Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jaegeuk Kim | 4654 | 48.85% | 133 | 39.47% |
Chao Yu | 2742 | 28.78% | 123 | 36.50% |
Daeho Jeong | 760 | 7.98% | 3 | 0.89% |
Changman Lee | 214 | 2.25% | 3 | 0.89% |
Yunlei He | 191 | 2.00% | 6 | 1.78% |
Tiezhu Yang | 123 | 1.29% | 1 | 0.30% |
Hsiang Kao | 118 | 1.24% | 1 | 0.30% |
Gu Zheng | 98 | 1.03% | 11 | 3.26% |
Vishal Moola (Oracle) | 64 | 0.67% | 1 | 0.30% |
Daniel Rosenberg | 55 | 0.58% | 1 | 0.30% |
Zhiguo Niu | 52 | 0.55% | 2 | 0.59% |
Shuoran Liu | 49 | 0.51% | 1 | 0.30% |
Christoph Hellwig | 47 | 0.49% | 2 | 0.59% |
Matthew Wilcox | 40 | 0.42% | 6 | 1.78% |
Sahitya Tummala | 36 | 0.38% | 3 | 0.89% |
Namjae Jeon | 34 | 0.36% | 2 | 0.59% |
Huajun Li | 25 | 0.26% | 1 | 0.30% |
Damien Le Moal | 25 | 0.26% | 3 | 0.89% |
Qilong Zhang | 22 | 0.23% | 1 | 0.30% |
Wanpeng Li | 17 | 0.18% | 3 | 0.89% |
Tim Murray | 17 | 0.18% | 1 | 0.30% |
Michael Christie | 14 | 0.15% | 1 | 0.30% |
Yangtao Li | 14 | 0.15% | 2 | 0.59% |
Eric Biggers | 14 | 0.15% | 3 | 0.89% |
Greg Kroah-Hartman | 12 | 0.13% | 1 | 0.30% |
Joe Perches | 11 | 0.12% | 1 | 0.30% |
Huang Ying | 9 | 0.09% | 1 | 0.30% |
Jan Kara | 8 | 0.08% | 1 | 0.30% |
Russ W. Knize | 7 | 0.07% | 1 | 0.30% |
Sayali Lokhande | 6 | 0.06% | 1 | 0.30% |
Qiuyang Sun | 6 | 0.06% | 1 | 0.30% |
Sheng Yong | 6 | 0.06% | 1 | 0.30% |
Kees Cook | 5 | 0.05% | 1 | 0.30% |
Dongliang Mu | 4 | 0.04% | 1 | 0.30% |
Keith Mok | 4 | 0.04% | 1 | 0.30% |
Weichao Guo | 3 | 0.03% | 1 | 0.30% |
Yohan Joung | 3 | 0.03% | 1 | 0.30% |
Sebastian Andrzej Siewior | 3 | 0.03% | 1 | 0.30% |
Kinglong Mee | 3 | 0.03% | 1 | 0.30% |
Jack Qiu | 2 | 0.02% | 2 | 0.59% |
Jianpeng Ma | 2 | 0.02% | 1 | 0.30% |
Yunlong Song | 2 | 0.02% | 1 | 0.30% |
Jinyoung Choi | 2 | 0.02% | 1 | 0.30% |
Shuqi Zhang | 2 | 0.02% | 1 | 0.30% |
Li Zetao | 1 | 0.01% | 1 | 0.30% |
Michael Callahan | 1 | 0.01% | 1 | 0.30% |
Total | 9527 | 337 |
// SPDX-License-Identifier: GPL-2.0 /* * fs/f2fs/checkpoint.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ */ #include <linux/fs.h> #include <linux/bio.h> #include <linux/mpage.h> #include <linux/writeback.h> #include <linux/blkdev.h> #include <linux/f2fs_fs.h> #include <linux/pagevec.h> #include <linux/swap.h> #include <linux/kthread.h> #include "f2fs.h" #include "node.h" #include "segment.h" #include "iostat.h" #include <trace/events/f2fs.h> #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) static struct kmem_cache *ino_entry_slab; struct kmem_cache *f2fs_inode_entry_slab; void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, unsigned char reason) { f2fs_build_fault_attr(sbi, 0, 0); if (!end_io) f2fs_flush_merged_writes(sbi); f2fs_handle_critical_error(sbi, reason, end_io); } /* * We guarantee no failure on the returned page. */ struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) { struct address_space *mapping = META_MAPPING(sbi); struct page *page; repeat: page = f2fs_grab_cache_page(mapping, index, false); if (!page) { cond_resched(); goto repeat; } f2fs_wait_on_page_writeback(page, META, true, true); if (!PageUptodate(page)) SetPageUptodate(page); return page; } static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, bool is_meta) { struct address_space *mapping = META_MAPPING(sbi); struct page *page; struct f2fs_io_info fio = { .sbi = sbi, .type = META, .op = REQ_OP_READ, .op_flags = REQ_META | REQ_PRIO, .old_blkaddr = index, .new_blkaddr = index, .encrypted_page = NULL, .is_por = !is_meta ? 1 : 0, }; int err; if (unlikely(!is_meta)) fio.op_flags &= ~REQ_META; repeat: page = f2fs_grab_cache_page(mapping, index, false); if (!page) { cond_resched(); goto repeat; } if (PageUptodate(page)) goto out; fio.page = page; err = f2fs_submit_page_bio(&fio); if (err) { f2fs_put_page(page, 1); return ERR_PTR(err); } f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE); lock_page(page); if (unlikely(page->mapping != mapping)) { f2fs_put_page(page, 1); goto repeat; } if (unlikely(!PageUptodate(page))) { f2fs_handle_page_eio(sbi, page->index, META); f2fs_put_page(page, 1); return ERR_PTR(-EIO); } out: return page; } struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) { return __get_meta_page(sbi, index, true); } struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index) { struct page *page; int count = 0; retry: page = __get_meta_page(sbi, index, true); if (IS_ERR(page)) { if (PTR_ERR(page) == -EIO && ++count <= DEFAULT_RETRY_IO_COUNT) goto retry; f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE); } return page; } /* for POR only */ struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) { return __get_meta_page(sbi, index, false); } static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, int type) { struct seg_entry *se; unsigned int segno, offset; bool exist; if (type == DATA_GENERIC) return true; segno = GET_SEGNO(sbi, blkaddr); offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); se = get_seg_entry(sbi, segno); exist = f2fs_test_bit(offset, se->cur_valid_map); /* skip data, if we already have an error in checkpoint. */ if (unlikely(f2fs_cp_error(sbi))) return exist; if ((exist && type == DATA_GENERIC_ENHANCE_UPDATE) || (!exist && type == DATA_GENERIC_ENHANCE)) goto out_err; if (!exist && type != DATA_GENERIC_ENHANCE_UPDATE) goto out_handle; return exist; out_err: f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", blkaddr, exist); set_sbi_flag(sbi, SBI_NEED_FSCK); dump_stack(); out_handle: f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); return exist; } static bool __f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) { switch (type) { case META_NAT: break; case META_SIT: if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) goto check_only; break; case META_SSA: if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || blkaddr < SM_I(sbi)->ssa_blkaddr)) goto check_only; break; case META_CP: if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || blkaddr < __start_cp_addr(sbi))) goto check_only; break; case META_POR: if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || blkaddr < MAIN_BLKADDR(sbi))) goto check_only; break; case DATA_GENERIC: case DATA_GENERIC_ENHANCE: case DATA_GENERIC_ENHANCE_READ: case DATA_GENERIC_ENHANCE_UPDATE: if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || blkaddr < MAIN_BLKADDR(sbi))) { /* Skip to emit an error message. */ if (unlikely(f2fs_cp_error(sbi))) return false; f2fs_warn(sbi, "access invalid blkaddr:%u", blkaddr); set_sbi_flag(sbi, SBI_NEED_FSCK); dump_stack(); goto err; } else { return __is_bitmap_valid(sbi, blkaddr, type); } break; case META_GENERIC: if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || blkaddr >= MAIN_BLKADDR(sbi))) goto err; break; default: BUG(); } return true; err: f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); check_only: return false; } bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) { if (time_to_inject(sbi, FAULT_BLKADDR_VALIDITY)) return false; return __f2fs_is_valid_blkaddr(sbi, blkaddr, type); } bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi, block_t blkaddr, int type) { return __f2fs_is_valid_blkaddr(sbi, blkaddr, type); } /* * Readahead CP/NAT/SIT/SSA/POR pages */ int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type, bool sync) { struct page *page; block_t blkno = start; struct f2fs_io_info fio = { .sbi = sbi, .type = META, .op = REQ_OP_READ, .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, .encrypted_page = NULL, .in_list = 0, .is_por = (type == META_POR) ? 1 : 0, }; struct blk_plug plug; int err; if (unlikely(type == META_POR)) fio.op_flags &= ~REQ_META; blk_start_plug(&plug); for (; nrpages-- > 0; blkno++) { if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) goto out; switch (type) { case META_NAT: if (unlikely(blkno >= NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) blkno = 0; /* get nat block addr */ fio.new_blkaddr = current_nat_addr(sbi, blkno * NAT_ENTRY_PER_BLOCK); break; case META_SIT: if (unlikely(blkno >= TOTAL_SEGS(sbi))) goto out; /* get sit block addr */ fio.new_blkaddr = current_sit_addr(sbi, blkno * SIT_ENTRY_PER_BLOCK); break; case META_SSA: case META_CP: case META_POR: fio.new_blkaddr = blkno; break; default: BUG(); } page = f2fs_grab_cache_page(META_MAPPING(sbi), fio.new_blkaddr, false); if (!page) continue; if (PageUptodate(page)) { f2fs_put_page(page, 1); continue; } fio.page = page; err = f2fs_submit_page_bio(&fio); f2fs_put_page(page, err ? 1 : 0); if (!err) f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE); } out: blk_finish_plug(&plug); return blkno - start; } void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, unsigned int ra_blocks) { struct page *page; bool readahead = false; if (ra_blocks == RECOVERY_MIN_RA_BLOCKS) return; page = find_get_page(META_MAPPING(sbi), index); if (!page || !PageUptodate(page)) readahead = true; f2fs_put_page(page, 0); if (readahead) f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true); } static int __f2fs_write_meta_page(struct page *page, struct writeback_control *wbc, enum iostat_type io_type) { struct f2fs_sb_info *sbi = F2FS_P_SB(page); trace_f2fs_writepage(page_folio(page), META); if (unlikely(f2fs_cp_error(sbi))) { if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) { ClearPageUptodate(page); dec_page_count(sbi, F2FS_DIRTY_META); unlock_page(page); return 0; } goto redirty_out; } if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) goto redirty_out; if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) goto redirty_out; f2fs_do_write_meta_page(sbi, page, io_type); dec_page_count(sbi, F2FS_DIRTY_META); if (wbc->for_reclaim) f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); unlock_page(page); if (unlikely(f2fs_cp_error(sbi))) f2fs_submit_merged_write(sbi, META); return 0; redirty_out: redirty_page_for_writepage(wbc, page); return AOP_WRITEPAGE_ACTIVATE; } static int f2fs_write_meta_page(struct page *page, struct writeback_control *wbc) { return __f2fs_write_meta_page(page, wbc, FS_META_IO); } static int f2fs_write_meta_pages(struct address_space *mapping, struct writeback_control *wbc) { struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); long diff, written; if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) goto skip_write; /* collect a number of dirty meta pages and write together */ if (wbc->sync_mode != WB_SYNC_ALL && get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) goto skip_write; /* if locked failed, cp will flush dirty pages instead */ if (!f2fs_down_write_trylock(&sbi->cp_global_sem)) goto skip_write; trace_f2fs_writepages(mapping->host, wbc, META); diff = nr_pages_to_write(sbi, META, wbc); written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); f2fs_up_write(&sbi->cp_global_sem); wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); return 0; skip_write: wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); trace_f2fs_writepages(mapping->host, wbc, META); return 0; } long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, long nr_to_write, enum iostat_type io_type) { struct address_space *mapping = META_MAPPING(sbi); pgoff_t index = 0, prev = ULONG_MAX; struct folio_batch fbatch; long nwritten = 0; int nr_folios; struct writeback_control wbc = { .for_reclaim = 0, }; struct blk_plug plug; folio_batch_init(&fbatch); blk_start_plug(&plug); while ((nr_folios = filemap_get_folios_tag(mapping, &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY, &fbatch))) { int i; for (i = 0; i < nr_folios; i++) { struct folio *folio = fbatch.folios[i]; if (nr_to_write != LONG_MAX && i != 0 && folio->index != prev + folio_nr_pages(fbatch.folios[i-1])) { folio_batch_release(&fbatch); goto stop; } folio_lock(folio); if (unlikely(folio->mapping != mapping)) { continue_unlock: folio_unlock(folio); continue; } if (!folio_test_dirty(folio)) { /* someone wrote it for us */ goto continue_unlock; } f2fs_wait_on_page_writeback(&folio->page, META, true, true); if (!folio_clear_dirty_for_io(folio)) goto continue_unlock; if (__f2fs_write_meta_page(&folio->page, &wbc, io_type)) { folio_unlock(folio); break; } nwritten += folio_nr_pages(folio); prev = folio->index; if (unlikely(nwritten >= nr_to_write)) break; } folio_batch_release(&fbatch); cond_resched(); } stop: if (nwritten) f2fs_submit_merged_write(sbi, type); blk_finish_plug(&plug); return nwritten; } static bool f2fs_dirty_meta_folio(struct address_space *mapping, struct folio *folio) { trace_f2fs_set_page_dirty(folio, META); if (!folio_test_uptodate(folio)) folio_mark_uptodate(folio); if (filemap_dirty_folio(mapping, folio)) { inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META); set_page_private_reference(&folio->page); return true; } return false; } const struct address_space_operations f2fs_meta_aops = { .writepage = f2fs_write_meta_page, .writepages = f2fs_write_meta_pages, .dirty_folio = f2fs_dirty_meta_folio, .invalidate_folio = f2fs_invalidate_folio, .release_folio = f2fs_release_folio, .migrate_folio = filemap_migrate_folio, }; static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, unsigned int devidx, int type) { struct inode_management *im = &sbi->im[type]; struct ino_entry *e = NULL, *new = NULL; if (type == FLUSH_INO) { rcu_read_lock(); e = radix_tree_lookup(&im->ino_root, ino); rcu_read_unlock(); } retry: if (!e) new = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS, true, NULL); radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); spin_lock(&im->ino_lock); e = radix_tree_lookup(&im->ino_root, ino); if (!e) { if (!new) { spin_unlock(&im->ino_lock); radix_tree_preload_end(); goto retry; } e = new; if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) f2fs_bug_on(sbi, 1); memset(e, 0, sizeof(struct ino_entry)); e->ino = ino; list_add_tail(&e->list, &im->ino_list); if (type != ORPHAN_INO) im->ino_num++; } if (type == FLUSH_INO) f2fs_set_bit(devidx, (char *)&e->dirty_device); spin_unlock(&im->ino_lock); radix_tree_preload_end(); if (new && e != new) kmem_cache_free(ino_entry_slab, new); } static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) { struct inode_management *im = &sbi->im[type]; struct ino_entry *e; spin_lock(&im->ino_lock); e = radix_tree_lookup(&im->ino_root, ino); if (e) { list_del(&e->list); radix_tree_delete(&im->ino_root, ino); im->ino_num--; spin_unlock(&im->ino_lock); kmem_cache_free(ino_entry_slab, e); return; } spin_unlock(&im->ino_lock); } void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) { /* add new dirty ino entry into list */ __add_ino_entry(sbi, ino, 0, type); } void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) { /* remove dirty ino entry from list */ __remove_ino_entry(sbi, ino, type); } /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */ bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) { struct inode_management *im = &sbi->im[mode]; struct ino_entry *e; spin_lock(&im->ino_lock); e = radix_tree_lookup(&im->ino_root, ino); spin_unlock(&im->ino_lock); return e ? true : false; } void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) { struct ino_entry *e, *tmp; int i; for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { struct inode_management *im = &sbi->im[i]; spin_lock(&im->ino_lock); list_for_each_entry_safe(e, tmp, &im->ino_list, list) { list_del(&e->list); radix_tree_delete(&im->ino_root, e->ino); kmem_cache_free(ino_entry_slab, e); im->ino_num--; } spin_unlock(&im->ino_lock); } } void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, unsigned int devidx, int type) { __add_ino_entry(sbi, ino, devidx, type); } bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, unsigned int devidx, int type) { struct inode_management *im = &sbi->im[type]; struct ino_entry *e; bool is_dirty = false; spin_lock(&im->ino_lock); e = radix_tree_lookup(&im->ino_root, ino); if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) is_dirty = true; spin_unlock(&im->ino_lock); return is_dirty; } int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) { struct inode_management *im = &sbi->im[ORPHAN_INO]; int err = 0; spin_lock(&im->ino_lock); if (time_to_inject(sbi, FAULT_ORPHAN)) { spin_unlock(&im->ino_lock); return -ENOSPC; } if (unlikely(im->ino_num >= sbi->max_orphans)) err = -ENOSPC; else im->ino_num++; spin_unlock(&im->ino_lock); return err; } void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) { struct inode_management *im = &sbi->im[ORPHAN_INO]; spin_lock(&im->ino_lock); f2fs_bug_on(sbi, im->ino_num == 0); im->ino_num--; spin_unlock(&im->ino_lock); } void f2fs_add_orphan_inode(struct inode *inode) { /* add new orphan ino entry into list */ __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); f2fs_update_inode_page(inode); } void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) { /* remove orphan entry from orphan list */ __remove_ino_entry(sbi, ino, ORPHAN_INO); } static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) { struct inode *inode; struct node_info ni; int err; inode = f2fs_iget_retry(sbi->sb, ino); if (IS_ERR(inode)) { /* * there should be a bug that we can't find the entry * to orphan inode. */ f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); return PTR_ERR(inode); } err = f2fs_dquot_initialize(inode); if (err) { iput(inode); goto err_out; } clear_nlink(inode); /* truncate all the data during iput */ iput(inode); err = f2fs_get_node_info(sbi, ino, &ni, false); if (err) goto err_out; /* ENOMEM was fully retried in f2fs_evict_inode. */ if (ni.blk_addr != NULL_ADDR) { err = -EIO; goto err_out; } return 0; err_out: set_sbi_flag(sbi, SBI_NEED_FSCK); f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", __func__, ino); return err; } int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) { block_t start_blk, orphan_blocks, i, j; int err = 0; if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) return 0; if (f2fs_hw_is_readonly(sbi)) { f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); return 0; } if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) f2fs_info(sbi, "orphan cleanup on readonly fs"); start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); for (i = 0; i < orphan_blocks; i++) { struct page *page; struct f2fs_orphan_block *orphan_blk; page = f2fs_get_meta_page(sbi, start_blk + i); if (IS_ERR(page)) { err = PTR_ERR(page); goto out; } orphan_blk = (struct f2fs_orphan_block *)page_address(page); for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { nid_t ino = le32_to_cpu(orphan_blk->ino[j]); err = recover_orphan_inode(sbi, ino); if (err) { f2fs_put_page(page, 1); goto out; } } f2fs_put_page(page, 1); } /* clear Orphan Flag */ clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); out: set_sbi_flag(sbi, SBI_IS_RECOVERED); return err; } static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) { struct list_head *head; struct f2fs_orphan_block *orphan_blk = NULL; unsigned int nentries = 0; unsigned short index = 1; unsigned short orphan_blocks; struct page *page = NULL; struct ino_entry *orphan = NULL; struct inode_management *im = &sbi->im[ORPHAN_INO]; orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); /* * we don't need to do spin_lock(&im->ino_lock) here, since all the * orphan inode operations are covered under f2fs_lock_op(). * And, spin_lock should be avoided due to page operations below. */ head = &im->ino_list; /* loop for each orphan inode entry and write them in journal block */ list_for_each_entry(orphan, head, list) { if (!page) { page = f2fs_grab_meta_page(sbi, start_blk++); orphan_blk = (struct f2fs_orphan_block *)page_address(page); memset(orphan_blk, 0, sizeof(*orphan_blk)); } orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); if (nentries == F2FS_ORPHANS_PER_BLOCK) { /* * an orphan block is full of 1020 entries, * then we need to flush current orphan blocks * and bring another one in memory */ orphan_blk->blk_addr = cpu_to_le16(index); orphan_blk->blk_count = cpu_to_le16(orphan_blocks); orphan_blk->entry_count = cpu_to_le32(nentries); set_page_dirty(page); f2fs_put_page(page, 1); index++; nentries = 0; page = NULL; } } if (page) { orphan_blk->blk_addr = cpu_to_le16(index); orphan_blk->blk_count = cpu_to_le16(orphan_blocks); orphan_blk->entry_count = cpu_to_le32(nentries); set_page_dirty(page); f2fs_put_page(page, 1); } } static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi, struct f2fs_checkpoint *ckpt) { unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); __u32 chksum; chksum = f2fs_crc32(sbi, ckpt, chksum_ofs); if (chksum_ofs < CP_CHKSUM_OFFSET) { chksum_ofs += sizeof(chksum); chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs, F2FS_BLKSIZE - chksum_ofs); } return chksum; } static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, struct f2fs_checkpoint **cp_block, struct page **cp_page, unsigned long long *version) { size_t crc_offset = 0; __u32 crc; *cp_page = f2fs_get_meta_page(sbi, cp_addr); if (IS_ERR(*cp_page)) return PTR_ERR(*cp_page); *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); crc_offset = le32_to_cpu((*cp_block)->checksum_offset); if (crc_offset < CP_MIN_CHKSUM_OFFSET || crc_offset > CP_CHKSUM_OFFSET) { f2fs_put_page(*cp_page, 1); f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); return -EINVAL; } crc = f2fs_checkpoint_chksum(sbi, *cp_block); if (crc != cur_cp_crc(*cp_block)) { f2fs_put_page(*cp_page, 1); f2fs_warn(sbi, "invalid crc value"); return -EINVAL; } *version = cur_cp_version(*cp_block); return 0; } static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, block_t cp_addr, unsigned long long *version) { struct page *cp_page_1 = NULL, *cp_page_2 = NULL; struct f2fs_checkpoint *cp_block = NULL; unsigned long long cur_version = 0, pre_version = 0; unsigned int cp_blocks; int err; err = get_checkpoint_version(sbi, cp_addr, &cp_block, &cp_page_1, version); if (err) return NULL; cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count); if (cp_blocks > BLKS_PER_SEG(sbi) || cp_blocks <= F2FS_CP_PACKS) { f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", le32_to_cpu(cp_block->cp_pack_total_block_count)); goto invalid_cp; } pre_version = *version; cp_addr += cp_blocks - 1; err = get_checkpoint_version(sbi, cp_addr, &cp_block, &cp_page_2, version); if (err) goto invalid_cp; cur_version = *version; if (cur_version == pre_version) { *version = cur_version; f2fs_put_page(cp_page_2, 1); return cp_page_1; } f2fs_put_page(cp_page_2, 1); invalid_cp: f2fs_put_page(cp_page_1, 1); return NULL; } int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) { struct f2fs_checkpoint *cp_block; struct f2fs_super_block *fsb = sbi->raw_super; struct page *cp1, *cp2, *cur_page; unsigned long blk_size = sbi->blocksize; unsigned long long cp1_version = 0, cp2_version = 0; unsigned long long cp_start_blk_no; unsigned int cp_blks = 1 + __cp_payload(sbi); block_t cp_blk_no; int i; int err; sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks), GFP_KERNEL); if (!sbi->ckpt) return -ENOMEM; /* * Finding out valid cp block involves read both * sets( cp pack 1 and cp pack 2) */ cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); /* The second checkpoint pack should start at the next segment */ cp_start_blk_no += ((unsigned long long)1) << le32_to_cpu(fsb->log_blocks_per_seg); cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); if (cp1 && cp2) { if (ver_after(cp2_version, cp1_version)) cur_page = cp2; else cur_page = cp1; } else if (cp1) { cur_page = cp1; } else if (cp2) { cur_page = cp2; } else { err = -EFSCORRUPTED; goto fail_no_cp; } cp_block = (struct f2fs_checkpoint *)page_address(cur_page); memcpy(sbi->ckpt, cp_block, blk_size); if (cur_page == cp1) sbi->cur_cp_pack = 1; else sbi->cur_cp_pack = 2; /* Sanity checking of checkpoint */ if (f2fs_sanity_check_ckpt(sbi)) { err = -EFSCORRUPTED; goto free_fail_no_cp; } if (cp_blks <= 1) goto done; cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); if (cur_page == cp2) cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg)); for (i = 1; i < cp_blks; i++) { void *sit_bitmap_ptr; unsigned char *ckpt = (unsigned char *)sbi->ckpt; cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); if (IS_ERR(cur_page)) { err = PTR_ERR(cur_page); goto free_fail_no_cp; } sit_bitmap_ptr = page_address(cur_page); memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); f2fs_put_page(cur_page, 1); } done: f2fs_put_page(cp1, 1); f2fs_put_page(cp2, 1); return 0; free_fail_no_cp: f2fs_put_page(cp1, 1); f2fs_put_page(cp2, 1); fail_no_cp: kvfree(sbi->ckpt); return err; } static void __add_dirty_inode(struct inode *inode, enum inode_type type) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; if (is_inode_flag_set(inode, flag)) return; set_inode_flag(inode, flag); list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); stat_inc_dirty_inode(sbi, type); } static void __remove_dirty_inode(struct inode *inode, enum inode_type type) { int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) return; list_del_init(&F2FS_I(inode)->dirty_list); clear_inode_flag(inode, flag); stat_dec_dirty_inode(F2FS_I_SB(inode), type); } void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode)) return; spin_lock(&sbi->inode_lock[type]); if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) __add_dirty_inode(inode, type); inode_inc_dirty_pages(inode); spin_unlock(&sbi->inode_lock[type]); set_page_private_reference(&folio->page); } void f2fs_remove_dirty_inode(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode)) return; if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) return; spin_lock(&sbi->inode_lock[type]); __remove_dirty_inode(inode, type); spin_unlock(&sbi->inode_lock[type]); } int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, bool from_cp) { struct list_head *head; struct inode *inode; struct f2fs_inode_info *fi; bool is_dir = (type == DIR_INODE); unsigned long ino = 0; trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, get_pages(sbi, is_dir ? F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); retry: if (unlikely(f2fs_cp_error(sbi))) { trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, get_pages(sbi, is_dir ? F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); return -EIO; } spin_lock(&sbi->inode_lock[type]); head = &sbi->inode_list[type]; if (list_empty(head)) { spin_unlock(&sbi->inode_lock[type]); trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, get_pages(sbi, is_dir ? F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); return 0; } fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); inode = igrab(&fi->vfs_inode); spin_unlock(&sbi->inode_lock[type]); if (inode) { unsigned long cur_ino = inode->i_ino; if (from_cp) F2FS_I(inode)->cp_task = current; F2FS_I(inode)->wb_task = current; filemap_fdatawrite(inode->i_mapping); F2FS_I(inode)->wb_task = NULL; if (from_cp) F2FS_I(inode)->cp_task = NULL; iput(inode); /* We need to give cpu to another writers. */ if (ino == cur_ino) cond_resched(); else ino = cur_ino; } else { /* * We should submit bio, since it exists several * writebacking dentry pages in the freeing inode. */ f2fs_submit_merged_write(sbi, DATA); cond_resched(); } goto retry; } static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) { struct list_head *head = &sbi->inode_list[DIRTY_META]; struct inode *inode; struct f2fs_inode_info *fi; s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); while (total--) { if (unlikely(f2fs_cp_error(sbi))) return -EIO; spin_lock(&sbi->inode_lock[DIRTY_META]); if (list_empty(head)) { spin_unlock(&sbi->inode_lock[DIRTY_META]); return 0; } fi = list_first_entry(head, struct f2fs_inode_info, gdirty_list); inode = igrab(&fi->vfs_inode); spin_unlock(&sbi->inode_lock[DIRTY_META]); if (inode) { sync_inode_metadata(inode, 0); /* it's on eviction */ if (is_inode_flag_set(inode, FI_DIRTY_INODE)) f2fs_update_inode_page(inode); iput(inode); } } return 0; } static void __prepare_cp_block(struct f2fs_sb_info *sbi) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct f2fs_nm_info *nm_i = NM_I(sbi); nid_t last_nid = nm_i->next_scan_nid; next_free_nid(sbi, &last_nid); ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); ckpt->next_free_nid = cpu_to_le32(last_nid); /* update user_block_counts */ sbi->last_valid_block_count = sbi->total_valid_block_count; percpu_counter_set(&sbi->alloc_valid_block_count, 0); percpu_counter_set(&sbi->rf_node_block_count, 0); } static bool __need_flush_quota(struct f2fs_sb_info *sbi) { bool ret = false; if (!is_journalled_quota(sbi)) return false; if (!f2fs_down_write_trylock(&sbi->quota_sem)) return true; if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { ret = false; } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { ret = false; } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); ret = true; } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { ret = true; } f2fs_up_write(&sbi->quota_sem); return ret; } /* * Freeze all the FS-operations for checkpoint. */ static int block_operations(struct f2fs_sb_info *sbi) { struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL, .nr_to_write = LONG_MAX, .for_reclaim = 0, }; int err = 0, cnt = 0; /* * Let's flush inline_data in dirty node pages. */ f2fs_flush_inline_data(sbi); retry_flush_quotas: f2fs_lock_all(sbi); if (__need_flush_quota(sbi)) { int locked; if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); goto retry_flush_dents; } f2fs_unlock_all(sbi); /* only failed during mount/umount/freeze/quotactl */ locked = down_read_trylock(&sbi->sb->s_umount); f2fs_quota_sync(sbi->sb, -1); if (locked) up_read(&sbi->sb->s_umount); cond_resched(); goto retry_flush_quotas; } retry_flush_dents: /* write all the dirty dentry pages */ if (get_pages(sbi, F2FS_DIRTY_DENTS)) { f2fs_unlock_all(sbi); err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true); if (err) return err; cond_resched(); goto retry_flush_quotas; } /* * POR: we should ensure that there are no dirty node pages * until finishing nat/sit flush. inode->i_blocks can be updated. */ f2fs_down_write(&sbi->node_change); if (get_pages(sbi, F2FS_DIRTY_IMETA)) { f2fs_up_write(&sbi->node_change); f2fs_unlock_all(sbi); err = f2fs_sync_inode_meta(sbi); if (err) return err; cond_resched(); goto retry_flush_quotas; } retry_flush_nodes: f2fs_down_write(&sbi->node_write); if (get_pages(sbi, F2FS_DIRTY_NODES)) { f2fs_up_write(&sbi->node_write); atomic_inc(&sbi->wb_sync_req[NODE]); err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); atomic_dec(&sbi->wb_sync_req[NODE]); if (err) { f2fs_up_write(&sbi->node_change); f2fs_unlock_all(sbi); return err; } cond_resched(); goto retry_flush_nodes; } /* * sbi->node_change is used only for AIO write_begin path which produces * dirty node blocks and some checkpoint values by block allocation. */ __prepare_cp_block(sbi); f2fs_up_write(&sbi->node_change); return err; } static void unblock_operations(struct f2fs_sb_info *sbi) { f2fs_up_write(&sbi->node_write); f2fs_unlock_all(sbi); } void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) { DEFINE_WAIT(wait); for (;;) { if (!get_pages(sbi, type)) break; if (unlikely(f2fs_cp_error(sbi) && !is_sbi_flag_set(sbi, SBI_IS_CLOSE))) break; if (type == F2FS_DIRTY_META) f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); else if (type == F2FS_WB_CP_DATA) f2fs_submit_merged_write(sbi, DATA); prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); io_schedule_timeout(DEFAULT_IO_TIMEOUT); } finish_wait(&sbi->cp_wait, &wait); } static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) { unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); unsigned long flags; if (cpc->reason & CP_UMOUNT) { if (le32_to_cpu(ckpt->cp_pack_total_block_count) + NM_I(sbi)->nat_bits_blocks > BLKS_PER_SEG(sbi)) { clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); f2fs_notice(sbi, "Disable nat_bits due to no space"); } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) && f2fs_nat_bitmap_enabled(sbi)) { f2fs_enable_nat_bits(sbi); set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); f2fs_notice(sbi, "Rebuild and enable nat_bits"); } } spin_lock_irqsave(&sbi->cp_lock, flags); if (cpc->reason & CP_TRIMMED) __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); else __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); if (cpc->reason & CP_UMOUNT) __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); else __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); if (cpc->reason & CP_FASTBOOT) __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); else __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); if (orphan_num) __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); else __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) __set_ckpt_flags(ckpt, CP_FSCK_FLAG); if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); else __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); else __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); else __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); else __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); /* set this flag to activate crc|cp_ver for recovery */ __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); spin_unlock_irqrestore(&sbi->cp_lock, flags); } static void commit_checkpoint(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) { struct writeback_control wbc = { .for_reclaim = 0, }; /* * filemap_get_folios_tag and lock_page again will take * some extra time. Therefore, f2fs_update_meta_pages and * f2fs_sync_meta_pages are combined in this function. */ struct page *page = f2fs_grab_meta_page(sbi, blk_addr); int err; f2fs_wait_on_page_writeback(page, META, true, true); memcpy(page_address(page), src, PAGE_SIZE); set_page_dirty(page); if (unlikely(!clear_page_dirty_for_io(page))) f2fs_bug_on(sbi, 1); /* writeout cp pack 2 page */ err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); if (unlikely(err && f2fs_cp_error(sbi))) { f2fs_put_page(page, 1); return; } f2fs_bug_on(sbi, err); f2fs_put_page(page, 0); /* submit checkpoint (with barrier if NOBARRIER is not set) */ f2fs_submit_merged_write(sbi, META_FLUSH); } static inline u64 get_sectors_written(struct block_device *bdev) { return (u64)part_stat_read(bdev, sectors[STAT_WRITE]); } u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi) { if (f2fs_is_multi_device(sbi)) { u64 sectors = 0; int i; for (i = 0; i < sbi->s_ndevs; i++) sectors += get_sectors_written(FDEV(i).bdev); return sectors; } return get_sectors_written(sbi->sb->s_bdev); } static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct f2fs_nm_info *nm_i = NM_I(sbi); unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; block_t start_blk; unsigned int data_sum_blocks, orphan_blocks; __u32 crc32 = 0; int i; int cp_payload_blks = __cp_payload(sbi); struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); u64 kbytes_written; int err; /* Flush all the NAT/SIT pages */ f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); /* start to update checkpoint, cp ver is already updated previously */ ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE); ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno); ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff); ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type; } for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA); ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno); ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff); ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type; } /* 2 cp + n data seg summary + orphan inode blocks */ data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); spin_lock_irqsave(&sbi->cp_lock, flags); if (data_sum_blocks < NR_CURSEG_DATA_TYPE) __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); else __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); spin_unlock_irqrestore(&sbi->cp_lock, flags); orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + orphan_blocks); if (__remain_node_summaries(cpc->reason)) ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + cp_payload_blks + data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE); else ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + cp_payload_blks + data_sum_blocks + orphan_blocks); /* update ckpt flag for checkpoint */ update_ckpt_flags(sbi, cpc); /* update SIT/NAT bitmap */ get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); crc32 = f2fs_checkpoint_chksum(sbi, ckpt); *((__le32 *)((unsigned char *)ckpt + le32_to_cpu(ckpt->checksum_offset))) = cpu_to_le32(crc32); start_blk = __start_cp_next_addr(sbi); /* write nat bits */ if ((cpc->reason & CP_UMOUNT) && is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) { __u64 cp_ver = cur_cp_version(ckpt); block_t blk; cp_ver |= ((__u64)crc32 << 32); *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); blk = start_blk + BLKS_PER_SEG(sbi) - nm_i->nat_bits_blocks; for (i = 0; i < nm_i->nat_bits_blocks; i++) f2fs_update_meta_page(sbi, nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), blk + i); } /* write out checkpoint buffer at block 0 */ f2fs_update_meta_page(sbi, ckpt, start_blk++); for (i = 1; i < 1 + cp_payload_blks; i++) f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, start_blk++); if (orphan_num) { write_orphan_inodes(sbi, start_blk); start_blk += orphan_blocks; } f2fs_write_data_summaries(sbi, start_blk); start_blk += data_sum_blocks; /* Record write statistics in the hot node summary */ kbytes_written = sbi->kbytes_written; kbytes_written += (f2fs_get_sectors_written(sbi) - sbi->sectors_written_start) >> 1; seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); if (__remain_node_summaries(cpc->reason)) { f2fs_write_node_summaries(sbi, start_blk); start_blk += NR_CURSEG_NODE_TYPE; } /* Here, we have one bio having CP pack except cp pack 2 page */ f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); /* Wait for all dirty meta pages to be submitted for IO */ f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); /* wait for previous submitted meta pages writeback */ f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); /* flush all device cache */ err = f2fs_flush_device_cache(sbi); if (err) return err; /* barrier and flush checkpoint cp pack 2 page if it can */ commit_checkpoint(sbi, ckpt, start_blk); f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); /* * invalidate intermediate page cache borrowed from meta inode which are * used for migration of encrypted, verity or compressed inode's blocks. */ if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) || f2fs_sb_has_compression(sbi)) f2fs_bug_on(sbi, invalidate_inode_pages2_range(META_MAPPING(sbi), MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1)); f2fs_release_ino_entry(sbi, false); f2fs_reset_fsync_node_info(sbi); clear_sbi_flag(sbi, SBI_IS_DIRTY); clear_sbi_flag(sbi, SBI_NEED_CP); clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); spin_lock(&sbi->stat_lock); sbi->unusable_block_count = 0; spin_unlock(&sbi->stat_lock); __set_cp_next_pack(sbi); /* * redirty superblock if metadata like node page or inode cache is * updated during writing checkpoint. */ if (get_pages(sbi, F2FS_DIRTY_NODES) || get_pages(sbi, F2FS_DIRTY_IMETA)) set_sbi_flag(sbi, SBI_IS_DIRTY); f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; } int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); unsigned long long ckpt_ver; int err = 0; if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) return -EROFS; if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { if (cpc->reason != CP_PAUSE) return 0; f2fs_warn(sbi, "Start checkpoint disabled!"); } if (cpc->reason != CP_RESIZE) f2fs_down_write(&sbi->cp_global_sem); if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) goto out; if (unlikely(f2fs_cp_error(sbi))) { err = -EIO; goto out; } trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); err = block_operations(sbi); if (err) goto out; trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); f2fs_flush_merged_writes(sbi); /* this is the case of multiple fstrims without any changes */ if (cpc->reason & CP_DISCARD) { if (!f2fs_exist_trim_candidates(sbi, cpc)) { unblock_operations(sbi); goto out; } if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 && SIT_I(sbi)->dirty_sentries == 0 && prefree_segments(sbi) == 0) { f2fs_flush_sit_entries(sbi, cpc); f2fs_clear_prefree_segments(sbi, cpc); unblock_operations(sbi); goto out; } } /* * update checkpoint pack index * Increase the version number so that * SIT entries and seg summaries are written at correct place */ ckpt_ver = cur_cp_version(ckpt); ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); /* write cached NAT/SIT entries to NAT/SIT area */ err = f2fs_flush_nat_entries(sbi, cpc); if (err) { f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err); f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); goto stop; } f2fs_flush_sit_entries(sbi, cpc); /* save inmem log status */ f2fs_save_inmem_curseg(sbi); err = do_checkpoint(sbi, cpc); if (err) { f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err); f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); f2fs_release_discard_addrs(sbi); } else { f2fs_clear_prefree_segments(sbi, cpc); } f2fs_restore_inmem_curseg(sbi); f2fs_reinit_atgc_curseg(sbi); stat_inc_cp_count(sbi); stop: unblock_operations(sbi); if (cpc->reason & CP_RECOVERY) f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); /* update CP_TIME to trigger checkpoint periodically */ f2fs_update_time(sbi, CP_TIME); trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); out: if (cpc->reason != CP_RESIZE) f2fs_up_write(&sbi->cp_global_sem); return err; } void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) { int i; for (i = 0; i < MAX_INO_ENTRY; i++) { struct inode_management *im = &sbi->im[i]; INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); spin_lock_init(&im->ino_lock); INIT_LIST_HEAD(&im->ino_list); im->ino_num = 0; } sbi->max_orphans = (BLKS_PER_SEG(sbi) - F2FS_CP_PACKS - NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) * F2FS_ORPHANS_PER_BLOCK; } int __init f2fs_create_checkpoint_caches(void) { ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", sizeof(struct ino_entry)); if (!ino_entry_slab) return -ENOMEM; f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", sizeof(struct inode_entry)); if (!f2fs_inode_entry_slab) { kmem_cache_destroy(ino_entry_slab); return -ENOMEM; } return 0; } void f2fs_destroy_checkpoint_caches(void) { kmem_cache_destroy(ino_entry_slab); kmem_cache_destroy(f2fs_inode_entry_slab); } static int __write_checkpoint_sync(struct f2fs_sb_info *sbi) { struct cp_control cpc = { .reason = CP_SYNC, }; int err; f2fs_down_write(&sbi->gc_lock); err = f2fs_write_checkpoint(sbi, &cpc); f2fs_up_write(&sbi->gc_lock); return err; } static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi) { struct ckpt_req_control *cprc = &sbi->cprc_info; struct ckpt_req *req, *next; struct llist_node *dispatch_list; u64 sum_diff = 0, diff, count = 0; int ret; dispatch_list = llist_del_all(&cprc->issue_list); if (!dispatch_list) return; dispatch_list = llist_reverse_order(dispatch_list); ret = __write_checkpoint_sync(sbi); atomic_inc(&cprc->issued_ckpt); llist_for_each_entry_safe(req, next, dispatch_list, llnode) { diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time); req->ret = ret; complete(&req->wait); sum_diff += diff; count++; } atomic_sub(count, &cprc->queued_ckpt); atomic_add(count, &cprc->total_ckpt); spin_lock(&cprc->stat_lock); cprc->cur_time = (unsigned int)div64_u64(sum_diff, count); if (cprc->peak_time < cprc->cur_time) cprc->peak_time = cprc->cur_time; spin_unlock(&cprc->stat_lock); } static int issue_checkpoint_thread(void *data) { struct f2fs_sb_info *sbi = data; struct ckpt_req_control *cprc = &sbi->cprc_info; wait_queue_head_t *q = &cprc->ckpt_wait_queue; repeat: if (kthread_should_stop()) return 0; if (!llist_empty(&cprc->issue_list)) __checkpoint_and_complete_reqs(sbi); wait_event_interruptible(*q, kthread_should_stop() || !llist_empty(&cprc->issue_list)); goto repeat; } static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi, struct ckpt_req *wait_req) { struct ckpt_req_control *cprc = &sbi->cprc_info; if (!llist_empty(&cprc->issue_list)) { __checkpoint_and_complete_reqs(sbi); } else { /* already dispatched by issue_checkpoint_thread */ if (wait_req) wait_for_completion(&wait_req->wait); } } static void init_ckpt_req(struct ckpt_req *req) { memset(req, 0, sizeof(struct ckpt_req)); init_completion(&req->wait); req->queue_time = ktime_get(); } int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi) { struct ckpt_req_control *cprc = &sbi->cprc_info; struct ckpt_req req; struct cp_control cpc; cpc.reason = __get_cp_reason(sbi); if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) { int ret; f2fs_down_write(&sbi->gc_lock); ret = f2fs_write_checkpoint(sbi, &cpc); f2fs_up_write(&sbi->gc_lock); return ret; } if (!cprc->f2fs_issue_ckpt) return __write_checkpoint_sync(sbi); init_ckpt_req(&req); llist_add(&req.llnode, &cprc->issue_list); atomic_inc(&cprc->queued_ckpt); /* * update issue_list before we wake up issue_checkpoint thread, * this smp_mb() pairs with another barrier in ___wait_event(), * see more details in comments of waitqueue_active(). */ smp_mb(); if (waitqueue_active(&cprc->ckpt_wait_queue)) wake_up(&cprc->ckpt_wait_queue); if (cprc->f2fs_issue_ckpt) wait_for_completion(&req.wait); else flush_remained_ckpt_reqs(sbi, &req); return req.ret; } int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi) { dev_t dev = sbi->sb->s_bdev->bd_dev; struct ckpt_req_control *cprc = &sbi->cprc_info; if (cprc->f2fs_issue_ckpt) return 0; cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi, "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev)); if (IS_ERR(cprc->f2fs_issue_ckpt)) { int err = PTR_ERR(cprc->f2fs_issue_ckpt); cprc->f2fs_issue_ckpt = NULL; return err; } set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio); return 0; } void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi) { struct ckpt_req_control *cprc = &sbi->cprc_info; struct task_struct *ckpt_task; if (!cprc->f2fs_issue_ckpt) return; ckpt_task = cprc->f2fs_issue_ckpt; cprc->f2fs_issue_ckpt = NULL; kthread_stop(ckpt_task); f2fs_flush_ckpt_thread(sbi); } void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi) { struct ckpt_req_control *cprc = &sbi->cprc_info; flush_remained_ckpt_reqs(sbi, NULL); /* Let's wait for the previous dispatched checkpoint. */ while (atomic_read(&cprc->queued_ckpt)) io_schedule_timeout(DEFAULT_IO_TIMEOUT); } void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi) { struct ckpt_req_control *cprc = &sbi->cprc_info; atomic_set(&cprc->issued_ckpt, 0); atomic_set(&cprc->total_ckpt, 0); atomic_set(&cprc->queued_ckpt, 0); cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO; init_waitqueue_head(&cprc->ckpt_wait_queue); init_llist_head(&cprc->issue_list); spin_lock_init(&cprc->stat_lock); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1