Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jaegeuk Kim | 2480 | 56.05% | 75 | 41.21% |
Chao Yu | 1208 | 27.30% | 67 | 36.81% |
Chunhai Guo | 220 | 4.97% | 1 | 0.55% |
Eric Biggers | 185 | 4.18% | 4 | 2.20% |
Daniel Rosenberg | 60 | 1.36% | 2 | 1.10% |
Sheng Yong | 59 | 1.33% | 1 | 0.55% |
Jeff Layton | 27 | 0.61% | 2 | 1.10% |
Christian Brauner | 27 | 0.61% | 5 | 2.75% |
Shuoran Liu | 20 | 0.45% | 1 | 0.55% |
Namjae Jeon | 19 | 0.43% | 2 | 1.10% |
Shin'ichiro Kawasaki | 19 | 0.43% | 1 | 0.55% |
Gu Zheng | 18 | 0.41% | 3 | 1.65% |
Russ W. Knize | 18 | 0.41% | 1 | 0.55% |
Dan Carpenter | 15 | 0.34% | 2 | 1.10% |
Joe Perches | 10 | 0.23% | 1 | 0.55% |
Neil Brown | 7 | 0.16% | 1 | 0.55% |
Huajun Li | 6 | 0.14% | 1 | 0.55% |
Yunlong Song | 5 | 0.11% | 1 | 0.55% |
Chris Fries | 4 | 0.09% | 2 | 1.10% |
Yangtao Li | 4 | 0.09% | 1 | 0.55% |
Haicheng Li | 3 | 0.07% | 1 | 0.55% |
Tim Murray | 2 | 0.05% | 1 | 0.55% |
Sahitya Tummala | 2 | 0.05% | 1 | 0.55% |
Al Viro | 2 | 0.05% | 1 | 0.55% |
Zhiguo Niu | 2 | 0.05% | 1 | 0.55% |
Gabriel Krisman Bertazi | 1 | 0.02% | 1 | 0.55% |
Linus Torvalds | 1 | 0.02% | 1 | 0.55% |
Kirill A. Shutemov | 1 | 0.02% | 1 | 0.55% |
Total | 4425 | 182 |
// SPDX-License-Identifier: GPL-2.0 /* * fs/f2fs/recovery.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ */ #include <asm/unaligned.h> #include <linux/fs.h> #include <linux/f2fs_fs.h> #include <linux/sched/mm.h> #include "f2fs.h" #include "node.h" #include "segment.h" /* * Roll forward recovery scenarios. * * [Term] F: fsync_mark, D: dentry_mark * * 1. inode(x) | CP | inode(x) | dnode(F) * -> Update the latest inode(x). * * 2. inode(x) | CP | inode(F) | dnode(F) * -> No problem. * * 3. inode(x) | CP | dnode(F) | inode(x) * -> Recover to the latest dnode(F), and drop the last inode(x) * * 4. inode(x) | CP | dnode(F) | inode(F) * -> No problem. * * 5. CP | inode(x) | dnode(F) * -> The inode(DF) was missing. Should drop this dnode(F). * * 6. CP | inode(DF) | dnode(F) * -> No problem. * * 7. CP | dnode(F) | inode(DF) * -> If f2fs_iget fails, then goto next to find inode(DF). * * 8. CP | dnode(F) | inode(x) * -> If f2fs_iget fails, then goto next to find inode(DF). * But it will fail due to no inode(DF). */ static struct kmem_cache *fsync_entry_slab; bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi) { s64 nalloc = percpu_counter_sum_positive(&sbi->alloc_valid_block_count); if (sbi->last_valid_block_count + nalloc > sbi->user_block_count) return false; if (NM_I(sbi)->max_rf_node_blocks && percpu_counter_sum_positive(&sbi->rf_node_block_count) >= NM_I(sbi)->max_rf_node_blocks) return false; return true; } static struct fsync_inode_entry *get_fsync_inode(struct list_head *head, nid_t ino) { struct fsync_inode_entry *entry; list_for_each_entry(entry, head, list) if (entry->inode->i_ino == ino) return entry; return NULL; } static struct fsync_inode_entry *add_fsync_inode(struct f2fs_sb_info *sbi, struct list_head *head, nid_t ino, bool quota_inode) { struct inode *inode; struct fsync_inode_entry *entry; int err; inode = f2fs_iget_retry(sbi->sb, ino); if (IS_ERR(inode)) return ERR_CAST(inode); err = f2fs_dquot_initialize(inode); if (err) goto err_out; if (quota_inode) { err = dquot_alloc_inode(inode); if (err) goto err_out; } entry = f2fs_kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO, true, NULL); entry->inode = inode; list_add_tail(&entry->list, head); return entry; err_out: iput(inode); return ERR_PTR(err); } static void del_fsync_inode(struct fsync_inode_entry *entry, int drop) { if (drop) { /* inode should not be recovered, drop it */ f2fs_inode_synced(entry->inode); } iput(entry->inode); list_del(&entry->list); kmem_cache_free(fsync_entry_slab, entry); } static int init_recovered_filename(const struct inode *dir, struct f2fs_inode *raw_inode, struct f2fs_filename *fname, struct qstr *usr_fname) { int err; memset(fname, 0, sizeof(*fname)); fname->disk_name.len = le32_to_cpu(raw_inode->i_namelen); fname->disk_name.name = raw_inode->i_name; if (WARN_ON(fname->disk_name.len > F2FS_NAME_LEN)) return -ENAMETOOLONG; if (!IS_ENCRYPTED(dir)) { usr_fname->name = fname->disk_name.name; usr_fname->len = fname->disk_name.len; fname->usr_fname = usr_fname; } /* Compute the hash of the filename */ if (IS_ENCRYPTED(dir) && IS_CASEFOLDED(dir)) { /* * In this case the hash isn't computable without the key, so it * was saved on-disk. */ if (fname->disk_name.len + sizeof(f2fs_hash_t) > F2FS_NAME_LEN) return -EINVAL; fname->hash = get_unaligned((f2fs_hash_t *) &raw_inode->i_name[fname->disk_name.len]); } else if (IS_CASEFOLDED(dir)) { err = f2fs_init_casefolded_name(dir, fname); if (err) return err; f2fs_hash_filename(dir, fname); /* Case-sensitive match is fine for recovery */ f2fs_free_casefolded_name(fname); } else { f2fs_hash_filename(dir, fname); } return 0; } static int recover_dentry(struct inode *inode, struct page *ipage, struct list_head *dir_list) { struct f2fs_inode *raw_inode = F2FS_INODE(ipage); nid_t pino = le32_to_cpu(raw_inode->i_pino); struct f2fs_dir_entry *de; struct f2fs_filename fname; struct qstr usr_fname; struct page *page; struct inode *dir, *einode; struct fsync_inode_entry *entry; int err = 0; char *name; entry = get_fsync_inode(dir_list, pino); if (!entry) { entry = add_fsync_inode(F2FS_I_SB(inode), dir_list, pino, false); if (IS_ERR(entry)) { dir = ERR_CAST(entry); err = PTR_ERR(entry); goto out; } } dir = entry->inode; err = init_recovered_filename(dir, raw_inode, &fname, &usr_fname); if (err) goto out; retry: de = __f2fs_find_entry(dir, &fname, &page); if (de && inode->i_ino == le32_to_cpu(de->ino)) goto out_put; if (de) { einode = f2fs_iget_retry(inode->i_sb, le32_to_cpu(de->ino)); if (IS_ERR(einode)) { WARN_ON(1); err = PTR_ERR(einode); if (err == -ENOENT) err = -EEXIST; goto out_put; } err = f2fs_dquot_initialize(einode); if (err) { iput(einode); goto out_put; } err = f2fs_acquire_orphan_inode(F2FS_I_SB(inode)); if (err) { iput(einode); goto out_put; } f2fs_delete_entry(de, page, dir, einode); iput(einode); goto retry; } else if (IS_ERR(page)) { err = PTR_ERR(page); } else { err = f2fs_add_dentry(dir, &fname, inode, inode->i_ino, inode->i_mode); } if (err == -ENOMEM) goto retry; goto out; out_put: f2fs_put_page(page, 0); out: if (file_enc_name(inode)) name = "<encrypted>"; else name = raw_inode->i_name; f2fs_notice(F2FS_I_SB(inode), "%s: ino = %x, name = %s, dir = %lx, err = %d", __func__, ino_of_node(ipage), name, IS_ERR(dir) ? 0 : dir->i_ino, err); return err; } static int recover_quota_data(struct inode *inode, struct page *page) { struct f2fs_inode *raw = F2FS_INODE(page); struct iattr attr; uid_t i_uid = le32_to_cpu(raw->i_uid); gid_t i_gid = le32_to_cpu(raw->i_gid); int err; memset(&attr, 0, sizeof(attr)); attr.ia_vfsuid = VFSUIDT_INIT(make_kuid(inode->i_sb->s_user_ns, i_uid)); attr.ia_vfsgid = VFSGIDT_INIT(make_kgid(inode->i_sb->s_user_ns, i_gid)); if (!vfsuid_eq(attr.ia_vfsuid, i_uid_into_vfsuid(&nop_mnt_idmap, inode))) attr.ia_valid |= ATTR_UID; if (!vfsgid_eq(attr.ia_vfsgid, i_gid_into_vfsgid(&nop_mnt_idmap, inode))) attr.ia_valid |= ATTR_GID; if (!attr.ia_valid) return 0; err = dquot_transfer(&nop_mnt_idmap, inode, &attr); if (err) set_sbi_flag(F2FS_I_SB(inode), SBI_QUOTA_NEED_REPAIR); return err; } static void recover_inline_flags(struct inode *inode, struct f2fs_inode *ri) { if (ri->i_inline & F2FS_PIN_FILE) set_inode_flag(inode, FI_PIN_FILE); else clear_inode_flag(inode, FI_PIN_FILE); if (ri->i_inline & F2FS_DATA_EXIST) set_inode_flag(inode, FI_DATA_EXIST); else clear_inode_flag(inode, FI_DATA_EXIST); } static int recover_inode(struct inode *inode, struct page *page) { struct f2fs_inode *raw = F2FS_INODE(page); struct f2fs_inode_info *fi = F2FS_I(inode); char *name; int err; inode->i_mode = le16_to_cpu(raw->i_mode); err = recover_quota_data(inode, page); if (err) return err; i_uid_write(inode, le32_to_cpu(raw->i_uid)); i_gid_write(inode, le32_to_cpu(raw->i_gid)); if (raw->i_inline & F2FS_EXTRA_ATTR) { if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)) && F2FS_FITS_IN_INODE(raw, le16_to_cpu(raw->i_extra_isize), i_projid)) { projid_t i_projid; kprojid_t kprojid; i_projid = (projid_t)le32_to_cpu(raw->i_projid); kprojid = make_kprojid(&init_user_ns, i_projid); if (!projid_eq(kprojid, fi->i_projid)) { err = f2fs_transfer_project_quota(inode, kprojid); if (err) return err; fi->i_projid = kprojid; } } } f2fs_i_size_write(inode, le64_to_cpu(raw->i_size)); inode_set_atime(inode, le64_to_cpu(raw->i_atime), le32_to_cpu(raw->i_atime_nsec)); inode_set_ctime(inode, le64_to_cpu(raw->i_ctime), le32_to_cpu(raw->i_ctime_nsec)); inode_set_mtime(inode, le64_to_cpu(raw->i_mtime), le32_to_cpu(raw->i_mtime_nsec)); fi->i_advise = raw->i_advise; fi->i_flags = le32_to_cpu(raw->i_flags); f2fs_set_inode_flags(inode); fi->i_gc_failures = le16_to_cpu(raw->i_gc_failures); recover_inline_flags(inode, raw); f2fs_mark_inode_dirty_sync(inode, true); if (file_enc_name(inode)) name = "<encrypted>"; else name = F2FS_INODE(page)->i_name; f2fs_notice(F2FS_I_SB(inode), "recover_inode: ino = %x, name = %s, inline = %x", ino_of_node(page), name, raw->i_inline); return 0; } static unsigned int adjust_por_ra_blocks(struct f2fs_sb_info *sbi, unsigned int ra_blocks, unsigned int blkaddr, unsigned int next_blkaddr) { if (blkaddr + 1 == next_blkaddr) ra_blocks = min_t(unsigned int, RECOVERY_MAX_RA_BLOCKS, ra_blocks * 2); else if (next_blkaddr % BLKS_PER_SEG(sbi)) ra_blocks = max_t(unsigned int, RECOVERY_MIN_RA_BLOCKS, ra_blocks / 2); return ra_blocks; } /* Detect looped node chain with Floyd's cycle detection algorithm. */ static int sanity_check_node_chain(struct f2fs_sb_info *sbi, block_t blkaddr, block_t *blkaddr_fast, bool *is_detecting) { unsigned int ra_blocks = RECOVERY_MAX_RA_BLOCKS; struct page *page = NULL; int i; if (!*is_detecting) return 0; for (i = 0; i < 2; i++) { if (!f2fs_is_valid_blkaddr(sbi, *blkaddr_fast, META_POR)) { *is_detecting = false; return 0; } page = f2fs_get_tmp_page(sbi, *blkaddr_fast); if (IS_ERR(page)) return PTR_ERR(page); if (!is_recoverable_dnode(page)) { f2fs_put_page(page, 1); *is_detecting = false; return 0; } ra_blocks = adjust_por_ra_blocks(sbi, ra_blocks, *blkaddr_fast, next_blkaddr_of_node(page)); *blkaddr_fast = next_blkaddr_of_node(page); f2fs_put_page(page, 1); f2fs_ra_meta_pages_cond(sbi, *blkaddr_fast, ra_blocks); } if (*blkaddr_fast == blkaddr) { f2fs_notice(sbi, "%s: Detect looped node chain on blkaddr:%u." " Run fsck to fix it.", __func__, blkaddr); return -EINVAL; } return 0; } static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head, bool check_only) { struct curseg_info *curseg; struct page *page = NULL; block_t blkaddr, blkaddr_fast; bool is_detecting = true; int err = 0; /* get node pages in the current segment */ curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); blkaddr_fast = blkaddr; while (1) { struct fsync_inode_entry *entry; if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR)) return 0; page = f2fs_get_tmp_page(sbi, blkaddr); if (IS_ERR(page)) { err = PTR_ERR(page); break; } if (!is_recoverable_dnode(page)) { f2fs_put_page(page, 1); break; } if (!is_fsync_dnode(page)) goto next; entry = get_fsync_inode(head, ino_of_node(page)); if (!entry) { bool quota_inode = false; if (!check_only && IS_INODE(page) && is_dent_dnode(page)) { err = f2fs_recover_inode_page(sbi, page); if (err) { f2fs_put_page(page, 1); break; } quota_inode = true; } /* * CP | dnode(F) | inode(DF) * For this case, we should not give up now. */ entry = add_fsync_inode(sbi, head, ino_of_node(page), quota_inode); if (IS_ERR(entry)) { err = PTR_ERR(entry); if (err == -ENOENT) goto next; f2fs_put_page(page, 1); break; } } entry->blkaddr = blkaddr; if (IS_INODE(page) && is_dent_dnode(page)) entry->last_dentry = blkaddr; next: /* check next segment */ blkaddr = next_blkaddr_of_node(page); f2fs_put_page(page, 1); err = sanity_check_node_chain(sbi, blkaddr, &blkaddr_fast, &is_detecting); if (err) break; } return err; } static void destroy_fsync_dnodes(struct list_head *head, int drop) { struct fsync_inode_entry *entry, *tmp; list_for_each_entry_safe(entry, tmp, head, list) del_fsync_inode(entry, drop); } static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi, block_t blkaddr, struct dnode_of_data *dn) { struct seg_entry *sentry; unsigned int segno = GET_SEGNO(sbi, blkaddr); unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); struct f2fs_summary_block *sum_node; struct f2fs_summary sum; struct page *sum_page, *node_page; struct dnode_of_data tdn = *dn; nid_t ino, nid; struct inode *inode; unsigned int offset, ofs_in_node, max_addrs; block_t bidx; int i; sentry = get_seg_entry(sbi, segno); if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) return 0; /* Get the previous summary */ for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { struct curseg_info *curseg = CURSEG_I(sbi, i); if (curseg->segno == segno) { sum = curseg->sum_blk->entries[blkoff]; goto got_it; } } sum_page = f2fs_get_sum_page(sbi, segno); if (IS_ERR(sum_page)) return PTR_ERR(sum_page); sum_node = (struct f2fs_summary_block *)page_address(sum_page); sum = sum_node->entries[blkoff]; f2fs_put_page(sum_page, 1); got_it: /* Use the locked dnode page and inode */ nid = le32_to_cpu(sum.nid); ofs_in_node = le16_to_cpu(sum.ofs_in_node); max_addrs = ADDRS_PER_PAGE(dn->node_page, dn->inode); if (ofs_in_node >= max_addrs) { f2fs_err(sbi, "Inconsistent ofs_in_node:%u in summary, ino:%lu, nid:%u, max:%u", ofs_in_node, dn->inode->i_ino, nid, max_addrs); f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUMMARY); return -EFSCORRUPTED; } if (dn->inode->i_ino == nid) { tdn.nid = nid; if (!dn->inode_page_locked) lock_page(dn->inode_page); tdn.node_page = dn->inode_page; tdn.ofs_in_node = ofs_in_node; goto truncate_out; } else if (dn->nid == nid) { tdn.ofs_in_node = ofs_in_node; goto truncate_out; } /* Get the node page */ node_page = f2fs_get_node_page(sbi, nid); if (IS_ERR(node_page)) return PTR_ERR(node_page); offset = ofs_of_node(node_page); ino = ino_of_node(node_page); f2fs_put_page(node_page, 1); if (ino != dn->inode->i_ino) { int ret; /* Deallocate previous index in the node page */ inode = f2fs_iget_retry(sbi->sb, ino); if (IS_ERR(inode)) return PTR_ERR(inode); ret = f2fs_dquot_initialize(inode); if (ret) { iput(inode); return ret; } } else { inode = dn->inode; } bidx = f2fs_start_bidx_of_node(offset, inode) + le16_to_cpu(sum.ofs_in_node); /* * if inode page is locked, unlock temporarily, but its reference * count keeps alive. */ if (ino == dn->inode->i_ino && dn->inode_page_locked) unlock_page(dn->inode_page); set_new_dnode(&tdn, inode, NULL, NULL, 0); if (f2fs_get_dnode_of_data(&tdn, bidx, LOOKUP_NODE)) goto out; if (tdn.data_blkaddr == blkaddr) f2fs_truncate_data_blocks_range(&tdn, 1); f2fs_put_dnode(&tdn); out: if (ino != dn->inode->i_ino) iput(inode); else if (dn->inode_page_locked) lock_page(dn->inode_page); return 0; truncate_out: if (f2fs_data_blkaddr(&tdn) == blkaddr) f2fs_truncate_data_blocks_range(&tdn, 1); if (dn->inode->i_ino == nid && !dn->inode_page_locked) unlock_page(dn->inode_page); return 0; } static int f2fs_reserve_new_block_retry(struct dnode_of_data *dn) { int i, err = 0; for (i = DEFAULT_FAILURE_RETRY_COUNT; i > 0; i--) { err = f2fs_reserve_new_block(dn); if (!err) break; } return err; } static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode, struct page *page) { struct dnode_of_data dn; struct node_info ni; unsigned int start, end; int err = 0, recovered = 0; /* step 1: recover xattr */ if (IS_INODE(page)) { err = f2fs_recover_inline_xattr(inode, page); if (err) goto out; } else if (f2fs_has_xattr_block(ofs_of_node(page))) { err = f2fs_recover_xattr_data(inode, page); if (!err) recovered++; goto out; } /* step 2: recover inline data */ err = f2fs_recover_inline_data(inode, page); if (err) { if (err == 1) err = 0; goto out; } /* step 3: recover data indices */ start = f2fs_start_bidx_of_node(ofs_of_node(page), inode); end = start + ADDRS_PER_PAGE(page, inode); set_new_dnode(&dn, inode, NULL, NULL, 0); retry_dn: err = f2fs_get_dnode_of_data(&dn, start, ALLOC_NODE); if (err) { if (err == -ENOMEM) { memalloc_retry_wait(GFP_NOFS); goto retry_dn; } goto out; } f2fs_wait_on_page_writeback(dn.node_page, NODE, true, true); err = f2fs_get_node_info(sbi, dn.nid, &ni, false); if (err) goto err; f2fs_bug_on(sbi, ni.ino != ino_of_node(page)); if (ofs_of_node(dn.node_page) != ofs_of_node(page)) { f2fs_warn(sbi, "Inconsistent ofs_of_node, ino:%lu, ofs:%u, %u", inode->i_ino, ofs_of_node(dn.node_page), ofs_of_node(page)); err = -EFSCORRUPTED; f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER); goto err; } for (; start < end; start++, dn.ofs_in_node++) { block_t src, dest; src = f2fs_data_blkaddr(&dn); dest = data_blkaddr(dn.inode, page, dn.ofs_in_node); if (__is_valid_data_blkaddr(src) && !f2fs_is_valid_blkaddr(sbi, src, META_POR)) { err = -EFSCORRUPTED; goto err; } if (__is_valid_data_blkaddr(dest) && !f2fs_is_valid_blkaddr(sbi, dest, META_POR)) { err = -EFSCORRUPTED; goto err; } /* skip recovering if dest is the same as src */ if (src == dest) continue; /* dest is invalid, just invalidate src block */ if (dest == NULL_ADDR) { f2fs_truncate_data_blocks_range(&dn, 1); continue; } if (!file_keep_isize(inode) && (i_size_read(inode) <= ((loff_t)start << PAGE_SHIFT))) f2fs_i_size_write(inode, (loff_t)(start + 1) << PAGE_SHIFT); /* * dest is reserved block, invalidate src block * and then reserve one new block in dnode page. */ if (dest == NEW_ADDR) { f2fs_truncate_data_blocks_range(&dn, 1); err = f2fs_reserve_new_block_retry(&dn); if (err) goto err; continue; } /* dest is valid block, try to recover from src to dest */ if (f2fs_is_valid_blkaddr(sbi, dest, META_POR)) { if (src == NULL_ADDR) { err = f2fs_reserve_new_block_retry(&dn); if (err) goto err; } retry_prev: /* Check the previous node page having this index */ err = check_index_in_prev_nodes(sbi, dest, &dn); if (err) { if (err == -ENOMEM) { memalloc_retry_wait(GFP_NOFS); goto retry_prev; } goto err; } if (f2fs_is_valid_blkaddr(sbi, dest, DATA_GENERIC_ENHANCE_UPDATE)) { f2fs_err(sbi, "Inconsistent dest blkaddr:%u, ino:%lu, ofs:%u", dest, inode->i_ino, dn.ofs_in_node); err = -EFSCORRUPTED; goto err; } /* write dummy data page */ f2fs_replace_block(sbi, &dn, src, dest, ni.version, false, false); recovered++; } } copy_node_footer(dn.node_page, page); fill_node_footer(dn.node_page, dn.nid, ni.ino, ofs_of_node(page), false); set_page_dirty(dn.node_page); err: f2fs_put_dnode(&dn); out: f2fs_notice(sbi, "recover_data: ino = %lx (i_size: %s) recovered = %d, err = %d", inode->i_ino, file_keep_isize(inode) ? "keep" : "recover", recovered, err); return err; } static int recover_data(struct f2fs_sb_info *sbi, struct list_head *inode_list, struct list_head *tmp_inode_list, struct list_head *dir_list) { struct curseg_info *curseg; struct page *page = NULL; int err = 0; block_t blkaddr; unsigned int ra_blocks = RECOVERY_MAX_RA_BLOCKS; /* get node pages in the current segment */ curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); while (1) { struct fsync_inode_entry *entry; if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR)) break; page = f2fs_get_tmp_page(sbi, blkaddr); if (IS_ERR(page)) { err = PTR_ERR(page); break; } if (!is_recoverable_dnode(page)) { f2fs_put_page(page, 1); break; } entry = get_fsync_inode(inode_list, ino_of_node(page)); if (!entry) goto next; /* * inode(x) | CP | inode(x) | dnode(F) * In this case, we can lose the latest inode(x). * So, call recover_inode for the inode update. */ if (IS_INODE(page)) { err = recover_inode(entry->inode, page); if (err) { f2fs_put_page(page, 1); break; } } if (entry->last_dentry == blkaddr) { err = recover_dentry(entry->inode, page, dir_list); if (err) { f2fs_put_page(page, 1); break; } } err = do_recover_data(sbi, entry->inode, page); if (err) { f2fs_put_page(page, 1); break; } if (entry->blkaddr == blkaddr) list_move_tail(&entry->list, tmp_inode_list); next: ra_blocks = adjust_por_ra_blocks(sbi, ra_blocks, blkaddr, next_blkaddr_of_node(page)); /* check next segment */ blkaddr = next_blkaddr_of_node(page); f2fs_put_page(page, 1); f2fs_ra_meta_pages_cond(sbi, blkaddr, ra_blocks); } if (!err) err = f2fs_allocate_new_segments(sbi); return err; } int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only) { struct list_head inode_list, tmp_inode_list; struct list_head dir_list; int err; int ret = 0; unsigned long s_flags = sbi->sb->s_flags; bool need_writecp = false; if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) f2fs_info(sbi, "recover fsync data on readonly fs"); INIT_LIST_HEAD(&inode_list); INIT_LIST_HEAD(&tmp_inode_list); INIT_LIST_HEAD(&dir_list); /* prevent checkpoint */ f2fs_down_write(&sbi->cp_global_sem); /* step #1: find fsynced inode numbers */ err = find_fsync_dnodes(sbi, &inode_list, check_only); if (err || list_empty(&inode_list)) goto skip; if (check_only) { ret = 1; goto skip; } need_writecp = true; /* step #2: recover data */ err = recover_data(sbi, &inode_list, &tmp_inode_list, &dir_list); if (!err) f2fs_bug_on(sbi, !list_empty(&inode_list)); else f2fs_bug_on(sbi, sbi->sb->s_flags & SB_ACTIVE); skip: destroy_fsync_dnodes(&inode_list, err); destroy_fsync_dnodes(&tmp_inode_list, err); /* truncate meta pages to be used by the recovery */ truncate_inode_pages_range(META_MAPPING(sbi), (loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1); if (err) { truncate_inode_pages_final(NODE_MAPPING(sbi)); truncate_inode_pages_final(META_MAPPING(sbi)); } /* * If fsync data succeeds or there is no fsync data to recover, * and the f2fs is not read only, check and fix zoned block devices' * write pointer consistency. */ if (f2fs_sb_has_blkzoned(sbi) && !f2fs_readonly(sbi->sb)) { int err2 = f2fs_fix_curseg_write_pointer(sbi); if (!err2) err2 = f2fs_check_write_pointer(sbi); if (err2) err = err2; ret = err; } if (!err) clear_sbi_flag(sbi, SBI_POR_DOING); f2fs_up_write(&sbi->cp_global_sem); /* let's drop all the directory inodes for clean checkpoint */ destroy_fsync_dnodes(&dir_list, err); if (need_writecp) { set_sbi_flag(sbi, SBI_IS_RECOVERED); if (!err) { struct cp_control cpc = { .reason = CP_RECOVERY, }; stat_inc_cp_call_count(sbi, TOTAL_CALL); err = f2fs_write_checkpoint(sbi, &cpc); } } sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ return ret ? ret : err; } int __init f2fs_create_recovery_cache(void) { fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry", sizeof(struct fsync_inode_entry)); return fsync_entry_slab ? 0 : -ENOMEM; } void f2fs_destroy_recovery_cache(void) { kmem_cache_destroy(fsync_entry_slab); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1