Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jaegeuk Kim | 2126 | 41.44% | 76 | 38.38% |
Chao Yu | 2105 | 41.03% | 75 | 37.88% |
Yangtao Li | 269 | 5.24% | 2 | 1.01% |
Changman Lee | 127 | 2.48% | 2 | 1.01% |
Daeho Jeong | 78 | 1.52% | 5 | 2.53% |
Eric Biggers | 58 | 1.13% | 3 | 1.52% |
Jeff Layton | 54 | 1.05% | 2 | 1.01% |
Qilong Zhang | 52 | 1.01% | 1 | 0.51% |
Huajun Li | 39 | 0.76% | 2 | 1.01% |
Namjae Jeon | 36 | 0.70% | 2 | 1.01% |
Daniel Rosenberg | 29 | 0.57% | 3 | 1.52% |
Weichao Guo | 27 | 0.53% | 1 | 0.51% |
Zhang Zhen | 20 | 0.39% | 2 | 1.01% |
Sunmin Jeong | 18 | 0.35% | 1 | 0.51% |
Joe Perches | 16 | 0.31% | 1 | 0.51% |
Yeongjin Gil | 12 | 0.23% | 1 | 0.51% |
Shilong Wang | 10 | 0.19% | 1 | 0.51% |
Fengnan Chang | 9 | 0.18% | 2 | 1.01% |
Jin Xu | 8 | 0.16% | 2 | 1.01% |
Zhikang Zhang | 6 | 0.12% | 1 | 0.51% |
Al Viro | 5 | 0.10% | 1 | 0.51% |
Yunlei He | 4 | 0.08% | 1 | 0.51% |
Neil Brown | 4 | 0.08% | 1 | 0.51% |
Gu Zheng | 3 | 0.06% | 1 | 0.51% |
Wuyun Zhao | 3 | 0.06% | 1 | 0.51% |
Linus Torvalds | 3 | 0.06% | 1 | 0.51% |
Hridya Valsaraju | 2 | 0.04% | 1 | 0.51% |
Chandan Rajendra | 2 | 0.04% | 1 | 0.51% |
Johannes Weiner | 1 | 0.02% | 1 | 0.51% |
Greg Kroah-Hartman | 1 | 0.02% | 1 | 0.51% |
Matthew Wilcox | 1 | 0.02% | 1 | 0.51% |
Ruiqi Gong | 1 | 0.02% | 1 | 0.51% |
Ye Bin | 1 | 0.02% | 1 | 0.51% |
Total | 5130 | 198 |
// SPDX-License-Identifier: GPL-2.0 /* * fs/f2fs/inode.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ */ #include <linux/fs.h> #include <linux/f2fs_fs.h> #include <linux/buffer_head.h> #include <linux/writeback.h> #include <linux/sched/mm.h> #include <linux/lz4.h> #include <linux/zstd.h> #include "f2fs.h" #include "node.h" #include "segment.h" #include "xattr.h" #include <trace/events/f2fs.h> #ifdef CONFIG_F2FS_FS_COMPRESSION extern const struct address_space_operations f2fs_compress_aops; #endif void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync) { if (is_inode_flag_set(inode, FI_NEW_INODE)) return; if (f2fs_readonly(F2FS_I_SB(inode)->sb)) return; if (f2fs_inode_dirtied(inode, sync)) return; mark_inode_dirty_sync(inode); } void f2fs_set_inode_flags(struct inode *inode) { unsigned int flags = F2FS_I(inode)->i_flags; unsigned int new_fl = 0; if (flags & F2FS_SYNC_FL) new_fl |= S_SYNC; if (flags & F2FS_APPEND_FL) new_fl |= S_APPEND; if (flags & F2FS_IMMUTABLE_FL) new_fl |= S_IMMUTABLE; if (flags & F2FS_NOATIME_FL) new_fl |= S_NOATIME; if (flags & F2FS_DIRSYNC_FL) new_fl |= S_DIRSYNC; if (file_is_encrypt(inode)) new_fl |= S_ENCRYPTED; if (file_is_verity(inode)) new_fl |= S_VERITY; if (flags & F2FS_CASEFOLD_FL) new_fl |= S_CASEFOLD; inode_set_flags(inode, new_fl, S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC| S_ENCRYPTED|S_VERITY|S_CASEFOLD); } static void __get_inode_rdev(struct inode *inode, struct page *node_page) { __le32 *addr = get_dnode_addr(inode, node_page); if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { if (addr[0]) inode->i_rdev = old_decode_dev(le32_to_cpu(addr[0])); else inode->i_rdev = new_decode_dev(le32_to_cpu(addr[1])); } } static void __set_inode_rdev(struct inode *inode, struct page *node_page) { __le32 *addr = get_dnode_addr(inode, node_page); if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { if (old_valid_dev(inode->i_rdev)) { addr[0] = cpu_to_le32(old_encode_dev(inode->i_rdev)); addr[1] = 0; } else { addr[0] = 0; addr[1] = cpu_to_le32(new_encode_dev(inode->i_rdev)); addr[2] = 0; } } } static void __recover_inline_status(struct inode *inode, struct page *ipage) { void *inline_data = inline_data_addr(inode, ipage); __le32 *start = inline_data; __le32 *end = start + MAX_INLINE_DATA(inode) / sizeof(__le32); while (start < end) { if (*start++) { f2fs_wait_on_page_writeback(ipage, NODE, true, true); set_inode_flag(inode, FI_DATA_EXIST); set_raw_inline(inode, F2FS_INODE(ipage)); set_page_dirty(ipage); return; } } return; } static bool f2fs_enable_inode_chksum(struct f2fs_sb_info *sbi, struct page *page) { struct f2fs_inode *ri = &F2FS_NODE(page)->i; if (!f2fs_sb_has_inode_chksum(sbi)) return false; if (!IS_INODE(page) || !(ri->i_inline & F2FS_EXTRA_ATTR)) return false; if (!F2FS_FITS_IN_INODE(ri, le16_to_cpu(ri->i_extra_isize), i_inode_checksum)) return false; return true; } static __u32 f2fs_inode_chksum(struct f2fs_sb_info *sbi, struct page *page) { struct f2fs_node *node = F2FS_NODE(page); struct f2fs_inode *ri = &node->i; __le32 ino = node->footer.ino; __le32 gen = ri->i_generation; __u32 chksum, chksum_seed; __u32 dummy_cs = 0; unsigned int offset = offsetof(struct f2fs_inode, i_inode_checksum); unsigned int cs_size = sizeof(dummy_cs); chksum = f2fs_chksum(sbi, sbi->s_chksum_seed, (__u8 *)&ino, sizeof(ino)); chksum_seed = f2fs_chksum(sbi, chksum, (__u8 *)&gen, sizeof(gen)); chksum = f2fs_chksum(sbi, chksum_seed, (__u8 *)ri, offset); chksum = f2fs_chksum(sbi, chksum, (__u8 *)&dummy_cs, cs_size); offset += cs_size; chksum = f2fs_chksum(sbi, chksum, (__u8 *)ri + offset, F2FS_BLKSIZE - offset); return chksum; } bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page) { struct f2fs_inode *ri; __u32 provided, calculated; if (unlikely(is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN))) return true; #ifdef CONFIG_F2FS_CHECK_FS if (!f2fs_enable_inode_chksum(sbi, page)) #else if (!f2fs_enable_inode_chksum(sbi, page) || PageDirty(page) || folio_test_writeback(page_folio(page))) #endif return true; ri = &F2FS_NODE(page)->i; provided = le32_to_cpu(ri->i_inode_checksum); calculated = f2fs_inode_chksum(sbi, page); if (provided != calculated) f2fs_warn(sbi, "checksum invalid, nid = %lu, ino_of_node = %x, %x vs. %x", page->index, ino_of_node(page), provided, calculated); return provided == calculated; } void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page) { struct f2fs_inode *ri = &F2FS_NODE(page)->i; if (!f2fs_enable_inode_chksum(sbi, page)) return; ri->i_inode_checksum = cpu_to_le32(f2fs_inode_chksum(sbi, page)); } static bool sanity_check_compress_inode(struct inode *inode, struct f2fs_inode *ri) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); unsigned char clevel; if (ri->i_compress_algorithm >= COMPRESS_MAX) { f2fs_warn(sbi, "%s: inode (ino=%lx) has unsupported compress algorithm: %u, run fsck to fix", __func__, inode->i_ino, ri->i_compress_algorithm); return false; } if (le64_to_cpu(ri->i_compr_blocks) > SECTOR_TO_BLOCK(inode->i_blocks)) { f2fs_warn(sbi, "%s: inode (ino=%lx) has inconsistent i_compr_blocks:%llu, i_blocks:%llu, run fsck to fix", __func__, inode->i_ino, le64_to_cpu(ri->i_compr_blocks), SECTOR_TO_BLOCK(inode->i_blocks)); return false; } if (ri->i_log_cluster_size < MIN_COMPRESS_LOG_SIZE || ri->i_log_cluster_size > MAX_COMPRESS_LOG_SIZE) { f2fs_warn(sbi, "%s: inode (ino=%lx) has unsupported log cluster size: %u, run fsck to fix", __func__, inode->i_ino, ri->i_log_cluster_size); return false; } clevel = le16_to_cpu(ri->i_compress_flag) >> COMPRESS_LEVEL_OFFSET; switch (ri->i_compress_algorithm) { case COMPRESS_LZO: #ifdef CONFIG_F2FS_FS_LZO if (clevel) goto err_level; #endif break; case COMPRESS_LZORLE: #ifdef CONFIG_F2FS_FS_LZORLE if (clevel) goto err_level; #endif break; case COMPRESS_LZ4: #ifdef CONFIG_F2FS_FS_LZ4 #ifdef CONFIG_F2FS_FS_LZ4HC if (clevel && (clevel < LZ4HC_MIN_CLEVEL || clevel > LZ4HC_MAX_CLEVEL)) goto err_level; #else if (clevel) goto err_level; #endif #endif break; case COMPRESS_ZSTD: #ifdef CONFIG_F2FS_FS_ZSTD if (clevel < zstd_min_clevel() || clevel > zstd_max_clevel()) goto err_level; #endif break; default: goto err_level; } return true; err_level: f2fs_warn(sbi, "%s: inode (ino=%lx) has unsupported compress level: %u, run fsck to fix", __func__, inode->i_ino, clevel); return false; } static bool sanity_check_inode(struct inode *inode, struct page *node_page) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_inode *ri = F2FS_INODE(node_page); unsigned long long iblocks; iblocks = le64_to_cpu(F2FS_INODE(node_page)->i_blocks); if (!iblocks) { f2fs_warn(sbi, "%s: corrupted inode i_blocks i_ino=%lx iblocks=%llu, run fsck to fix.", __func__, inode->i_ino, iblocks); return false; } if (ino_of_node(node_page) != nid_of_node(node_page)) { f2fs_warn(sbi, "%s: corrupted inode footer i_ino=%lx, ino,nid: [%u, %u] run fsck to fix.", __func__, inode->i_ino, ino_of_node(node_page), nid_of_node(node_page)); return false; } if (f2fs_has_extra_attr(inode)) { if (!f2fs_sb_has_extra_attr(sbi)) { f2fs_warn(sbi, "%s: inode (ino=%lx) is with extra_attr, but extra_attr feature is off", __func__, inode->i_ino); return false; } if (fi->i_extra_isize > F2FS_TOTAL_EXTRA_ATTR_SIZE || fi->i_extra_isize < F2FS_MIN_EXTRA_ATTR_SIZE || fi->i_extra_isize % sizeof(__le32)) { f2fs_warn(sbi, "%s: inode (ino=%lx) has corrupted i_extra_isize: %d, max: %zu", __func__, inode->i_ino, fi->i_extra_isize, F2FS_TOTAL_EXTRA_ATTR_SIZE); return false; } if (f2fs_sb_has_flexible_inline_xattr(sbi) && f2fs_has_inline_xattr(inode) && (!fi->i_inline_xattr_size || fi->i_inline_xattr_size > MAX_INLINE_XATTR_SIZE)) { f2fs_warn(sbi, "%s: inode (ino=%lx) has corrupted i_inline_xattr_size: %d, max: %lu", __func__, inode->i_ino, fi->i_inline_xattr_size, MAX_INLINE_XATTR_SIZE); return false; } if (f2fs_sb_has_compression(sbi) && fi->i_flags & F2FS_COMPR_FL && F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_compress_flag)) { if (!sanity_check_compress_inode(inode, ri)) return false; } } if (!f2fs_sb_has_extra_attr(sbi)) { if (f2fs_sb_has_project_quota(sbi)) { f2fs_warn(sbi, "%s: corrupted inode ino=%lx, wrong feature flag: %u, run fsck to fix.", __func__, inode->i_ino, F2FS_FEATURE_PRJQUOTA); return false; } if (f2fs_sb_has_inode_chksum(sbi)) { f2fs_warn(sbi, "%s: corrupted inode ino=%lx, wrong feature flag: %u, run fsck to fix.", __func__, inode->i_ino, F2FS_FEATURE_INODE_CHKSUM); return false; } if (f2fs_sb_has_flexible_inline_xattr(sbi)) { f2fs_warn(sbi, "%s: corrupted inode ino=%lx, wrong feature flag: %u, run fsck to fix.", __func__, inode->i_ino, F2FS_FEATURE_FLEXIBLE_INLINE_XATTR); return false; } if (f2fs_sb_has_inode_crtime(sbi)) { f2fs_warn(sbi, "%s: corrupted inode ino=%lx, wrong feature flag: %u, run fsck to fix.", __func__, inode->i_ino, F2FS_FEATURE_INODE_CRTIME); return false; } if (f2fs_sb_has_compression(sbi)) { f2fs_warn(sbi, "%s: corrupted inode ino=%lx, wrong feature flag: %u, run fsck to fix.", __func__, inode->i_ino, F2FS_FEATURE_COMPRESSION); return false; } } if (f2fs_sanity_check_inline_data(inode, node_page)) { f2fs_warn(sbi, "%s: inode (ino=%lx, mode=%u) should not have inline_data, run fsck to fix", __func__, inode->i_ino, inode->i_mode); return false; } if (f2fs_has_inline_dentry(inode) && !S_ISDIR(inode->i_mode)) { f2fs_warn(sbi, "%s: inode (ino=%lx, mode=%u) should not have inline_dentry, run fsck to fix", __func__, inode->i_ino, inode->i_mode); return false; } if ((fi->i_flags & F2FS_CASEFOLD_FL) && !f2fs_sb_has_casefold(sbi)) { f2fs_warn(sbi, "%s: inode (ino=%lx) has casefold flag, but casefold feature is off", __func__, inode->i_ino); return false; } if (fi->i_xattr_nid && f2fs_check_nid_range(sbi, fi->i_xattr_nid)) { f2fs_warn(sbi, "%s: inode (ino=%lx) has corrupted i_xattr_nid: %u, run fsck to fix.", __func__, inode->i_ino, fi->i_xattr_nid); return false; } return true; } static void init_idisk_time(struct inode *inode) { struct f2fs_inode_info *fi = F2FS_I(inode); fi->i_disk_time[0] = inode_get_atime(inode); fi->i_disk_time[1] = inode_get_ctime(inode); fi->i_disk_time[2] = inode_get_mtime(inode); } static int do_read_inode(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode_info *fi = F2FS_I(inode); struct page *node_page; struct f2fs_inode *ri; projid_t i_projid; /* Check if ino is within scope */ if (f2fs_check_nid_range(sbi, inode->i_ino)) return -EINVAL; node_page = f2fs_get_node_page(sbi, inode->i_ino); if (IS_ERR(node_page)) return PTR_ERR(node_page); ri = F2FS_INODE(node_page); inode->i_mode = le16_to_cpu(ri->i_mode); i_uid_write(inode, le32_to_cpu(ri->i_uid)); i_gid_write(inode, le32_to_cpu(ri->i_gid)); set_nlink(inode, le32_to_cpu(ri->i_links)); inode->i_size = le64_to_cpu(ri->i_size); inode->i_blocks = SECTOR_FROM_BLOCK(le64_to_cpu(ri->i_blocks) - 1); inode_set_atime(inode, le64_to_cpu(ri->i_atime), le32_to_cpu(ri->i_atime_nsec)); inode_set_ctime(inode, le64_to_cpu(ri->i_ctime), le32_to_cpu(ri->i_ctime_nsec)); inode_set_mtime(inode, le64_to_cpu(ri->i_mtime), le32_to_cpu(ri->i_mtime_nsec)); inode->i_generation = le32_to_cpu(ri->i_generation); if (S_ISDIR(inode->i_mode)) fi->i_current_depth = le32_to_cpu(ri->i_current_depth); else if (S_ISREG(inode->i_mode)) fi->i_gc_failures = le16_to_cpu(ri->i_gc_failures); fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid); fi->i_flags = le32_to_cpu(ri->i_flags); if (S_ISREG(inode->i_mode)) fi->i_flags &= ~F2FS_PROJINHERIT_FL; bitmap_zero(fi->flags, FI_MAX); fi->i_advise = ri->i_advise; fi->i_pino = le32_to_cpu(ri->i_pino); fi->i_dir_level = ri->i_dir_level; get_inline_info(inode, ri); fi->i_extra_isize = f2fs_has_extra_attr(inode) ? le16_to_cpu(ri->i_extra_isize) : 0; if (f2fs_sb_has_flexible_inline_xattr(sbi)) { fi->i_inline_xattr_size = le16_to_cpu(ri->i_inline_xattr_size); } else if (f2fs_has_inline_xattr(inode) || f2fs_has_inline_dentry(inode)) { fi->i_inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; } else { /* * Previous inline data or directory always reserved 200 bytes * in inode layout, even if inline_xattr is disabled. In order * to keep inline_dentry's structure for backward compatibility, * we get the space back only from inline_data. */ fi->i_inline_xattr_size = 0; } if (!sanity_check_inode(inode, node_page)) { f2fs_put_page(node_page, 1); set_sbi_flag(sbi, SBI_NEED_FSCK); f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE); return -EFSCORRUPTED; } /* check data exist */ if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode)) __recover_inline_status(inode, node_page); /* try to recover cold bit for non-dir inode */ if (!S_ISDIR(inode->i_mode) && !is_cold_node(node_page)) { f2fs_wait_on_page_writeback(node_page, NODE, true, true); set_cold_node(node_page, false); set_page_dirty(node_page); } /* get rdev by using inline_info */ __get_inode_rdev(inode, node_page); if (!f2fs_need_inode_block_update(sbi, inode->i_ino)) fi->last_disk_size = inode->i_size; if (fi->i_flags & F2FS_PROJINHERIT_FL) set_inode_flag(inode, FI_PROJ_INHERIT); if (f2fs_has_extra_attr(inode) && f2fs_sb_has_project_quota(sbi) && F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid)) i_projid = (projid_t)le32_to_cpu(ri->i_projid); else i_projid = F2FS_DEF_PROJID; fi->i_projid = make_kprojid(&init_user_ns, i_projid); if (f2fs_has_extra_attr(inode) && f2fs_sb_has_inode_crtime(sbi) && F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { fi->i_crtime.tv_sec = le64_to_cpu(ri->i_crtime); fi->i_crtime.tv_nsec = le32_to_cpu(ri->i_crtime_nsec); } if (f2fs_has_extra_attr(inode) && f2fs_sb_has_compression(sbi) && (fi->i_flags & F2FS_COMPR_FL)) { if (F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_compress_flag)) { unsigned short compress_flag; atomic_set(&fi->i_compr_blocks, le64_to_cpu(ri->i_compr_blocks)); fi->i_compress_algorithm = ri->i_compress_algorithm; fi->i_log_cluster_size = ri->i_log_cluster_size; compress_flag = le16_to_cpu(ri->i_compress_flag); fi->i_compress_level = compress_flag >> COMPRESS_LEVEL_OFFSET; fi->i_compress_flag = compress_flag & GENMASK(COMPRESS_LEVEL_OFFSET - 1, 0); fi->i_cluster_size = BIT(fi->i_log_cluster_size); set_inode_flag(inode, FI_COMPRESSED_FILE); } } init_idisk_time(inode); if (!sanity_check_extent_cache(inode, node_page)) { f2fs_put_page(node_page, 1); f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE); return -EFSCORRUPTED; } /* Need all the flag bits */ f2fs_init_read_extent_tree(inode, node_page); f2fs_init_age_extent_tree(inode); f2fs_put_page(node_page, 1); stat_inc_inline_xattr(inode); stat_inc_inline_inode(inode); stat_inc_inline_dir(inode); stat_inc_compr_inode(inode); stat_add_compr_blocks(inode, atomic_read(&fi->i_compr_blocks)); return 0; } static bool is_meta_ino(struct f2fs_sb_info *sbi, unsigned int ino) { return ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi) || ino == F2FS_COMPRESS_INO(sbi); } struct inode *f2fs_iget(struct super_block *sb, unsigned long ino) { struct f2fs_sb_info *sbi = F2FS_SB(sb); struct inode *inode; int ret = 0; inode = iget_locked(sb, ino); if (!inode) return ERR_PTR(-ENOMEM); if (!(inode->i_state & I_NEW)) { if (is_meta_ino(sbi, ino)) { f2fs_err(sbi, "inaccessible inode: %lu, run fsck to repair", ino); set_sbi_flag(sbi, SBI_NEED_FSCK); ret = -EFSCORRUPTED; trace_f2fs_iget_exit(inode, ret); iput(inode); f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE); return ERR_PTR(ret); } trace_f2fs_iget(inode); return inode; } if (is_meta_ino(sbi, ino)) goto make_now; ret = do_read_inode(inode); if (ret) goto bad_inode; make_now: if (ino == F2FS_NODE_INO(sbi)) { inode->i_mapping->a_ops = &f2fs_node_aops; mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); } else if (ino == F2FS_META_INO(sbi)) { inode->i_mapping->a_ops = &f2fs_meta_aops; mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); } else if (ino == F2FS_COMPRESS_INO(sbi)) { #ifdef CONFIG_F2FS_FS_COMPRESSION inode->i_mapping->a_ops = &f2fs_compress_aops; /* * generic_error_remove_folio only truncates pages of regular * inode */ inode->i_mode |= S_IFREG; #endif mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS | __GFP_HIGHMEM | __GFP_MOVABLE); } else if (S_ISREG(inode->i_mode)) { inode->i_op = &f2fs_file_inode_operations; inode->i_fop = &f2fs_file_operations; inode->i_mapping->a_ops = &f2fs_dblock_aops; } else if (S_ISDIR(inode->i_mode)) { inode->i_op = &f2fs_dir_inode_operations; inode->i_fop = &f2fs_dir_operations; inode->i_mapping->a_ops = &f2fs_dblock_aops; mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); } else if (S_ISLNK(inode->i_mode)) { if (file_is_encrypt(inode)) inode->i_op = &f2fs_encrypted_symlink_inode_operations; else inode->i_op = &f2fs_symlink_inode_operations; inode_nohighmem(inode); inode->i_mapping->a_ops = &f2fs_dblock_aops; } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { inode->i_op = &f2fs_special_inode_operations; init_special_inode(inode, inode->i_mode, inode->i_rdev); } else { ret = -EIO; goto bad_inode; } f2fs_set_inode_flags(inode); unlock_new_inode(inode); trace_f2fs_iget(inode); return inode; bad_inode: f2fs_inode_synced(inode); iget_failed(inode); trace_f2fs_iget_exit(inode, ret); return ERR_PTR(ret); } struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino) { struct inode *inode; retry: inode = f2fs_iget(sb, ino); if (IS_ERR(inode)) { if (PTR_ERR(inode) == -ENOMEM) { memalloc_retry_wait(GFP_NOFS); goto retry; } } return inode; } void f2fs_update_inode(struct inode *inode, struct page *node_page) { struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_inode *ri; struct extent_tree *et = fi->extent_tree[EX_READ]; f2fs_wait_on_page_writeback(node_page, NODE, true, true); set_page_dirty(node_page); f2fs_inode_synced(inode); ri = F2FS_INODE(node_page); ri->i_mode = cpu_to_le16(inode->i_mode); ri->i_advise = fi->i_advise; ri->i_uid = cpu_to_le32(i_uid_read(inode)); ri->i_gid = cpu_to_le32(i_gid_read(inode)); ri->i_links = cpu_to_le32(inode->i_nlink); ri->i_blocks = cpu_to_le64(SECTOR_TO_BLOCK(inode->i_blocks) + 1); if (!f2fs_is_atomic_file(inode) || is_inode_flag_set(inode, FI_ATOMIC_COMMITTED)) ri->i_size = cpu_to_le64(i_size_read(inode)); if (et) { read_lock(&et->lock); set_raw_read_extent(&et->largest, &ri->i_ext); read_unlock(&et->lock); } else { memset(&ri->i_ext, 0, sizeof(ri->i_ext)); } set_raw_inline(inode, ri); ri->i_atime = cpu_to_le64(inode_get_atime_sec(inode)); ri->i_ctime = cpu_to_le64(inode_get_ctime_sec(inode)); ri->i_mtime = cpu_to_le64(inode_get_mtime_sec(inode)); ri->i_atime_nsec = cpu_to_le32(inode_get_atime_nsec(inode)); ri->i_ctime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode)); ri->i_mtime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode)); if (S_ISDIR(inode->i_mode)) ri->i_current_depth = cpu_to_le32(fi->i_current_depth); else if (S_ISREG(inode->i_mode)) ri->i_gc_failures = cpu_to_le16(fi->i_gc_failures); ri->i_xattr_nid = cpu_to_le32(fi->i_xattr_nid); ri->i_flags = cpu_to_le32(fi->i_flags); ri->i_pino = cpu_to_le32(fi->i_pino); ri->i_generation = cpu_to_le32(inode->i_generation); ri->i_dir_level = fi->i_dir_level; if (f2fs_has_extra_attr(inode)) { ri->i_extra_isize = cpu_to_le16(fi->i_extra_isize); if (f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(inode))) ri->i_inline_xattr_size = cpu_to_le16(fi->i_inline_xattr_size); if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)) && F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid)) { projid_t i_projid; i_projid = from_kprojid(&init_user_ns, fi->i_projid); ri->i_projid = cpu_to_le32(i_projid); } if (f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { ri->i_crtime = cpu_to_le64(fi->i_crtime.tv_sec); ri->i_crtime_nsec = cpu_to_le32(fi->i_crtime.tv_nsec); } if (f2fs_sb_has_compression(F2FS_I_SB(inode)) && F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_compress_flag)) { unsigned short compress_flag; ri->i_compr_blocks = cpu_to_le64( atomic_read(&fi->i_compr_blocks)); ri->i_compress_algorithm = fi->i_compress_algorithm; compress_flag = fi->i_compress_flag | fi->i_compress_level << COMPRESS_LEVEL_OFFSET; ri->i_compress_flag = cpu_to_le16(compress_flag); ri->i_log_cluster_size = fi->i_log_cluster_size; } } __set_inode_rdev(inode, node_page); /* deleted inode */ if (inode->i_nlink == 0) clear_page_private_inline(node_page); init_idisk_time(inode); #ifdef CONFIG_F2FS_CHECK_FS f2fs_inode_chksum_set(F2FS_I_SB(inode), node_page); #endif } void f2fs_update_inode_page(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct page *node_page; int count = 0; retry: node_page = f2fs_get_node_page(sbi, inode->i_ino); if (IS_ERR(node_page)) { int err = PTR_ERR(node_page); /* The node block was truncated. */ if (err == -ENOENT) return; if (err == -ENOMEM || ++count <= DEFAULT_RETRY_IO_COUNT) goto retry; f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_UPDATE_INODE); return; } f2fs_update_inode(inode, node_page); f2fs_put_page(node_page, 1); } int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); if (inode->i_ino == F2FS_NODE_INO(sbi) || inode->i_ino == F2FS_META_INO(sbi)) return 0; /* * atime could be updated without dirtying f2fs inode in lazytime mode */ if (f2fs_is_time_consistent(inode) && !is_inode_flag_set(inode, FI_DIRTY_INODE)) return 0; if (!f2fs_is_checkpoint_ready(sbi)) return -ENOSPC; /* * We need to balance fs here to prevent from producing dirty node pages * during the urgent cleaning time when running out of free sections. */ f2fs_update_inode_page(inode); if (wbc && wbc->nr_to_write) f2fs_balance_fs(sbi, true); return 0; } /* * Called at the last iput() if i_nlink is zero */ void f2fs_evict_inode(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode_info *fi = F2FS_I(inode); nid_t xnid = fi->i_xattr_nid; int err = 0; bool freeze_protected = false; f2fs_abort_atomic_write(inode, true); if (fi->cow_inode && f2fs_is_cow_file(fi->cow_inode)) { clear_inode_flag(fi->cow_inode, FI_COW_FILE); F2FS_I(fi->cow_inode)->atomic_inode = NULL; iput(fi->cow_inode); fi->cow_inode = NULL; } trace_f2fs_evict_inode(inode); truncate_inode_pages_final(&inode->i_data); if ((inode->i_nlink || is_bad_inode(inode)) && test_opt(sbi, COMPRESS_CACHE) && f2fs_compressed_file(inode)) f2fs_invalidate_compress_pages(sbi, inode->i_ino); if (inode->i_ino == F2FS_NODE_INO(sbi) || inode->i_ino == F2FS_META_INO(sbi) || inode->i_ino == F2FS_COMPRESS_INO(sbi)) goto out_clear; f2fs_bug_on(sbi, get_dirty_pages(inode)); f2fs_remove_dirty_inode(inode); f2fs_destroy_extent_tree(inode); if (inode->i_nlink || is_bad_inode(inode)) goto no_delete; err = f2fs_dquot_initialize(inode); if (err) { err = 0; set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); } f2fs_remove_ino_entry(sbi, inode->i_ino, APPEND_INO); f2fs_remove_ino_entry(sbi, inode->i_ino, UPDATE_INO); f2fs_remove_ino_entry(sbi, inode->i_ino, FLUSH_INO); if (!is_sbi_flag_set(sbi, SBI_IS_FREEZING)) { sb_start_intwrite(inode->i_sb); freeze_protected = true; } set_inode_flag(inode, FI_NO_ALLOC); i_size_write(inode, 0); retry: if (F2FS_HAS_BLOCKS(inode)) err = f2fs_truncate(inode); if (time_to_inject(sbi, FAULT_EVICT_INODE)) err = -EIO; if (!err) { f2fs_lock_op(sbi); err = f2fs_remove_inode_page(inode); f2fs_unlock_op(sbi); if (err == -ENOENT) { err = 0; /* * in fuzzed image, another node may has the same * block address as inode's, if it was truncated * previously, truncation of inode node will fail. */ if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { f2fs_warn(F2FS_I_SB(inode), "f2fs_evict_inode: inconsistent node id, ino:%lu", inode->i_ino); f2fs_inode_synced(inode); set_sbi_flag(sbi, SBI_NEED_FSCK); } } } /* give more chances, if ENOMEM case */ if (err == -ENOMEM) { err = 0; goto retry; } if (err) { f2fs_update_inode_page(inode); if (dquot_initialize_needed(inode)) set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); } if (freeze_protected) sb_end_intwrite(inode->i_sb); no_delete: dquot_drop(inode); stat_dec_inline_xattr(inode); stat_dec_inline_dir(inode); stat_dec_inline_inode(inode); stat_dec_compr_inode(inode); stat_sub_compr_blocks(inode, atomic_read(&fi->i_compr_blocks)); if (likely(!f2fs_cp_error(sbi) && !is_sbi_flag_set(sbi, SBI_CP_DISABLED))) f2fs_bug_on(sbi, is_inode_flag_set(inode, FI_DIRTY_INODE)); else f2fs_inode_synced(inode); /* for the case f2fs_new_inode() was failed, .i_ino is zero, skip it */ if (inode->i_ino) invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, inode->i_ino); if (xnid) invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid); if (inode->i_nlink) { if (is_inode_flag_set(inode, FI_APPEND_WRITE)) f2fs_add_ino_entry(sbi, inode->i_ino, APPEND_INO); if (is_inode_flag_set(inode, FI_UPDATE_WRITE)) f2fs_add_ino_entry(sbi, inode->i_ino, UPDATE_INO); } if (is_inode_flag_set(inode, FI_FREE_NID)) { f2fs_alloc_nid_failed(sbi, inode->i_ino); clear_inode_flag(inode, FI_FREE_NID); } else { /* * If xattr nid is corrupted, we can reach out error condition, * err & !f2fs_exist_written_data(sbi, inode->i_ino, ORPHAN_INO)). * In that case, f2fs_check_nid_range() is enough to give a clue. */ } out_clear: fscrypt_put_encryption_info(inode); fsverity_cleanup_inode(inode); clear_inode(inode); } /* caller should call f2fs_lock_op() */ void f2fs_handle_failed_inode(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct node_info ni; int err; /* * clear nlink of inode in order to release resource of inode * immediately. */ clear_nlink(inode); /* * we must call this to avoid inode being remained as dirty, resulting * in a panic when flushing dirty inodes in gdirty_list. */ f2fs_update_inode_page(inode); f2fs_inode_synced(inode); /* don't make bad inode, since it becomes a regular file. */ unlock_new_inode(inode); /* * Note: we should add inode to orphan list before f2fs_unlock_op() * so we can prevent losing this orphan when encoutering checkpoint * and following suddenly power-off. */ err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); if (err) { set_sbi_flag(sbi, SBI_NEED_FSCK); set_inode_flag(inode, FI_FREE_NID); f2fs_warn(sbi, "May loss orphan inode, run fsck to fix."); goto out; } if (ni.blk_addr != NULL_ADDR) { err = f2fs_acquire_orphan_inode(sbi); if (err) { set_sbi_flag(sbi, SBI_NEED_FSCK); f2fs_warn(sbi, "Too many orphan inodes, run fsck to fix."); } else { f2fs_add_orphan_inode(inode); } f2fs_alloc_nid_done(sbi, inode->i_ino); } else { set_inode_flag(inode, FI_FREE_NID); } out: f2fs_unlock_op(sbi); /* iput will drop the inode object */ iput(inode); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1