequeue_entry_ctor(void *data) { struct writequeue_entry *entry = data; INIT_LIST_HEAD(&entry->msgs); } struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void) { return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry), 0, 0, writequeue_entry_ctor); } struct kmem_cache *dlm_lowcomms_msg_cache_create(void) { return KMEM_CACHE(dlm_msg, 0); } /* need to held writequeue_lock */ static struct writequeue_entry *con_next_wq(struct connection *con) { struct writequeue_entry *e; e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry, list); /* if len is zero nothing is to send, if there are users filling * buffers we wait until the users are done so we can send more. */ if (!e || e->users || e->len == 0) return NULL; return e; } static struct connection *__find_con(int nodeid, int r) { struct connection *con; hlist_for_each_entry_rcu(con, &connection_hash[r], list) { if (con->nodeid == nodeid) return con; } return NULL; } static void dlm_con_init(struct connection *con, int nodeid) { con->nodeid = nodeid; init_rwsem(&con->sock_lock); INIT_LIST_HEAD(&con->writequeue); spin_lock_init(&con->writequeue_lock); INIT_WORK(&con->swork, process_send_sockets); INIT_WORK(&con->rwork, process_recv_sockets); spin_lock_init(&con->addrs_lock); init_waitqueue_head(&con->shutdown_wait); } /* * If 'allocation' is zero then we don't attempt to create a new * connection structure for this node. */ static struct connection *nodeid2con(int nodeid, gfp_t alloc) { struct connection *con, *tmp; int r; r = nodeid_hash(nodeid); con = __find_con(nodeid, r); if (con || !alloc) return con; con = kzalloc(sizeof(*con), alloc); if (!con) return NULL; dlm_con_init(con, nodeid); spin_lock(&connections_lock); /* Because multiple workqueues/threads calls this function it can * race on multiple cpu's. Instead of locking hot path __find_con() * we just check in rare cases of recently added nodes again * under protection of connections_lock. If this is the case we * abort our connection creation and return the existing connection. */ tmp = __find_con(nodeid, r); if (tmp) { spin_unlock(&connections_lock); kfree(con); return tmp; } hlist_add_head_rcu(&con->list, &connection_hash[r]); spin_unlock(&connections_lock); return con; } static int addr_compare(const struct sockaddr_storage *x, const struct sockaddr_storage *y) { switch (x->ss_family) { case AF_INET: { struct sockaddr_in *sinx = (struct sockaddr_in *)x; struct sockaddr_in *siny = (struct sockaddr_in *)y; if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr) return 0; if (sinx->sin_port != siny->sin_port) return 0; break; } case AF_INET6: { struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x; struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y; if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr)) return 0; if (sinx->sin6_port != siny->sin6_port) return 0; break; } default: return 0; } return 1; } static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out, struct sockaddr *sa_out, bool try_new_addr, unsigned int *mark) { struct sockaddr_storage sas; struct connection *con; int idx; if (!dlm_local_count) return -1; idx = srcu_read_lock(&connections_srcu); con = nodeid2con(nodeid, 0); if (!con) { srcu_read_unlock(&connections_srcu, idx); return -ENOENT; } spin_lock(&con->addrs_lock); if (!con->addr_count) { spin_unlock(&con->addrs_lock); srcu_read_unlock(&connections_srcu, idx); return -ENOENT; } memcpy(&sas, &con->addr[con->curr_addr_index], sizeof(struct sockaddr_storage)); if (try_new_addr) { con->curr_addr_index++; if (con->curr_addr_index == con->addr_count) con->curr_addr_index = 0; } *mark = con->mark; spin_unlock(&con->addrs_lock); if (sas_out) memcpy(sas_out, &sas, sizeof(struct sockaddr_storage)); if (!sa_out) { srcu_read_unlock(&connections_srcu, idx); return 0; } if (dlm_local_addr[0].ss_family == AF_INET) { struct sockaddr_in *in4 = (struct sockaddr_in *) &sas; struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out; ret4->sin_addr.s_addr = in4->sin_addr.s_addr; } else { struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas; struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out; ret6->sin6_addr = in6->sin6_addr; } srcu_read_unlock(&connections_srcu, idx); return 0; } static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid, unsigned int *mark) { struct connection *con; int i, idx, addr_i; idx = srcu_read_lock(&connections_srcu); for (i = 0; i < CONN_HASH_SIZE; i++) { hlist_for_each_entry_rcu(con, &connection_hash[i], list) { WARN_ON_ONCE(!con->addr_count); spin_lock(&con->addrs_lock); for (addr_i = 0; addr_i < con->addr_count; addr_i++) { if (addr_compare(&con->addr[addr_i], addr)) { *nodeid = con->nodeid; *mark = con->mark; spin_unlock(&con->addrs_lock); srcu_read_unlock(&connections_srcu, idx); return 0; } } spin_unlock(&con->addrs_lock); } } srcu_read_unlock(&connections_srcu, idx); return -ENOENT; } static bool dlm_lowcomms_con_has_addr(const struct connection *con, const struct sockaddr_storage *addr) { int i; for (i = 0; i < con->addr_count; i++) { if (addr_compare(&con->addr[i], addr)) return true; } return false; } int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr) { struct connection *con; bool ret, idx; idx = srcu_read_lock(&connections_srcu); con = nodeid2con(nodeid, GFP_NOFS); if (!con) { srcu_read_unlock(&connections_srcu, idx); return -ENOMEM; } spin_lock(&con->addrs_lock); if (!con->addr_count) { memcpy(&con->addr[0], addr, sizeof(*addr)); con->addr_count = 1; con->mark = dlm_config.ci_mark; spin_unlock(&con->addrs_lock); srcu_read_unlock(&connections_srcu, idx); return 0; } ret = dlm_lowcomms_con_has_addr(con, addr); if (ret) { spin_unlock(&con->addrs_lock); srcu_read_unlock(&connections_srcu, idx); return -EEXIST; } if (con->addr_count >= DLM_MAX_ADDR_COUNT) { spin_unlock(&con->addrs_lock); srcu_read_unlock(&connections_srcu, idx); return -ENOSPC; } memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr)); srcu_read_unlock(&connections_srcu, idx); spin_unlock(&con->addrs_lock); return 0; } /* Data available on socket or listen socket received a connect */ static void lowcomms_data_ready(struct sock *sk) { struct connection *con = sock2con(sk); trace_sk_data_ready(sk); set_bit(CF_RECV_INTR, &con->flags); lowcomms_queue_rwork(con); } static void lowcomms_write_space(struct sock *sk) { struct connection *con = sock2con(sk); clear_bit(SOCK_NOSPACE, &con->sock->flags); spin_lock_bh(&con->writequeue_lock); if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) { con->sock->sk->sk_write_pending--; clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags); } lowcomms_queue_swork(con); spin_unlock_bh(&con->writequeue_lock); } static void lowcomms_state_change(struct sock *sk) { /* SCTP layer is not calling sk_data_ready when the connection * is done, so we catch the signal through here. */ if (sk->sk_shutdown == RCV_SHUTDOWN) lowcomms_data_ready(sk); } static void lowcomms_listen_data_ready(struct sock *sk) { trace_sk_data_ready(sk); queue_work(io_workqueue, &listen_con.rwork); } int dlm_lowcomms_connect_node(int nodeid) { struct connection *con; int idx; idx = srcu_read_lock(&connections_srcu); con = nodeid2con(nodeid, 0); if (WARN_ON_ONCE(!con)) { srcu_read_unlock(&connections_srcu, idx); return -ENOENT; } down_read(&con->sock_lock); if (!con->sock) { spin_lock_bh(&con->writequeue_lock); lowcomms_queue_swork(con); spin_unlock_bh(&con->writequeue_lock); } up_read(&con->sock_lock); srcu_read_unlock(&connections_srcu, idx); cond_resched(); return 0; } int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark) { struct connection *con; int idx; idx = srcu_read_lock(&connections_srcu); con = nodeid2con(nodeid, 0); if (!con) { srcu_read_unlock(&connections_srcu, idx); return -ENOENT; } spin_lock(&con->addrs_lock); con->mark = mark; spin_unlock(&con->addrs_lock); srcu_read_unlock(&connections_srcu, idx); return 0; } static void lowcomms_error_report(struct sock *sk) { struct connection *con = sock2con(sk); struct inet_sock *inet; inet = inet_sk(sk); switch (sk->sk_family) { case AF_INET: printk_ratelimited(KERN_ERR "dlm: node %d: socket error " "sending to node %d at %pI4, dport %d, " "sk_err=%d/%d\n", dlm_our_nodeid(), con->nodeid, &inet->inet_daddr, ntohs(inet->inet_dport), sk->sk_err, READ_ONCE(sk->sk_err_soft)); break; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: printk_ratelimited(KERN_ERR "dlm: node %d: socket error " "sending to node %d at %pI6c, " "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(), con->nodeid, &sk->sk_v6_daddr, ntohs(inet->inet_dport), sk->sk_err, READ_ONCE(sk->sk_err_soft)); break; #endif default: printk_ratelimited(KERN_ERR "dlm: node %d: socket error " "invalid socket family %d set, " "sk_err=%d/%d\n", dlm_our_nodeid(), sk->sk_family, sk->sk_err, READ_ONCE(sk->sk_err_soft)); break; } dlm_midcomms_unack_msg_resend(con->nodeid); listen_sock.sk_error_report(sk); } static void restore_callbacks(struct sock *sk) { #ifdef CONFIG_LOCKDEP WARN_ON_ONCE(!lockdep_sock_is_held(sk)); #endif sk->sk_user_data = NULL; sk->sk_data_ready = listen_sock.sk_data_ready; sk->sk_state_change = listen_sock.sk_state_change; sk->sk_write_space = listen_sock.sk_write_space; sk->sk_error_report = listen_sock.sk_error_report; } /* Make a socket active */ static void add_sock(struct socket *sock, struct connection *con) { struct sock *sk = sock->sk; lock_sock(sk); con->sock = sock; sk->sk_user_data = con; sk->sk_data_ready = lowcomms_data_ready; sk->sk_write_space = lowcomms_write_space; if (dlm_config.ci_protocol == DLM_PROTO_SCTP) sk->sk_state_change = lowcomms_state_change; sk->sk_allocation = GFP_NOFS; sk->sk_use_task_frag = false; sk->sk_error_report = lowcomms_error_report; release_sock(sk); } /* Add the port number to an IPv6 or 4 sockaddr and return the address length */ static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port, int *addr_len) { saddr->ss_family = dlm_local_addr[0].ss_family; if (saddr->ss_family == AF_INET) { struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr; in4_addr->sin_port = cpu_to_be16(port); *addr_len = sizeof(struct sockaddr_in); memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero)); } else { struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr; in6_addr->sin6_port = cpu_to_be16(port); *addr_len = sizeof(struct sockaddr_in6); } memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len); } static void dlm_page_release(struct kref *kref) { struct writequeue_entry *e = container_of(kref, struct writequeue_entry, ref); __free_page(e->page); dlm_free_writequeue(e); } static void dlm_msg_release(struct kref *kref) { struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref); kref_put(&msg->entry->ref, dlm_page_release); dlm_free_msg(msg); } static void free_entry(struct writequeue_entry *e) { struct dlm_msg *msg, *tmp; list_for_each_entry_safe(msg, tmp, &e->msgs, list) { if (msg->orig_msg) { msg->orig_msg->retransmit = false; kref_put(&msg->orig_msg->ref, dlm_msg_release); } list_del(&msg->list); kref_put(&msg->ref, dlm_msg_release); } list_del(&e->list); kref_put(&e->ref, dlm_page_release); } static void dlm_close_sock(struct socket **sock) { lock_sock((*sock)->sk); restore_callbacks((*sock)->sk); release_sock((*sock)->sk); sock_release(*sock); *sock = NULL; } static void allow_connection_io(struct connection *con) { if (con->othercon) clear_bit(CF_IO_STOP, &con->othercon->flags); clear_bit(CF_IO_STOP, &con->flags); } static void stop_connection_io(struct connection *con) { if (con->othercon) stop_connection_io(con->othercon); spin_lock_bh(&con->writequeue_lock); set_bit(CF_IO_STOP, &con->flags); spin_unlock_bh(&con->writequeue_lock); down_write(&con->sock_lock); if (con->sock) { lock_sock(con->sock->sk); restore_callbacks(con->sock->sk); release_sock(con->sock->sk); } up_write(&con->sock_lock); cancel_work_sync(&con->swork); cancel_work_sync(&con->rwork); } /* Close a remote connection and tidy up */ static void close_connection(struct connection *con, bool and_other) { struct writequeue_entry *e; if (con->othercon && and_other) close_connection(con->othercon, false); down_write(&con->sock_lock); if (!con->sock) { up_write(&con->sock_lock); return; } dlm_close_sock(&con->sock); /* if we send a writequeue entry only a half way, we drop the * whole entry because reconnection and that we not start of the * middle of a msg which will confuse the other end. * * we can always drop messages because retransmits, but what we * cannot allow is to transmit half messages which may be processed * at the other side. * * our policy is to start on a clean state when disconnects, we don't * know what's send/received on transport layer in this case. */ spin_lock_bh(&con->writequeue_lock); if (!list_empty(&con->writequeue)) { e = list_first_entry(&con->writequeue, struct writequeue_entry, list); if (e->dirty) free_entry(e); } spin_unlock_bh(&con->writequeue_lock); con->rx_leftover = 0; con->retries = 0; clear_bit(CF_APP_LIMITED, &con->flags); clear_bit(CF_RECV_PENDING, &con->flags); clear_bit(CF_SEND_PENDING, &con->flags); up_write(&con->sock_lock); } static void shutdown_connection(struct connection *con, bool and_other) { int ret; if (con->othercon && and_other) shutdown_connection(con->othercon, false); flush_workqueue(io_workqueue); down_read(&con->sock_lock); /* nothing to shutdown */ if (!con->sock) { up_read(&con->sock_lock); return; } ret = kernel_sock_shutdown(con->sock, SHUT_WR); up_read(&con->sock_lock); if (ret) { log_print("Connection %p failed to shutdown: %d will force close", con, ret); goto force_close; } else { ret = wait_event_timeout(con->shutdown_wait, !con->sock, DLM_SHUTDOWN_WAIT_TIMEOUT); if (ret == 0) { log_print("Connection %p shutdown timed out, will force close", con); goto force_close; } } return; force_close: close_connection(con, false); } static struct processqueue_entry *new_processqueue_entry(int nodeid, int buflen) { struct processqueue_entry *pentry; pentry = kmalloc(sizeof(*pentry), GFP_NOFS); if (!pentry) return NULL; pentry->buf = kmalloc(buflen, GFP_NOFS); if (!pentry->buf) { kfree(pentry); return NULL; } pentry->nodeid = nodeid; return pentry; } static void free_processqueue_entry(struct processqueue_entry *pentry) { kfree(pentry->buf); kfree(pentry); } static void process_dlm_messages(struct work_struct *work) { struct processqueue_entry *pentry; spin_lock_bh(&processqueue_lock); pentry = list_first_entry_or_null(&processqueue, struct processqueue_entry, list); if (WARN_ON_ONCE(!pentry)) { process_dlm_messages_pending = false; spin_unlock_bh(&processqueue_lock); return; } list_del(&pentry->list); if (atomic_dec_and_test(&processqueue_count)) wake_up(&processqueue_wq); spin_unlock_bh(&processqueue_lock); for (;;) { dlm_process_incoming_buffer(pentry->nodeid, pentry->buf, pentry->buflen); free_processqueue_entry(pentry); spin_lock_bh(&processqueue_lock); pentry = list_first_entry_or_null(&processqueue, struct processqueue_entry, list); if (!pentry) { process_dlm_messages_pending = false; spin_unlock_bh(&processqueue_lock); break; } list_del(&pentry->list); if (atomic_dec_and_test(&processqueue_count)) wake_up(&processqueue_wq); spin_unlock_bh(&processqueue_lock); } } /* Data received from remote end */ static int receive_from_sock(struct connection *con, int buflen) { struct processqueue_entry *pentry; int ret, buflen_real; struct msghdr msg; struct kvec iov; pentry = new_processqueue_entry(con->nodeid, buflen); if (!pentry) return DLM_IO_RESCHED; memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover); /* calculate new buffer parameter regarding last receive and * possible leftover bytes */ iov.iov_base = pentry->buf + con->rx_leftover; iov.iov_len = buflen - con->rx_leftover; memset(&msg, 0, sizeof(msg)); msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; clear_bit(CF_RECV_INTR, &con->flags); again: ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len, msg.msg_flags); trace_dlm_recv(con->nodeid, ret); if (ret == -EAGAIN) { lock_sock(con->sock->sk); if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) { release_sock(con->sock->sk); goto again; } clear_bit(CF_RECV_PENDING, &con->flags); release_sock(con->sock->sk); free_processqueue_entry(pentry); return DLM_IO_END; } else if (ret == 0) { /* close will clear CF_RECV_PENDING */ free_processqueue_entry(pentry); return DLM_IO_EOF; } else if (ret < 0) { free_processqueue_entry(pentry); return ret; } /* new buflen according readed bytes and leftover from last receive */ buflen_real = ret + con->rx_leftover; ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf, buflen_real); if (ret < 0) { free_processqueue_entry(pentry); return ret; } pentry->buflen = ret; /* calculate leftover bytes from process and put it into begin of * the receive buffer, so next receive we have the full message * at the start address of the receive buffer. */ con->rx_leftover = buflen_real - ret; memmove(con->rx_leftover_buf, pentry->buf + ret, con->rx_leftover); spin_lock_bh(&processqueue_lock); ret = atomic_inc_return(&processqueue_count); list_add_tail(&pentry->list, &processqueue); if (!process_dlm_messages_pending) { process_dlm_messages_pending = true; queue_work(process_workqueue, &process_work); } spin_unlock_bh(&processqueue_lock); if (ret > DLM_MAX_PROCESS_BUFFERS) return DLM_IO_FLUSH; return DLM_IO_SUCCESS; } /* Listening socket is busy, accept a connection */ static int accept_from_sock(void) { struct sockaddr_storage peeraddr; int len, idx, result, nodeid; struct connection *newcon; struct socket *newsock; unsigned int mark; result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK); if (result == -EAGAIN) return DLM_IO_END; else if (result < 0) goto accept_err; /* Get the connected socket's peer */ memset(&peeraddr, 0, sizeof(peeraddr)); len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2); if (len < 0) { result = -ECONNABORTED; goto accept_err; } /* Get the new node's NODEID */ make_sockaddr(&peeraddr, 0, &len); if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) { switch (peeraddr.ss_family) { case AF_INET: { struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr; log_print("connect from non cluster IPv4 node %pI4", &sin->sin_addr); break; } #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr; log_print("connect from non cluster IPv6 node %pI6c", &sin6->sin6_addr); break; } #endif default: log_print("invalid family from non cluster node"); break; } sock_release(newsock); return -1; } log_print("got connection from %d", nodeid); /* Check to see if we already have a connection to this node. This * could happen if the two nodes initiate a connection at roughly * the same time and the connections cross on the wire. * In this case we store the incoming one in "othercon" */ idx = srcu_read_lock(&connections_srcu); newcon = nodeid2con(nodeid, 0); if (WARN_ON_ONCE(!newcon)) { srcu_read_unlock(&connections_srcu, idx); result = -ENOENT; goto accept_err; } sock_set_mark(newsock->sk, mark); down_write(&newcon->sock_lock); if (newcon->sock) { struct connection *othercon = newcon->othercon; if (!othercon) { othercon = kzalloc(sizeof(*othercon), GFP_NOFS); if (!othercon) { log_print("failed to allocate incoming socket"); up_write(&newcon->sock_lock); srcu_read_unlock(&connections_srcu, idx); result = -ENOMEM; goto accept_err; } dlm_con_init(othercon, nodeid); lockdep_set_subclass(&othercon->sock_lock, 1); newcon->othercon = othercon; set_bit(CF_IS_OTHERCON, &othercon->flags); } else { /* close other sock con if we have something new */ close_connection(othercon, false); } down_write(&othercon->sock_lock); add_sock(newsock, othercon); /* check if we receved something while adding */ lock_sock(othercon->sock->sk); lowcomms_queue_rwork(othercon); release_sock(othercon->sock->sk); up_write(&othercon->sock_lock); } else { /* accept copies the sk after we've saved the callbacks, so we don't want to save them a second time or comm errors will result in calling sk_error_report recursively. */ add_sock(newsock, newcon); /* check if we receved something while adding */ lock_sock(newcon->sock->sk); lowcomms_queue_rwork(newcon); release_sock(newcon->sock->sk); } up_write(&newcon->sock_lock); srcu_read_unlock(&connections_srcu, idx); return DLM_IO_SUCCESS; accept_err: if (newsock) sock_release(newsock); return result; } /* * writequeue_entry_complete - try to delete and free write queue entry * @e: write queue entry to try to delete * @completed: bytes completed * * writequeue_lock must be held. */ static void writequeue_entry_complete(struct writequeue_entry *e, int completed) { e->offset += completed; e->len -= completed; /* signal that page was half way transmitted */ e->dirty = true; if (e->len == 0 && e->users == 0) free_entry(e); } /* * sctp_bind_addrs - bind a SCTP socket to all our addresses */ static int sctp_bind_addrs(struct socket *sock, uint16_t port) { struct sockaddr_storage localaddr; struct sockaddr *addr = (struct sockaddr *)&localaddr; int i, addr_len, result = 0; for (i = 0; i < dlm_local_count; i++) { memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr)); make_sockaddr(&localaddr, port, &addr_len); if (!i) result = kernel_bind(sock, addr, addr_len); else result = sock_bind_add(sock->sk, addr, addr_len); if (result < 0) { log_print("Can't bind to %d addr number %d, %d.\n", port, i + 1, result); break; } } return result; } /* Get local addresses */ static void init_local(void) { struct sockaddr_storage sas; int i; dlm_local_count = 0; for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) { if (dlm_our_addr(&sas, i)) break; memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas)); } } static struct writequeue_entry *new_writequeue_entry(struct connection *con) { struct writequeue_entry *entry; entry = dlm_allocate_writequeue(); if (!entry) return NULL; entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO); if (!entry->page) { dlm_free_writequeue(entry); return NULL; } entry->offset = 0; entry->len = 0; entry->end = 0; entry->dirty = false; entry->con = con; entry->users = 1; kref_init(&entry->ref); return entry; } static struct writequeue_entry *new_wq_entry(struct connection *con, int len, char **ppc, void (*cb)(void *data), void *data) { struct writequeue_entry *e; spin_lock_bh(&con->writequeue_lock); if (!list_empty(&con->writequeue)) { e = list_last_entry(&con->writequeue, struct writequeue_entry, list); if (DLM_WQ_REMAIN_BYTES(e) >= len) { kref_get(&e->ref); *ppc = page_address(e->page) + e->end; if (cb) cb(data); e->end += len; e->users++; goto out; } } e = new_writequeue_entry(con); if (!e) goto out; kref_get(&e->ref); *ppc = page_address(e->page); e->end += len; if (cb) cb(data); list_add_tail(&e->list, &con->writequeue); out: spin_unlock_bh(&con->writequeue_lock); return e; }; static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len, char **ppc, void (*cb)(void *data), void *data) { struct writequeue_entry *e; struct dlm_msg *msg; msg = dlm_allocate_msg(); if (!msg) return NULL; kref_init(&msg->ref); e = new_wq_entry(con, len, ppc, cb, data); if (!e) { dlm_free_msg(msg); return NULL; } msg->retransmit = false; msg->orig_msg = NULL; msg->ppc = *ppc; msg->len = len; msg->entry = e; return msg; } /* avoid false positive for nodes_srcu, unlock happens in * dlm_lowcomms_commit_msg which is a must call if success */ #ifndef __CHECKER__ struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, char **ppc, void (*cb)(void *data), void *data) { struct connection *con; struct dlm_msg *msg; int idx; if (len > DLM_MAX_SOCKET_BUFSIZE || len < sizeof(struct dlm_header)) { BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE); log_print("failed to allocate a buffer of size %d", len); WARN_ON_ONCE(1); return NULL; } idx = srcu_read_lock(&connections_srcu); con = nodeid2con(nodeid, 0); if (WARN_ON_ONCE(!con)) { srcu_read_unlock(&connections_srcu, idx); return NULL; } msg = dlm_lowcomms_new_msg_con(con, len, ppc, cb, data); if (!msg) { srcu_read_unlock(&connections_srcu, idx); return NULL; } /* for dlm_lowcomms_commit_msg() */ kref_get(&msg->ref); /* we assume if successful commit must called */ msg->idx = idx; return msg; } #endif static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg) { struct writequeue_entry *e = msg->entry; struct connection *con = e->con; int users; spin_lock_bh(&con->writequeue_lock); kref_get(&msg->ref); list_add(&msg->list, &e->msgs); users = --e->users; if (users) goto out; e->len = DLM_WQ_LENGTH_BYTES(e); lowcomms_queue_swork(con); out: spin_unlock_bh(&con->writequeue_lock); return; } /* avoid false positive for nodes_srcu, lock was happen in * dlm_lowcomms_new_msg */ #ifndef __CHECKER__ void dlm_lowcomms_commit_msg(struct dlm_msg *msg) { _dlm_lowcomms_commit_msg(msg); srcu_read_unlock(&connections_srcu, msg->idx); /* because dlm_lowcomms_new_msg() */ kref_put(&msg->ref, dlm_msg_release); } #endif void dlm_lowcomms_put_msg(struct dlm_msg *msg) { kref_put(&msg->ref, dlm_msg_release); } /* does not held connections_srcu, usage lowcomms_error_report only */ int dlm_lowcomms_resend_msg(struct dlm_msg *msg) { struct dlm_msg *msg_resend; char *ppc; if (msg->retransmit) return 1; msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len, &ppc, NULL, NULL); if (!msg_resend) return -ENOMEM; msg->retransmit = true; kref_get(&msg->ref); msg_resend->orig_msg = msg; memcpy(ppc, msg->ppc, msg->len); _dlm_lowcomms_commit_msg(msg_resend); dlm_lowcomms_put_msg(msg_resend); return 0; } /* Send a message */ static int send_to_sock(struct connection *con) { struct writequeue_entry *e; struct bio_vec bvec; struct msghdr msg = { .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL, }; int len, offset, ret; spin_lock_bh(&con->writequeue_lock); e = con_next_wq(con); if (!e) { clear_bit(CF_SEND_PENDING, &con->flags); spin_unlock_bh(&con->writequeue_lock); return DLM_IO_END; } len = e->len; offset = e->offset; WARN_ON_ONCE(len == 0 && e->users == 0); spin_unlock_bh(&con->writequeue_lock); bvec_set_page(&bvec, e->page, len, offset); iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); ret = sock_sendmsg(con->sock, &msg); trace_dlm_send(con->nodeid, ret); if (ret == -EAGAIN || ret == 0) { lock_sock(con->sock->sk); spin_lock_bh(&con->writequeue_lock); if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) && !test_and_set_bit(CF_APP_LIMITED, &con->flags)) { /* Notify TCP that we're limited by the * application window size. */ set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags); con->sock->sk->sk_write_pending++; clear_bit(CF_SEND_PENDING, &con->flags); spin_unlock_bh(&con->writequeue_lock); release_sock(con->sock->sk); /* wait for write_space() event */ return DLM_IO_END; } spin_unlock_bh(&con->writequeue_lock); release_sock(con->sock->sk); return DLM_IO_RESCHED; } else if (ret < 0) { return ret; } spin_lock_bh(&con->writequeue_lock); writequeue_entry_complete(e, ret); spin_unlock_bh(&con->writequeue_lock); return DLM_IO_SUCCESS; } static void clean_one_writequeue(struct connection *con) { struct writequeue_entry *e, *safe; spin_lock_bh(&con->writequeue_lock); list_for_each_entry_safe(e, safe, &con->writequeue, list) { free_entry(e); } spin_unlock_bh(&con->writequeue_lock); } static void connection_release(struct rcu_head *rcu) { struct connection *con = container_of(rcu, struct connection, rcu); WARN_ON_ONCE(!list_empty(&con->writequeue)); WARN_ON_ONCE(con->sock); kfree(con); } /* Called from recovery when it knows that a node has left the cluster */ int dlm_lowcomms_close(int nodeid) { struct connection *con; int idx; log_print("closing connection to node %d", nodeid); idx = srcu_read_lock(&connections_srcu); con = nodeid2con(nodeid, 0); if (WARN_ON_ONCE(!con)) { srcu_read_unlock(&connections_srcu, idx); return -ENOENT; } stop_connection_io(con); log_print("io handling for node: %d stopped", nodeid); close_connection(con, true); spin_lock(&connections_lock); hlist_del_rcu(&con->list); spin_unlock(&connections_lock); clean_one_writequeue(con); call_srcu(&connections_srcu, &con->rcu, connection_release); if (con->othercon) { clean_one_writequeue(con->othercon); call_srcu(&connections_srcu, &con->othercon->rcu, connection_release); } srcu_read_unlock(&connections_srcu, idx); /* for debugging we print when we are done to compare with other * messages in between. This function need to be correctly synchronized * with io handling */ log_print("closing connection to node %d done", nodeid); return 0; } /* Receive worker function */ static void process_recv_sockets(struct work_struct *work) { struct connection *con = container_of(work, struct connection, rwork); int ret, buflen; down_read(&con->sock_lock); if (!con->sock) { up_read(&con->sock_lock); return; } buflen = READ_ONCE(dlm_config.ci_buffer_size); do { ret = receive_from_sock(con, buflen); } while (ret == DLM_IO_SUCCESS); up_read(&con->sock_lock); switch (ret) { case DLM_IO_END: /* CF_RECV_PENDING cleared */ break; case DLM_IO_EOF: close_connection(con, false); wake_up(&con->shutdown_wait); /* CF_RECV_PENDING cleared */ break; case DLM_IO_FLUSH: /* we can't flush the process_workqueue here because a * WQ_MEM_RECLAIM workequeue can occurr a deadlock for a non * WQ_MEM_RECLAIM workqueue such as process_workqueue. Instead * we have a waitqueue to wait until all messages are * processed. * * This handling is only necessary to backoff the sender and * not queue all messages from the socket layer into DLM * processqueue. When DLM is capable to parse multiple messages * on an e.g. per socket basis this handling can might be * removed. Especially in a message burst we are too slow to * process messages and the queue will fill up memory. */ wait_event(processqueue_wq, !atomic_read(&processqueue_count)); fallthrough; case DLM_IO_RESCHED: cond_resched(); queue_work(io_workqueue, &con->rwork); /* CF_RECV_PENDING not cleared */ break; default: if (ret < 0) { if (test_bit(CF_IS_OTHERCON, &con->flags)) { close_connection(con, false); } else { spin_lock_bh(&con->writequeue_lock); lowcomms_queue_swork(con); spin_unlock_bh(&con->writequeue_lock); } /* CF_RECV_PENDING cleared for othercon * we trigger send queue if not already done * and process_send_sockets will handle it */ break; } WARN_ON_ONCE(1); break; } } static void process_listen_recv_socket(struct work_struct *work) { int ret; if (WARN_ON_ONCE(!listen_con.sock)) return; do { ret = accept_from_sock(); } while (ret == DLM_IO_SUCCESS); if (ret < 0) log_print("critical error accepting connection: %d", ret); } static int dlm_connect(struct connection *con) { struct sockaddr_storage addr; int result, addr_len; struct socket *sock; unsigned int mark; memset(&addr, 0, sizeof(addr)); result = nodeid_to_addr(con->nodeid, &addr, NULL, dlm_proto_ops->try_new_addr, &mark); if (result < 0) { log_print("no address for nodeid %d", con->nodeid); return result; } /* Create a socket to communicate with */ result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family, SOCK_STREAM, dlm_proto_ops->proto, &sock); if (result < 0) return result; sock_set_mark(sock->sk, mark); dlm_proto_ops->sockopts(sock); result = dlm_proto_ops->bind(sock); if (result < 0) { sock_release(sock); return result; } add_sock(sock, con); log_print_ratelimited("connecting to %d", con->nodeid); make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len); result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr, addr_len); switch (result) { case -EINPROGRESS: /* not an error */ fallthrough; case 0: break; default: if (result < 0) dlm_close_sock(&con->sock); break; } return result; } /* Send worker function */ static void process_send_sockets(struct work_struct *work) { struct connection *con = container_of(work, struct connection, swork); int ret; WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags)); down_read(&con->sock_lock); if (!con->sock) { up_read(&con->sock_lock); down_write(&con->sock_lock); if (!con->sock) { ret = dlm_connect(con); switch (ret) { case 0: break; case -EINPROGRESS: /* avoid spamming resched on connection * we might can switch to a state_change * event based mechanism if established */ msleep(100); break; default: /* CF_SEND_PENDING not cleared */ up_write(&con->sock_lock); log_print("connect to node %d try %d error %d", con->nodeid, con->retries++, ret); msleep(1000); /* For now we try forever to reconnect. In * future we should send a event to cluster * manager to fence itself after certain amount * of retries. */ queue_work(io_workqueue, &con->swork); return; } } downgrade_write(&con->sock_lock); } do { ret = send_to_sock(con); } while (ret == DLM_IO_SUCCESS); up_read(&con->sock_lock); switch (ret) { case DLM_IO_END: /* CF_SEND_PENDING cleared */ break; case DLM_IO_RESCHED: /* CF_SEND_PENDING not cleared */ cond_resched(); queue_work(io_workqueue, &con->swork); break; default: if (ret < 0) { close_connection(con, false); /* CF_SEND_PENDING cleared */ spin_lock_bh(&con->writequeue_lock); lowcomms_queue_swork(con); spin_unlock_bh(&con->writequeue_lock); break; } WARN_ON_ONCE(1); break; } } static void work_stop(void) { if (io_workqueue) { destroy_workqueue(io_workqueue); io_workqueue = NULL; } if (process_workqueue) { destroy_workqueue(process_workqueue); process_workqueue = NULL; } } static int work_start(void) { io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_UNBOUND, 0); if (!io_workqueue) { log_print("can't start dlm_io"); return -ENOMEM; } process_workqueue = alloc_workqueue("dlm_process", WQ_HIGHPRI | WQ_BH, 0); if (!process_workqueue) { log_print("can't start dlm_process"); destroy_workqueue(io_workqueue); io_workqueue = NULL; return -ENOMEM; } return 0; } void dlm_lowcomms_shutdown(void) { struct connection *con; int i, idx; /* stop lowcomms_listen_data_ready calls */ lock_sock(listen_con.sock->sk); listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready; release_sock(listen_con.sock->sk); cancel_work_sync(&listen_con.rwork); dlm_close_sock(&listen_con.sock); idx = srcu_read_lock(&connections_srcu); for (i = 0; i < CONN_HASH_SIZE; i++) { hlist_for_each_entry_rcu(con, &connection_hash[i], list) { shutdown_connection(con, true); stop_connection_io(con); flush_workqueue(process_workqueue); close_connection(con, true); clean_one_writequeue(con); if (con->othercon) clean_one_writequeue(con->othercon); allow_connection_io(con); } } srcu_read_unlock(&connections_srcu, idx); } void dlm_lowcomms_stop(void) { work_stop(); dlm_proto_ops = NULL; } static int dlm_listen_for_all(void) { struct socket *sock; int result; log_print("Using %s for communications", dlm_proto_ops->name); result = dlm_proto_ops->listen_validate(); if (result < 0) return result; result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family, SOCK_STREAM, dlm_proto_ops->proto, &sock); if (result < 0) { log_print("Can't create comms socket: %d", result); return result; } sock_set_mark(sock->sk, dlm_config.ci_mark); dlm_proto_ops->listen_sockopts(sock); result = dlm_proto_ops->listen_bind(sock); if (result < 0) goto out; lock_sock(sock->sk); listen_sock.sk_data_ready = sock->sk->sk_data_ready; listen_sock.sk_write_space = sock->sk->sk_write_space; listen_sock.sk_error_report = sock->sk->sk_error_report; listen_sock.sk_state_change = sock->sk->sk_state_change; listen_con.sock = sock; sock->sk->sk_allocation = GFP_NOFS; sock->sk->sk_use_task_frag = false; sock->sk->sk_data_ready = lowcomms_listen_data_ready; release_sock(sock->sk); result = sock->ops->listen(sock, 128); if (result < 0) { dlm_close_sock(&listen_con.sock); return result; } return 0; out: sock_release(sock); return result; } static int dlm_tcp_bind(struct socket *sock) { struct sockaddr_storage src_addr; int result, addr_len; /* Bind to our cluster-known address connecting to avoid * routing problems. */ memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr)); make_sockaddr(&src_addr, 0, &addr_len); result = kernel_bind(sock, (struct sockaddr *)&src_addr, addr_len); if (result < 0) { /* This *may* not indicate a critical error */ log_print("could not bind for connect: %d", result); } return 0; } static int dlm_tcp_connect(struct connection *con, struct socket *sock, struct sockaddr *addr, int addr_len) { return kernel_connect(sock, addr, addr_len, O_NONBLOCK); } static int dlm_tcp_listen_validate(void) { /* We don't support multi-homed hosts */ if (dlm_local_count > 1) { log_print("TCP protocol can't handle multi-homed hosts, try SCTP"); return -EINVAL; } return 0; } static void dlm_tcp_sockopts(struct socket *sock) { /* Turn off Nagle's algorithm */ tcp_sock_set_nodelay(sock->sk); } static void dlm_tcp_listen_sockopts(struct socket *sock) { dlm_tcp_sockopts(sock); sock_set_reuseaddr(sock->sk); } static int dlm_tcp_listen_bind(struct socket *sock) { int addr_len; /* Bind to our port */ make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len); return kernel_bind(sock, (struct sockaddr *)&dlm_local_addr[0], addr_len); } static const struct dlm_proto_ops dlm_tcp_ops = { .name = "TCP", .proto = IPPROTO_TCP, .connect = dlm_tcp_connect, .sockopts = dlm_tcp_sockopts, .bind = dlm_tcp_bind, .listen_validate = dlm_tcp_listen_validate, .listen_sockopts = dlm_tcp_listen_sockopts, .listen_bind = dlm_tcp_listen_bind, }; static int dlm_sctp_bind(struct socket *sock) { return sctp_bind_addrs(sock, 0); } static int dlm_sctp_connect(struct connection *con, struct socket *sock, struct sockaddr *addr, int addr_len) { int ret; /* * Make kernel_connect() function return in specified time, * since O_NONBLOCK argument in connect() function does not work here, * then, we should restore the default value of this attribute. */ sock_set_sndtimeo(sock->sk, 5); ret = kernel_connect(sock, addr, addr_len, 0); sock_set_sndtimeo(sock->sk, 0); return ret; } static int dlm_sctp_listen_validate(void) { if (!IS_ENABLED(CONFIG_IP_SCTP)) { log_print("SCTP is not enabled by this kernel"); return -EOPNOTSUPP; } request_module("sctp"); return 0; } static int dlm_sctp_bind_listen(struct socket *sock) { return sctp_bind_addrs(sock, dlm_config.ci_tcp_port); } static void dlm_sctp_sockopts(struct socket *sock) { /* Turn off Nagle's algorithm */ sctp_sock_set_nodelay(sock->sk); sock_set_rcvbuf(sock->sk, NEEDED_RMEM); } static const struct dlm_proto_ops dlm_sctp_ops = { .name = "SCTP", .proto = IPPROTO_SCTP, .try_new_addr = true, .connect = dlm_sctp_connect, .sockopts = dlm_sctp_sockopts, .bind = dlm_sctp_bind, .listen_validate = dlm_sctp_listen_validate, .listen_sockopts = dlm_sctp_sockopts, .listen_bind = dlm_sctp_bind_listen, }; int dlm_lowcomms_start(void) { int error; init_local(); if (!dlm_local_count) { error = -ENOTCONN; log_print("no local IP address has been set"); goto fail; } error = work_start(); if (error) goto fail; /* Start listening */ switch (dlm_config.ci_protocol) { case DLM_PROTO_TCP: dlm_proto_ops = &dlm_tcp_ops; break; case DLM_PROTO_SCTP: dlm_proto_ops = &dlm_sctp_ops; break; default: log_print("Invalid protocol identifier %d set", dlm_config.ci_protocol); error = -EINVAL; goto fail_proto_ops; } error = dlm_listen_for_all(); if (error) goto fail_listen; return 0; fail_listen: dlm_proto_ops = NULL; fail_proto_ops: work_stop(); fail: return error; } void dlm_lowcomms_init(void) { int i; for (i = 0; i < CONN_HASH_SIZE; i++) INIT_HLIST_HEAD(&connection_hash[i]); INIT_WORK(&listen_con.rwork, process_listen_recv_socket); } void dlm_lowcomms_exit(void) { struct connection *con; int i, idx; idx = srcu_read_lock(&connections_srcu); for (i = 0; i < CONN_HASH_SIZE; i++) { hlist_for_each_entry_rcu(con, &connection_hash[i], list) { spin_lock(&connections_lock); hlist_del_rcu(&con->list); spin_unlock(&connections_lock); if (con->othercon) call_srcu(&connections_srcu, &con->othercon->rcu, connection_release); call_srcu(&connections_srcu, &con->rcu, connection_release); } } srcu_read_unlock(&connections_srcu, idx); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1