Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jaegeuk Kim | 3195 | 46.43% | 68 | 34.17% |
Chao Yu | 2198 | 31.94% | 59 | 29.65% |
Sheng Yong | 632 | 9.18% | 4 | 2.01% |
Eric Biggers | 224 | 3.26% | 10 | 5.03% |
Daniel Rosenberg | 88 | 1.28% | 2 | 1.01% |
Al Viro | 70 | 1.02% | 7 | 3.52% |
Daeho Jeong | 64 | 0.93% | 1 | 0.50% |
Christian Brauner | 58 | 0.84% | 11 | 5.53% |
Liu Xue | 37 | 0.54% | 1 | 0.50% |
Namjae Jeon | 33 | 0.48% | 3 | 1.51% |
Miklos Szeredi | 31 | 0.45% | 3 | 1.51% |
Fengnan Chang | 31 | 0.45% | 1 | 0.50% |
Gu Zheng | 25 | 0.36% | 1 | 0.50% |
David Howells | 25 | 0.36% | 1 | 0.50% |
Junling Zheng | 17 | 0.25% | 1 | 0.50% |
Christoph Hellwig | 16 | 0.23% | 2 | 1.01% |
Deepa Dinamani | 15 | 0.22% | 1 | 0.50% |
Jan Kara | 15 | 0.22% | 2 | 1.01% |
Bo Wu | 15 | 0.22% | 1 | 0.50% |
Sahitya Tummala | 14 | 0.20% | 1 | 0.50% |
Tim Murray | 14 | 0.20% | 1 | 0.50% |
Lihong Kou | 14 | 0.20% | 1 | 0.50% |
Jeff Layton | 9 | 0.13% | 2 | 1.01% |
Linus Torvalds | 8 | 0.12% | 2 | 1.01% |
Yangtao Li | 8 | 0.12% | 1 | 0.50% |
Joe Perches | 6 | 0.09% | 1 | 0.50% |
Gabriel Krisman Bertazi | 4 | 0.06% | 1 | 0.50% |
Chengguang Xu | 3 | 0.04% | 1 | 0.50% |
Huajun Li | 3 | 0.04% | 1 | 0.50% |
Kinglong Mee | 2 | 0.03% | 1 | 0.50% |
Linus Torvalds (pre-git) | 1 | 0.01% | 1 | 0.50% |
Jason A. Donenfeld | 1 | 0.01% | 1 | 0.50% |
Jack Qiu | 1 | 0.01% | 1 | 0.50% |
Chandan Rajendra | 1 | 0.01% | 1 | 0.50% |
Kirill A. Shutemov | 1 | 0.01% | 1 | 0.50% |
Leon Romanovsky | 1 | 0.01% | 1 | 0.50% |
Jinyoung Choi | 1 | 0.01% | 1 | 0.50% |
Total | 6881 | 199 |
// SPDX-License-Identifier: GPL-2.0 /* * fs/f2fs/namei.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ */ #include <linux/fs.h> #include <linux/f2fs_fs.h> #include <linux/pagemap.h> #include <linux/sched.h> #include <linux/ctype.h> #include <linux/random.h> #include <linux/dcache.h> #include <linux/namei.h> #include <linux/quotaops.h> #include "f2fs.h" #include "node.h" #include "segment.h" #include "xattr.h" #include "acl.h" #include <trace/events/f2fs.h> static inline bool is_extension_exist(const unsigned char *s, const char *sub, bool tmp_ext, bool tmp_dot) { size_t slen = strlen(s); size_t sublen = strlen(sub); int i; if (sublen == 1 && *sub == '*') return true; /* * filename format of multimedia file should be defined as: * "filename + '.' + extension + (optional: '.' + temp extension)". */ if (slen < sublen + 2) return false; if (!tmp_ext) { /* file has no temp extension */ if (s[slen - sublen - 1] != '.') return false; return !strncasecmp(s + slen - sublen, sub, sublen); } for (i = 1; i < slen - sublen; i++) { if (s[i] != '.') continue; if (!strncasecmp(s + i + 1, sub, sublen)) { if (!tmp_dot) return true; if (i == slen - sublen - 1 || s[i + 1 + sublen] == '.') return true; } } return false; } static inline bool is_temperature_extension(const unsigned char *s, const char *sub) { return is_extension_exist(s, sub, true, false); } static inline bool is_compress_extension(const unsigned char *s, const char *sub) { return is_extension_exist(s, sub, true, true); } int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, bool hot, bool set) { __u8 (*extlist)[F2FS_EXTENSION_LEN] = sbi->raw_super->extension_list; int cold_count = le32_to_cpu(sbi->raw_super->extension_count); int hot_count = sbi->raw_super->hot_ext_count; int total_count = cold_count + hot_count; int start, count; int i; if (set) { if (total_count == F2FS_MAX_EXTENSION) return -EINVAL; } else { if (!hot && !cold_count) return -EINVAL; if (hot && !hot_count) return -EINVAL; } if (hot) { start = cold_count; count = total_count; } else { start = 0; count = cold_count; } for (i = start; i < count; i++) { if (strcmp(name, extlist[i])) continue; if (set) return -EINVAL; memcpy(extlist[i], extlist[i + 1], F2FS_EXTENSION_LEN * (total_count - i - 1)); memset(extlist[total_count - 1], 0, F2FS_EXTENSION_LEN); if (hot) sbi->raw_super->hot_ext_count = hot_count - 1; else sbi->raw_super->extension_count = cpu_to_le32(cold_count - 1); return 0; } if (!set) return -EINVAL; if (hot) { memcpy(extlist[count], name, strlen(name)); sbi->raw_super->hot_ext_count = hot_count + 1; } else { char buf[F2FS_MAX_EXTENSION][F2FS_EXTENSION_LEN]; memcpy(buf, &extlist[cold_count], F2FS_EXTENSION_LEN * hot_count); memset(extlist[cold_count], 0, F2FS_EXTENSION_LEN); memcpy(extlist[cold_count], name, strlen(name)); memcpy(&extlist[cold_count + 1], buf, F2FS_EXTENSION_LEN * hot_count); sbi->raw_super->extension_count = cpu_to_le32(cold_count + 1); } return 0; } static void set_compress_new_inode(struct f2fs_sb_info *sbi, struct inode *dir, struct inode *inode, const unsigned char *name) { __u8 (*extlist)[F2FS_EXTENSION_LEN] = sbi->raw_super->extension_list; unsigned char (*noext)[F2FS_EXTENSION_LEN] = F2FS_OPTION(sbi).noextensions; unsigned char (*ext)[F2FS_EXTENSION_LEN] = F2FS_OPTION(sbi).extensions; unsigned char ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; unsigned char noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; int i, cold_count, hot_count; if (!f2fs_sb_has_compression(sbi)) return; if (S_ISDIR(inode->i_mode)) goto inherit_comp; /* This name comes only from normal files. */ if (!name) return; /* Don't compress hot files. */ f2fs_down_read(&sbi->sb_lock); cold_count = le32_to_cpu(sbi->raw_super->extension_count); hot_count = sbi->raw_super->hot_ext_count; for (i = cold_count; i < cold_count + hot_count; i++) if (is_temperature_extension(name, extlist[i])) break; f2fs_up_read(&sbi->sb_lock); if (i < (cold_count + hot_count)) return; /* Don't compress unallowed extension. */ for (i = 0; i < noext_cnt; i++) if (is_compress_extension(name, noext[i])) return; /* Compress wanting extension. */ for (i = 0; i < ext_cnt; i++) { if (is_compress_extension(name, ext[i])) { set_compress_context(inode); return; } } inherit_comp: /* Inherit the {no-}compression flag in directory */ if (F2FS_I(dir)->i_flags & F2FS_NOCOMP_FL) { F2FS_I(inode)->i_flags |= F2FS_NOCOMP_FL; f2fs_mark_inode_dirty_sync(inode, true); } else if (F2FS_I(dir)->i_flags & F2FS_COMPR_FL) { set_compress_context(inode); } } /* * Set file's temperature for hot/cold data separation */ static void set_file_temperature(struct f2fs_sb_info *sbi, struct inode *inode, const unsigned char *name) { __u8 (*extlist)[F2FS_EXTENSION_LEN] = sbi->raw_super->extension_list; int i, cold_count, hot_count; f2fs_down_read(&sbi->sb_lock); cold_count = le32_to_cpu(sbi->raw_super->extension_count); hot_count = sbi->raw_super->hot_ext_count; for (i = 0; i < cold_count + hot_count; i++) if (is_temperature_extension(name, extlist[i])) break; f2fs_up_read(&sbi->sb_lock); if (i == cold_count + hot_count) return; if (i < cold_count) file_set_cold(inode); else file_set_hot(inode); } static struct inode *f2fs_new_inode(struct mnt_idmap *idmap, struct inode *dir, umode_t mode, const char *name) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct f2fs_inode_info *fi; nid_t ino; struct inode *inode; bool nid_free = false; bool encrypt = false; int xattr_size = 0; int err; inode = new_inode(dir->i_sb); if (!inode) return ERR_PTR(-ENOMEM); if (!f2fs_alloc_nid(sbi, &ino)) { err = -ENOSPC; goto fail; } nid_free = true; inode_init_owner(idmap, inode, dir, mode); fi = F2FS_I(inode); inode->i_ino = ino; inode->i_blocks = 0; simple_inode_init_ts(inode); fi->i_crtime = inode_get_mtime(inode); inode->i_generation = get_random_u32(); if (S_ISDIR(inode->i_mode)) fi->i_current_depth = 1; err = insert_inode_locked(inode); if (err) { err = -EINVAL; goto fail; } if (f2fs_sb_has_project_quota(sbi) && (F2FS_I(dir)->i_flags & F2FS_PROJINHERIT_FL)) fi->i_projid = F2FS_I(dir)->i_projid; else fi->i_projid = make_kprojid(&init_user_ns, F2FS_DEF_PROJID); err = fscrypt_prepare_new_inode(dir, inode, &encrypt); if (err) goto fail_drop; err = f2fs_dquot_initialize(inode); if (err) goto fail_drop; set_inode_flag(inode, FI_NEW_INODE); if (encrypt) f2fs_set_encrypted_inode(inode); if (f2fs_sb_has_extra_attr(sbi)) { set_inode_flag(inode, FI_EXTRA_ATTR); fi->i_extra_isize = F2FS_TOTAL_EXTRA_ATTR_SIZE; } if (test_opt(sbi, INLINE_XATTR)) set_inode_flag(inode, FI_INLINE_XATTR); if (f2fs_may_inline_dentry(inode)) set_inode_flag(inode, FI_INLINE_DENTRY); if (f2fs_sb_has_flexible_inline_xattr(sbi)) { f2fs_bug_on(sbi, !f2fs_has_extra_attr(inode)); if (f2fs_has_inline_xattr(inode)) xattr_size = F2FS_OPTION(sbi).inline_xattr_size; /* Otherwise, will be 0 */ } else if (f2fs_has_inline_xattr(inode) || f2fs_has_inline_dentry(inode)) { xattr_size = DEFAULT_INLINE_XATTR_ADDRS; } fi->i_inline_xattr_size = xattr_size; fi->i_flags = f2fs_mask_flags(mode, F2FS_I(dir)->i_flags & F2FS_FL_INHERITED); if (S_ISDIR(inode->i_mode)) fi->i_flags |= F2FS_INDEX_FL; if (fi->i_flags & F2FS_PROJINHERIT_FL) set_inode_flag(inode, FI_PROJ_INHERIT); /* Check compression first. */ set_compress_new_inode(sbi, dir, inode, name); /* Should enable inline_data after compression set */ if (test_opt(sbi, INLINE_DATA) && f2fs_may_inline_data(inode)) set_inode_flag(inode, FI_INLINE_DATA); if (name && !test_opt(sbi, DISABLE_EXT_IDENTIFY)) set_file_temperature(sbi, inode, name); stat_inc_inline_xattr(inode); stat_inc_inline_inode(inode); stat_inc_inline_dir(inode); f2fs_set_inode_flags(inode); f2fs_init_extent_tree(inode); trace_f2fs_new_inode(inode, 0); return inode; fail: trace_f2fs_new_inode(inode, err); make_bad_inode(inode); if (nid_free) set_inode_flag(inode, FI_FREE_NID); iput(inode); return ERR_PTR(err); fail_drop: trace_f2fs_new_inode(inode, err); dquot_drop(inode); inode->i_flags |= S_NOQUOTA; if (nid_free) set_inode_flag(inode, FI_FREE_NID); clear_nlink(inode); unlock_new_inode(inode); iput(inode); return ERR_PTR(err); } static int f2fs_create(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode; nid_t ino = 0; int err; if (unlikely(f2fs_cp_error(sbi))) return -EIO; if (!f2fs_is_checkpoint_ready(sbi)) return -ENOSPC; err = f2fs_dquot_initialize(dir); if (err) return err; inode = f2fs_new_inode(idmap, dir, mode, dentry->d_name.name); if (IS_ERR(inode)) return PTR_ERR(inode); inode->i_op = &f2fs_file_inode_operations; inode->i_fop = &f2fs_file_operations; inode->i_mapping->a_ops = &f2fs_dblock_aops; ino = inode->i_ino; f2fs_lock_op(sbi); err = f2fs_add_link(dentry, inode); if (err) goto out; f2fs_unlock_op(sbi); f2fs_alloc_nid_done(sbi, ino); d_instantiate_new(dentry, inode); if (IS_DIRSYNC(dir)) f2fs_sync_fs(sbi->sb, 1); f2fs_balance_fs(sbi, true); return 0; out: f2fs_handle_failed_inode(inode); return err; } static int f2fs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) { struct inode *inode = d_inode(old_dentry); struct f2fs_sb_info *sbi = F2FS_I_SB(dir); int err; if (unlikely(f2fs_cp_error(sbi))) return -EIO; if (!f2fs_is_checkpoint_ready(sbi)) return -ENOSPC; err = fscrypt_prepare_link(old_dentry, dir, dentry); if (err) return err; if (is_inode_flag_set(dir, FI_PROJ_INHERIT) && (!projid_eq(F2FS_I(dir)->i_projid, F2FS_I(old_dentry->d_inode)->i_projid))) return -EXDEV; err = f2fs_dquot_initialize(dir); if (err) return err; f2fs_balance_fs(sbi, true); inode_set_ctime_current(inode); ihold(inode); set_inode_flag(inode, FI_INC_LINK); f2fs_lock_op(sbi); err = f2fs_add_link(dentry, inode); if (err) goto out; f2fs_unlock_op(sbi); d_instantiate(dentry, inode); if (IS_DIRSYNC(dir)) f2fs_sync_fs(sbi->sb, 1); return 0; out: clear_inode_flag(inode, FI_INC_LINK); iput(inode); f2fs_unlock_op(sbi); return err; } struct dentry *f2fs_get_parent(struct dentry *child) { struct page *page; unsigned long ino = f2fs_inode_by_name(d_inode(child), &dotdot_name, &page); if (!ino) { if (IS_ERR(page)) return ERR_CAST(page); return ERR_PTR(-ENOENT); } return d_obtain_alias(f2fs_iget(child->d_sb, ino)); } static int __recover_dot_dentries(struct inode *dir, nid_t pino) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct qstr dot = QSTR_INIT(".", 1); struct f2fs_dir_entry *de; struct page *page; int err = 0; if (f2fs_readonly(sbi->sb)) { f2fs_info(sbi, "skip recovering inline_dots inode (ino:%lu, pino:%u) in readonly mountpoint", dir->i_ino, pino); return 0; } if (!S_ISDIR(dir->i_mode)) { f2fs_err(sbi, "inconsistent inode status, skip recovering inline_dots inode (ino:%lu, i_mode:%u, pino:%u)", dir->i_ino, dir->i_mode, pino); set_sbi_flag(sbi, SBI_NEED_FSCK); return -ENOTDIR; } err = f2fs_dquot_initialize(dir); if (err) return err; f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); de = f2fs_find_entry(dir, &dot, &page); if (de) { f2fs_put_page(page, 0); } else if (IS_ERR(page)) { err = PTR_ERR(page); goto out; } else { err = f2fs_do_add_link(dir, &dot, NULL, dir->i_ino, S_IFDIR); if (err) goto out; } de = f2fs_find_entry(dir, &dotdot_name, &page); if (de) f2fs_put_page(page, 0); else if (IS_ERR(page)) err = PTR_ERR(page); else err = f2fs_do_add_link(dir, &dotdot_name, NULL, pino, S_IFDIR); out: if (!err) clear_inode_flag(dir, FI_INLINE_DOTS); f2fs_unlock_op(sbi); return err; } static struct dentry *f2fs_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { struct inode *inode = NULL; struct f2fs_dir_entry *de; struct page *page; struct dentry *new; nid_t ino = -1; int err = 0; unsigned int root_ino = F2FS_ROOT_INO(F2FS_I_SB(dir)); struct f2fs_filename fname; trace_f2fs_lookup_start(dir, dentry, flags); if (dentry->d_name.len > F2FS_NAME_LEN) { err = -ENAMETOOLONG; goto out; } err = f2fs_prepare_lookup(dir, dentry, &fname); if (err == -ENOENT) goto out_splice; if (err) goto out; de = __f2fs_find_entry(dir, &fname, &page); f2fs_free_filename(&fname); if (!de) { if (IS_ERR(page)) { err = PTR_ERR(page); goto out; } err = -ENOENT; goto out_splice; } ino = le32_to_cpu(de->ino); f2fs_put_page(page, 0); inode = f2fs_iget(dir->i_sb, ino); if (IS_ERR(inode)) { err = PTR_ERR(inode); goto out; } if ((dir->i_ino == root_ino) && f2fs_has_inline_dots(dir)) { err = __recover_dot_dentries(dir, root_ino); if (err) goto out_iput; } if (f2fs_has_inline_dots(inode)) { err = __recover_dot_dentries(inode, dir->i_ino); if (err) goto out_iput; } if (IS_ENCRYPTED(dir) && (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) && !fscrypt_has_permitted_context(dir, inode)) { f2fs_warn(F2FS_I_SB(inode), "Inconsistent encryption contexts: %lu/%lu", dir->i_ino, inode->i_ino); err = -EPERM; goto out_iput; } out_splice: if (IS_ENABLED(CONFIG_UNICODE) && !inode && IS_CASEFOLDED(dir)) { /* Eventually we want to call d_add_ci(dentry, NULL) * for negative dentries in the encoding case as * well. For now, prevent the negative dentry * from being cached. */ trace_f2fs_lookup_end(dir, dentry, ino, err); return NULL; } new = d_splice_alias(inode, dentry); trace_f2fs_lookup_end(dir, !IS_ERR_OR_NULL(new) ? new : dentry, ino, IS_ERR(new) ? PTR_ERR(new) : err); return new; out_iput: iput(inode); out: trace_f2fs_lookup_end(dir, dentry, ino, err); return ERR_PTR(err); } static int f2fs_unlink(struct inode *dir, struct dentry *dentry) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode = d_inode(dentry); struct f2fs_dir_entry *de; struct page *page; int err; trace_f2fs_unlink_enter(dir, dentry); if (unlikely(f2fs_cp_error(sbi))) { err = -EIO; goto fail; } err = f2fs_dquot_initialize(dir); if (err) goto fail; err = f2fs_dquot_initialize(inode); if (err) goto fail; de = f2fs_find_entry(dir, &dentry->d_name, &page); if (!de) { if (IS_ERR(page)) err = PTR_ERR(page); goto fail; } f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); err = f2fs_acquire_orphan_inode(sbi); if (err) { f2fs_unlock_op(sbi); f2fs_put_page(page, 0); goto fail; } f2fs_delete_entry(de, page, dir, inode); f2fs_unlock_op(sbi); /* VFS negative dentries are incompatible with Encoding and * Case-insensitiveness. Eventually we'll want avoid * invalidating the dentries here, alongside with returning the * negative dentries at f2fs_lookup(), when it is better * supported by the VFS for the CI case. */ if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) d_invalidate(dentry); if (IS_DIRSYNC(dir)) f2fs_sync_fs(sbi->sb, 1); fail: trace_f2fs_unlink_exit(inode, err); return err; } static const char *f2fs_get_link(struct dentry *dentry, struct inode *inode, struct delayed_call *done) { const char *link = page_get_link(dentry, inode, done); if (!IS_ERR(link) && !*link) { /* this is broken symlink case */ do_delayed_call(done); clear_delayed_call(done); link = ERR_PTR(-ENOENT); } return link; } static int f2fs_symlink(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, const char *symname) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode; size_t len = strlen(symname); struct fscrypt_str disk_link; int err; if (unlikely(f2fs_cp_error(sbi))) return -EIO; if (!f2fs_is_checkpoint_ready(sbi)) return -ENOSPC; err = fscrypt_prepare_symlink(dir, symname, len, dir->i_sb->s_blocksize, &disk_link); if (err) return err; err = f2fs_dquot_initialize(dir); if (err) return err; inode = f2fs_new_inode(idmap, dir, S_IFLNK | S_IRWXUGO, NULL); if (IS_ERR(inode)) return PTR_ERR(inode); if (IS_ENCRYPTED(inode)) inode->i_op = &f2fs_encrypted_symlink_inode_operations; else inode->i_op = &f2fs_symlink_inode_operations; inode_nohighmem(inode); inode->i_mapping->a_ops = &f2fs_dblock_aops; f2fs_lock_op(sbi); err = f2fs_add_link(dentry, inode); if (err) goto out_f2fs_handle_failed_inode; f2fs_unlock_op(sbi); f2fs_alloc_nid_done(sbi, inode->i_ino); err = fscrypt_encrypt_symlink(inode, symname, len, &disk_link); if (err) goto err_out; err = page_symlink(inode, disk_link.name, disk_link.len); err_out: d_instantiate_new(dentry, inode); /* * Let's flush symlink data in order to avoid broken symlink as much as * possible. Nevertheless, fsyncing is the best way, but there is no * way to get a file descriptor in order to flush that. * * Note that, it needs to do dir->fsync to make this recoverable. * If the symlink path is stored into inline_data, there is no * performance regression. */ if (!err) { filemap_write_and_wait_range(inode->i_mapping, 0, disk_link.len - 1); if (IS_DIRSYNC(dir)) f2fs_sync_fs(sbi->sb, 1); } else { f2fs_unlink(dir, dentry); } f2fs_balance_fs(sbi, true); goto out_free_encrypted_link; out_f2fs_handle_failed_inode: f2fs_handle_failed_inode(inode); out_free_encrypted_link: if (disk_link.name != (unsigned char *)symname) kfree(disk_link.name); return err; } static int f2fs_mkdir(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode; int err; if (unlikely(f2fs_cp_error(sbi))) return -EIO; err = f2fs_dquot_initialize(dir); if (err) return err; inode = f2fs_new_inode(idmap, dir, S_IFDIR | mode, NULL); if (IS_ERR(inode)) return PTR_ERR(inode); inode->i_op = &f2fs_dir_inode_operations; inode->i_fop = &f2fs_dir_operations; inode->i_mapping->a_ops = &f2fs_dblock_aops; mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); set_inode_flag(inode, FI_INC_LINK); f2fs_lock_op(sbi); err = f2fs_add_link(dentry, inode); if (err) goto out_fail; f2fs_unlock_op(sbi); f2fs_alloc_nid_done(sbi, inode->i_ino); d_instantiate_new(dentry, inode); if (IS_DIRSYNC(dir)) f2fs_sync_fs(sbi->sb, 1); f2fs_balance_fs(sbi, true); return 0; out_fail: clear_inode_flag(inode, FI_INC_LINK); f2fs_handle_failed_inode(inode); return err; } static int f2fs_rmdir(struct inode *dir, struct dentry *dentry) { struct inode *inode = d_inode(dentry); if (f2fs_empty_dir(inode)) return f2fs_unlink(dir, dentry); return -ENOTEMPTY; } static int f2fs_mknod(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode; int err = 0; if (unlikely(f2fs_cp_error(sbi))) return -EIO; if (!f2fs_is_checkpoint_ready(sbi)) return -ENOSPC; err = f2fs_dquot_initialize(dir); if (err) return err; inode = f2fs_new_inode(idmap, dir, mode, NULL); if (IS_ERR(inode)) return PTR_ERR(inode); init_special_inode(inode, inode->i_mode, rdev); inode->i_op = &f2fs_special_inode_operations; f2fs_lock_op(sbi); err = f2fs_add_link(dentry, inode); if (err) goto out; f2fs_unlock_op(sbi); f2fs_alloc_nid_done(sbi, inode->i_ino); d_instantiate_new(dentry, inode); if (IS_DIRSYNC(dir)) f2fs_sync_fs(sbi->sb, 1); f2fs_balance_fs(sbi, true); return 0; out: f2fs_handle_failed_inode(inode); return err; } static int __f2fs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, struct file *file, umode_t mode, bool is_whiteout, struct inode **new_inode, struct f2fs_filename *fname) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode; int err; err = f2fs_dquot_initialize(dir); if (err) return err; inode = f2fs_new_inode(idmap, dir, mode, NULL); if (IS_ERR(inode)) return PTR_ERR(inode); if (is_whiteout) { init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); inode->i_op = &f2fs_special_inode_operations; } else { inode->i_op = &f2fs_file_inode_operations; inode->i_fop = &f2fs_file_operations; inode->i_mapping->a_ops = &f2fs_dblock_aops; } f2fs_lock_op(sbi); err = f2fs_acquire_orphan_inode(sbi); if (err) goto out; err = f2fs_do_tmpfile(inode, dir, fname); if (err) goto release_out; /* * add this non-linked tmpfile to orphan list, in this way we could * remove all unused data of tmpfile after abnormal power-off. */ f2fs_add_orphan_inode(inode); f2fs_alloc_nid_done(sbi, inode->i_ino); if (is_whiteout) { f2fs_i_links_write(inode, false); spin_lock(&inode->i_lock); inode->i_state |= I_LINKABLE; spin_unlock(&inode->i_lock); } else { if (file) d_tmpfile(file, inode); else f2fs_i_links_write(inode, false); } /* link_count was changed by d_tmpfile as well. */ f2fs_unlock_op(sbi); unlock_new_inode(inode); if (new_inode) *new_inode = inode; f2fs_balance_fs(sbi, true); return 0; release_out: f2fs_release_orphan_inode(sbi); out: f2fs_handle_failed_inode(inode); return err; } static int f2fs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, struct file *file, umode_t mode) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); int err; if (unlikely(f2fs_cp_error(sbi))) return -EIO; if (!f2fs_is_checkpoint_ready(sbi)) return -ENOSPC; err = __f2fs_tmpfile(idmap, dir, file, mode, false, NULL, NULL); return finish_open_simple(file, err); } static int f2fs_create_whiteout(struct mnt_idmap *idmap, struct inode *dir, struct inode **whiteout, struct f2fs_filename *fname) { return __f2fs_tmpfile(idmap, dir, NULL, S_IFCHR | WHITEOUT_MODE, true, whiteout, fname); } int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir, struct inode **new_inode) { return __f2fs_tmpfile(idmap, dir, NULL, S_IFREG, false, new_inode, NULL); } static int f2fs_rename(struct mnt_idmap *idmap, struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir); struct inode *old_inode = d_inode(old_dentry); struct inode *new_inode = d_inode(new_dentry); struct inode *whiteout = NULL; struct page *old_dir_page = NULL; struct page *old_page, *new_page = NULL; struct f2fs_dir_entry *old_dir_entry = NULL; struct f2fs_dir_entry *old_entry; struct f2fs_dir_entry *new_entry; bool old_is_dir = S_ISDIR(old_inode->i_mode); int err; if (unlikely(f2fs_cp_error(sbi))) return -EIO; if (!f2fs_is_checkpoint_ready(sbi)) return -ENOSPC; if (is_inode_flag_set(new_dir, FI_PROJ_INHERIT) && (!projid_eq(F2FS_I(new_dir)->i_projid, F2FS_I(old_dentry->d_inode)->i_projid))) return -EXDEV; /* * If new_inode is null, the below renaming flow will * add a link in old_dir which can convert inline_dir. * After then, if we failed to get the entry due to other * reasons like ENOMEM, we had to remove the new entry. * Instead of adding such the error handling routine, let's * simply convert first here. */ if (old_dir == new_dir && !new_inode) { err = f2fs_try_convert_inline_dir(old_dir, new_dentry); if (err) return err; } if (flags & RENAME_WHITEOUT) { struct f2fs_filename fname; err = f2fs_setup_filename(old_dir, &old_dentry->d_name, 0, &fname); if (err) return err; err = f2fs_create_whiteout(idmap, old_dir, &whiteout, &fname); if (err) return err; } err = f2fs_dquot_initialize(old_dir); if (err) goto out; err = f2fs_dquot_initialize(new_dir); if (err) goto out; if (new_inode) { err = f2fs_dquot_initialize(new_inode); if (err) goto out; } err = -ENOENT; old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page); if (!old_entry) { if (IS_ERR(old_page)) err = PTR_ERR(old_page); goto out; } if (old_is_dir && old_dir != new_dir) { old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page); if (!old_dir_entry) { if (IS_ERR(old_dir_page)) err = PTR_ERR(old_dir_page); goto out_old; } } if (new_inode) { err = -ENOTEMPTY; if (old_is_dir && !f2fs_empty_dir(new_inode)) goto out_dir; err = -ENOENT; new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name, &new_page); if (!new_entry) { if (IS_ERR(new_page)) err = PTR_ERR(new_page); goto out_dir; } f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); err = f2fs_acquire_orphan_inode(sbi); if (err) goto put_out_dir; f2fs_set_link(new_dir, new_entry, new_page, old_inode); new_page = NULL; inode_set_ctime_current(new_inode); f2fs_down_write(&F2FS_I(new_inode)->i_sem); if (old_is_dir) f2fs_i_links_write(new_inode, false); f2fs_i_links_write(new_inode, false); f2fs_up_write(&F2FS_I(new_inode)->i_sem); if (!new_inode->i_nlink) f2fs_add_orphan_inode(new_inode); else f2fs_release_orphan_inode(sbi); } else { f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); err = f2fs_add_link(new_dentry, old_inode); if (err) { f2fs_unlock_op(sbi); goto out_dir; } if (old_is_dir) f2fs_i_links_write(new_dir, true); } f2fs_down_write(&F2FS_I(old_inode)->i_sem); if (!old_is_dir || whiteout) file_lost_pino(old_inode); else /* adjust dir's i_pino to pass fsck check */ f2fs_i_pino_write(old_inode, new_dir->i_ino); f2fs_up_write(&F2FS_I(old_inode)->i_sem); inode_set_ctime_current(old_inode); f2fs_mark_inode_dirty_sync(old_inode, false); f2fs_delete_entry(old_entry, old_page, old_dir, NULL); old_page = NULL; if (whiteout) { set_inode_flag(whiteout, FI_INC_LINK); err = f2fs_add_link(old_dentry, whiteout); if (err) goto put_out_dir; spin_lock(&whiteout->i_lock); whiteout->i_state &= ~I_LINKABLE; spin_unlock(&whiteout->i_lock); iput(whiteout); } if (old_dir_entry) f2fs_set_link(old_inode, old_dir_entry, old_dir_page, new_dir); if (old_is_dir) f2fs_i_links_write(old_dir, false); if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) { f2fs_add_ino_entry(sbi, new_dir->i_ino, TRANS_DIR_INO); if (S_ISDIR(old_inode->i_mode)) f2fs_add_ino_entry(sbi, old_inode->i_ino, TRANS_DIR_INO); } f2fs_unlock_op(sbi); if (IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir)) f2fs_sync_fs(sbi->sb, 1); f2fs_update_time(sbi, REQ_TIME); return 0; put_out_dir: f2fs_unlock_op(sbi); f2fs_put_page(new_page, 0); out_dir: if (old_dir_entry) f2fs_put_page(old_dir_page, 0); out_old: f2fs_put_page(old_page, 0); out: iput(whiteout); return err; } static int f2fs_cross_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir); struct inode *old_inode = d_inode(old_dentry); struct inode *new_inode = d_inode(new_dentry); struct page *old_dir_page, *new_dir_page; struct page *old_page, *new_page; struct f2fs_dir_entry *old_dir_entry = NULL, *new_dir_entry = NULL; struct f2fs_dir_entry *old_entry, *new_entry; int old_nlink = 0, new_nlink = 0; int err; if (unlikely(f2fs_cp_error(sbi))) return -EIO; if (!f2fs_is_checkpoint_ready(sbi)) return -ENOSPC; if ((is_inode_flag_set(new_dir, FI_PROJ_INHERIT) && !projid_eq(F2FS_I(new_dir)->i_projid, F2FS_I(old_dentry->d_inode)->i_projid)) || (is_inode_flag_set(new_dir, FI_PROJ_INHERIT) && !projid_eq(F2FS_I(old_dir)->i_projid, F2FS_I(new_dentry->d_inode)->i_projid))) return -EXDEV; err = f2fs_dquot_initialize(old_dir); if (err) goto out; err = f2fs_dquot_initialize(new_dir); if (err) goto out; err = -ENOENT; old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page); if (!old_entry) { if (IS_ERR(old_page)) err = PTR_ERR(old_page); goto out; } new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name, &new_page); if (!new_entry) { if (IS_ERR(new_page)) err = PTR_ERR(new_page); goto out_old; } /* prepare for updating ".." directory entry info later */ if (old_dir != new_dir) { if (S_ISDIR(old_inode->i_mode)) { old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page); if (!old_dir_entry) { if (IS_ERR(old_dir_page)) err = PTR_ERR(old_dir_page); goto out_new; } } if (S_ISDIR(new_inode->i_mode)) { new_dir_entry = f2fs_parent_dir(new_inode, &new_dir_page); if (!new_dir_entry) { if (IS_ERR(new_dir_page)) err = PTR_ERR(new_dir_page); goto out_old_dir; } } } /* * If cross rename between file and directory those are not * in the same directory, we will inc nlink of file's parent * later, so we should check upper boundary of its nlink. */ if ((!old_dir_entry || !new_dir_entry) && old_dir_entry != new_dir_entry) { old_nlink = old_dir_entry ? -1 : 1; new_nlink = -old_nlink; err = -EMLINK; if ((old_nlink > 0 && old_dir->i_nlink >= F2FS_LINK_MAX) || (new_nlink > 0 && new_dir->i_nlink >= F2FS_LINK_MAX)) goto out_new_dir; } f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); /* update ".." directory entry info of old dentry */ if (old_dir_entry) f2fs_set_link(old_inode, old_dir_entry, old_dir_page, new_dir); /* update ".." directory entry info of new dentry */ if (new_dir_entry) f2fs_set_link(new_inode, new_dir_entry, new_dir_page, old_dir); /* update directory entry info of old dir inode */ f2fs_set_link(old_dir, old_entry, old_page, new_inode); f2fs_down_write(&F2FS_I(old_inode)->i_sem); if (!old_dir_entry) file_lost_pino(old_inode); else /* adjust dir's i_pino to pass fsck check */ f2fs_i_pino_write(old_inode, new_dir->i_ino); f2fs_up_write(&F2FS_I(old_inode)->i_sem); inode_set_ctime_current(old_dir); if (old_nlink) { f2fs_down_write(&F2FS_I(old_dir)->i_sem); f2fs_i_links_write(old_dir, old_nlink > 0); f2fs_up_write(&F2FS_I(old_dir)->i_sem); } f2fs_mark_inode_dirty_sync(old_dir, false); /* update directory entry info of new dir inode */ f2fs_set_link(new_dir, new_entry, new_page, old_inode); f2fs_down_write(&F2FS_I(new_inode)->i_sem); if (!new_dir_entry) file_lost_pino(new_inode); else /* adjust dir's i_pino to pass fsck check */ f2fs_i_pino_write(new_inode, old_dir->i_ino); f2fs_up_write(&F2FS_I(new_inode)->i_sem); inode_set_ctime_current(new_dir); if (new_nlink) { f2fs_down_write(&F2FS_I(new_dir)->i_sem); f2fs_i_links_write(new_dir, new_nlink > 0); f2fs_up_write(&F2FS_I(new_dir)->i_sem); } f2fs_mark_inode_dirty_sync(new_dir, false); if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) { f2fs_add_ino_entry(sbi, old_dir->i_ino, TRANS_DIR_INO); f2fs_add_ino_entry(sbi, new_dir->i_ino, TRANS_DIR_INO); } f2fs_unlock_op(sbi); if (IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir)) f2fs_sync_fs(sbi->sb, 1); f2fs_update_time(sbi, REQ_TIME); return 0; out_new_dir: if (new_dir_entry) { f2fs_put_page(new_dir_page, 0); } out_old_dir: if (old_dir_entry) { f2fs_put_page(old_dir_page, 0); } out_new: f2fs_put_page(new_page, 0); out_old: f2fs_put_page(old_page, 0); out: return err; } static int f2fs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { int err; if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) return -EINVAL; trace_f2fs_rename_start(old_dir, old_dentry, new_dir, new_dentry, flags); err = fscrypt_prepare_rename(old_dir, old_dentry, new_dir, new_dentry, flags); if (err) return err; if (flags & RENAME_EXCHANGE) err = f2fs_cross_rename(old_dir, old_dentry, new_dir, new_dentry); else /* * VFS has already handled the new dentry existence case, * here, we just deal with "RENAME_NOREPLACE" as regular rename. */ err = f2fs_rename(idmap, old_dir, old_dentry, new_dir, new_dentry, flags); trace_f2fs_rename_end(old_dentry, new_dentry, flags, err); return err; } static const char *f2fs_encrypted_get_link(struct dentry *dentry, struct inode *inode, struct delayed_call *done) { struct page *page; const char *target; if (!dentry) return ERR_PTR(-ECHILD); page = read_mapping_page(inode->i_mapping, 0, NULL); if (IS_ERR(page)) return ERR_CAST(page); target = fscrypt_get_symlink(inode, page_address(page), inode->i_sb->s_blocksize, done); put_page(page); return target; } static int f2fs_encrypted_symlink_getattr(struct mnt_idmap *idmap, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { f2fs_getattr(idmap, path, stat, request_mask, query_flags); return fscrypt_symlink_getattr(path, stat); } const struct inode_operations f2fs_encrypted_symlink_inode_operations = { .get_link = f2fs_encrypted_get_link, .getattr = f2fs_encrypted_symlink_getattr, .setattr = f2fs_setattr, .listxattr = f2fs_listxattr, }; const struct inode_operations f2fs_dir_inode_operations = { .create = f2fs_create, .lookup = f2fs_lookup, .link = f2fs_link, .unlink = f2fs_unlink, .symlink = f2fs_symlink, .mkdir = f2fs_mkdir, .rmdir = f2fs_rmdir, .mknod = f2fs_mknod, .rename = f2fs_rename2, .tmpfile = f2fs_tmpfile, .getattr = f2fs_getattr, .setattr = f2fs_setattr, .get_inode_acl = f2fs_get_acl, .set_acl = f2fs_set_acl, .listxattr = f2fs_listxattr, .fiemap = f2fs_fiemap, .fileattr_get = f2fs_fileattr_get, .fileattr_set = f2fs_fileattr_set, }; const struct inode_operations f2fs_symlink_inode_operations = { .get_link = f2fs_get_link, .getattr = f2fs_getattr, .setattr = f2fs_setattr, .listxattr = f2fs_listxattr, }; const struct inode_operations f2fs_special_inode_operations = { .getattr = f2fs_getattr, .setattr = f2fs_setattr, .get_inode_acl = f2fs_get_acl, .set_acl = f2fs_set_acl, .listxattr = f2fs_listxattr, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1