Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Al Viro | 1795 | 32.26% | 48 | 22.43% |
Linus Torvalds (pre-git) | 769 | 13.82% | 37 | 17.29% |
Christian Brauner | 602 | 10.82% | 13 | 6.07% |
Linus Torvalds | 536 | 9.63% | 12 | 5.61% |
Dipankar Sarma | 336 | 6.04% | 5 | 2.34% |
Vadim Lobanov | 208 | 3.74% | 5 | 2.34% |
Eric W. Biedermann | 173 | 3.11% | 9 | 4.21% |
Eric Dumazet | 142 | 2.55% | 3 | 1.40% |
Giuseppe Scrivano | 113 | 2.03% | 1 | 0.47% |
Oleg Nesterov | 88 | 1.58% | 4 | 1.87% |
Eric Biggers | 87 | 1.56% | 2 | 0.93% |
Sargun Dhillon | 83 | 1.49% | 1 | 0.47% |
David Howells | 80 | 1.44% | 3 | 1.40% |
Mateusz Guzik | 66 | 1.19% | 2 | 0.93% |
Kees Cook | 60 | 1.08% | 4 | 1.87% |
Ulrich Drepper | 53 | 0.95% | 5 | 2.34% |
Jens Axboe | 41 | 0.74% | 3 | 1.40% |
Christoph Hellwig | 39 | 0.70% | 2 | 0.93% |
Heiko Carstens | 36 | 0.65% | 1 | 0.47% |
Dominik Brodowski | 27 | 0.49% | 2 | 0.93% |
Prasanna Meda | 26 | 0.47% | 2 | 0.93% |
Andrew Morton | 23 | 0.41% | 5 | 2.34% |
Alexey Dobriyan | 21 | 0.38% | 2 | 0.93% |
Jiri Slaby | 12 | 0.22% | 1 | 0.47% |
Changli Gao | 11 | 0.20% | 1 | 0.47% |
Theodore Y. Ts'o | 11 | 0.20% | 1 | 0.47% |
Shuriyc Chu | 10 | 0.18% | 1 | 0.47% |
Xie Yongji | 8 | 0.14% | 1 | 0.47% |
Michal Hocko | 7 | 0.13% | 1 | 0.47% |
Richard W.M. Jones | 7 | 0.13% | 1 | 0.47% |
Ingo Molnar | 7 | 0.13% | 2 | 0.93% |
Jeff Mahoney | 6 | 0.11% | 1 | 0.47% |
Arnaldo Carvalho de Melo | 6 | 0.11% | 1 | 0.47% |
Paul E. McKenney | 6 | 0.11% | 4 | 1.87% |
Greg Kroah-Hartman | 6 | 0.11% | 3 | 1.40% |
Cyrill V. Gorcunov | 6 | 0.11% | 2 | 0.93% |
Gregory Kurz | 5 | 0.09% | 1 | 0.47% |
Todd Kjos | 5 | 0.09% | 1 | 0.47% |
Harvey Harrison | 5 | 0.09% | 1 | 0.47% |
Stephen D. Smalley | 5 | 0.09% | 1 | 0.47% |
Chris Wilson | 5 | 0.09% | 1 | 0.47% |
Matthew Wilcox | 4 | 0.07% | 2 | 0.93% |
Andreas Gruenbacher | 4 | 0.07% | 1 | 0.47% |
Yann Droneaud | 4 | 0.07% | 1 | 0.47% |
Rasmus Villemoes | 3 | 0.05% | 1 | 0.47% |
Dave Hansen | 2 | 0.04% | 1 | 0.47% |
Jann Horn | 2 | 0.04% | 1 | 0.47% |
Yuntao Wang | 2 | 0.04% | 1 | 0.47% |
Roland Dreier | 2 | 0.04% | 1 | 0.47% |
Gou Hao | 1 | 0.02% | 1 | 0.47% |
Paul Gortmaker | 1 | 0.02% | 1 | 0.47% |
Vladimir Davydov | 1 | 0.02% | 1 | 0.47% |
Dwayne Grant Mcconnell | 1 | 0.02% | 1 | 0.47% |
Ernie Petrides | 1 | 0.02% | 1 | 0.47% |
Thomas Gleixner | 1 | 0.02% | 1 | 0.47% |
Adrian Bunk | 1 | 0.02% | 1 | 0.47% |
Rusty Russell | 1 | 0.02% | 1 | 0.47% |
Tony Battersby | 1 | 0.02% | 1 | 0.47% |
Total | 5564 | 214 |
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/file.c * * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes * * Manage the dynamic fd arrays in the process files_struct. */ #include <linux/syscalls.h> #include <linux/export.h> #include <linux/fs.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/sched/signal.h> #include <linux/slab.h> #include <linux/file.h> #include <linux/fdtable.h> #include <linux/bitops.h> #include <linux/spinlock.h> #include <linux/rcupdate.h> #include <linux/close_range.h> #include <net/sock.h> #include "internal.h" unsigned int sysctl_nr_open __read_mostly = 1024*1024; unsigned int sysctl_nr_open_min = BITS_PER_LONG; /* our min() is unusable in constant expressions ;-/ */ #define __const_min(x, y) ((x) < (y) ? (x) : (y)) unsigned int sysctl_nr_open_max = __const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG; static void __free_fdtable(struct fdtable *fdt) { kvfree(fdt->fd); kvfree(fdt->open_fds); kfree(fdt); } static void free_fdtable_rcu(struct rcu_head *rcu) { __free_fdtable(container_of(rcu, struct fdtable, rcu)); } #define BITBIT_NR(nr) BITS_TO_LONGS(BITS_TO_LONGS(nr)) #define BITBIT_SIZE(nr) (BITBIT_NR(nr) * sizeof(long)) #define fdt_words(fdt) ((fdt)->max_fds / BITS_PER_LONG) // words in ->open_fds /* * Copy 'count' fd bits from the old table to the new table and clear the extra * space if any. This does not copy the file pointers. Called with the files * spinlock held for write. */ static inline void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt, unsigned int copy_words) { unsigned int nwords = fdt_words(nfdt); bitmap_copy_and_extend(nfdt->open_fds, ofdt->open_fds, copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG); bitmap_copy_and_extend(nfdt->close_on_exec, ofdt->close_on_exec, copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG); bitmap_copy_and_extend(nfdt->full_fds_bits, ofdt->full_fds_bits, copy_words, nwords); } /* * Copy all file descriptors from the old table to the new, expanded table and * clear the extra space. Called with the files spinlock held for write. */ static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) { size_t cpy, set; BUG_ON(nfdt->max_fds < ofdt->max_fds); cpy = ofdt->max_fds * sizeof(struct file *); set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); memcpy(nfdt->fd, ofdt->fd, cpy); memset((char *)nfdt->fd + cpy, 0, set); copy_fd_bitmaps(nfdt, ofdt, fdt_words(ofdt)); } /* * Note how the fdtable bitmap allocations very much have to be a multiple of * BITS_PER_LONG. This is not only because we walk those things in chunks of * 'unsigned long' in some places, but simply because that is how the Linux * kernel bitmaps are defined to work: they are not "bits in an array of bytes", * they are very much "bits in an array of unsigned long". * * The ALIGN(nr, BITS_PER_LONG) here is for clarity: since we just multiplied * by that "1024/sizeof(ptr)" before, we already know there are sufficient * clear low bits. Clang seems to realize that, gcc ends up being confused. * * On a 128-bit machine, the ALIGN() would actually matter. In the meantime, * let's consider it documentation (and maybe a test-case for gcc to improve * its code generation ;) */ static struct fdtable * alloc_fdtable(unsigned int nr) { struct fdtable *fdt; void *data; /* * Figure out how many fds we actually want to support in this fdtable. * Allocation steps are keyed to the size of the fdarray, since it * grows far faster than any of the other dynamic data. We try to fit * the fdarray into comfortable page-tuned chunks: starting at 1024B * and growing in powers of two from there on. */ nr /= (1024 / sizeof(struct file *)); nr = roundup_pow_of_two(nr + 1); nr *= (1024 / sizeof(struct file *)); nr = ALIGN(nr, BITS_PER_LONG); /* * Note that this can drive nr *below* what we had passed if sysctl_nr_open * had been set lower between the check in expand_files() and here. Deal * with that in caller, it's cheaper that way. * * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise * bitmaps handling below becomes unpleasant, to put it mildly... */ if (unlikely(nr > sysctl_nr_open)) nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1; fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT); if (!fdt) goto out; fdt->max_fds = nr; data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT); if (!data) goto out_fdt; fdt->fd = data; data = kvmalloc(max_t(size_t, 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES), GFP_KERNEL_ACCOUNT); if (!data) goto out_arr; fdt->open_fds = data; data += nr / BITS_PER_BYTE; fdt->close_on_exec = data; data += nr / BITS_PER_BYTE; fdt->full_fds_bits = data; return fdt; out_arr: kvfree(fdt->fd); out_fdt: kfree(fdt); out: return NULL; } /* * Expand the file descriptor table. * This function will allocate a new fdtable and both fd array and fdset, of * the given size. * Return <0 error code on error; 1 on successful completion. * The files->file_lock should be held on entry, and will be held on exit. */ static int expand_fdtable(struct files_struct *files, unsigned int nr) __releases(files->file_lock) __acquires(files->file_lock) { struct fdtable *new_fdt, *cur_fdt; spin_unlock(&files->file_lock); new_fdt = alloc_fdtable(nr); /* make sure all fd_install() have seen resize_in_progress * or have finished their rcu_read_lock_sched() section. */ if (atomic_read(&files->count) > 1) synchronize_rcu(); spin_lock(&files->file_lock); if (!new_fdt) return -ENOMEM; /* * extremely unlikely race - sysctl_nr_open decreased between the check in * caller and alloc_fdtable(). Cheaper to catch it here... */ if (unlikely(new_fdt->max_fds <= nr)) { __free_fdtable(new_fdt); return -EMFILE; } cur_fdt = files_fdtable(files); BUG_ON(nr < cur_fdt->max_fds); copy_fdtable(new_fdt, cur_fdt); rcu_assign_pointer(files->fdt, new_fdt); if (cur_fdt != &files->fdtab) call_rcu(&cur_fdt->rcu, free_fdtable_rcu); /* coupled with smp_rmb() in fd_install() */ smp_wmb(); return 1; } /* * Expand files. * This function will expand the file structures, if the requested size exceeds * the current capacity and there is room for expansion. * Return <0 error code on error; 0 when nothing done; 1 when files were * expanded and execution may have blocked. * The files->file_lock should be held on entry, and will be held on exit. */ static int expand_files(struct files_struct *files, unsigned int nr) __releases(files->file_lock) __acquires(files->file_lock) { struct fdtable *fdt; int expanded = 0; repeat: fdt = files_fdtable(files); /* Do we need to expand? */ if (nr < fdt->max_fds) return expanded; /* Can we expand? */ if (nr >= sysctl_nr_open) return -EMFILE; if (unlikely(files->resize_in_progress)) { spin_unlock(&files->file_lock); expanded = 1; wait_event(files->resize_wait, !files->resize_in_progress); spin_lock(&files->file_lock); goto repeat; } /* All good, so we try */ files->resize_in_progress = true; expanded = expand_fdtable(files, nr); files->resize_in_progress = false; wake_up_all(&files->resize_wait); return expanded; } static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt) { __set_bit(fd, fdt->close_on_exec); } static inline void __clear_close_on_exec(unsigned int fd, struct fdtable *fdt) { if (test_bit(fd, fdt->close_on_exec)) __clear_bit(fd, fdt->close_on_exec); } static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt) { __set_bit(fd, fdt->open_fds); fd /= BITS_PER_LONG; if (!~fdt->open_fds[fd]) __set_bit(fd, fdt->full_fds_bits); } static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt) { __clear_bit(fd, fdt->open_fds); __clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits); } static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt) { return test_bit(fd, fdt->open_fds); } static unsigned int count_open_files(struct fdtable *fdt) { unsigned int size = fdt->max_fds; unsigned int i; /* Find the last open fd */ for (i = size / BITS_PER_LONG; i > 0; ) { if (fdt->open_fds[--i]) break; } i = (i + 1) * BITS_PER_LONG; return i; } /* * Note that a sane fdtable size always has to be a multiple of * BITS_PER_LONG, since we have bitmaps that are sized by this. * * 'max_fds' will normally already be properly aligned, but it * turns out that in the close_range() -> __close_range() -> * unshare_fd() -> dup_fd() -> sane_fdtable_size() we can end * up having a 'max_fds' value that isn't already aligned. * * Rather than make close_range() have to worry about this, * just make that BITS_PER_LONG alignment be part of a sane * fdtable size. Becuase that's really what it is. */ static unsigned int sane_fdtable_size(struct fdtable *fdt, unsigned int max_fds) { unsigned int count; count = count_open_files(fdt); if (max_fds < NR_OPEN_DEFAULT) max_fds = NR_OPEN_DEFAULT; return ALIGN(min(count, max_fds), BITS_PER_LONG); } /* * Allocate a new files structure and copy contents from the * passed in files structure. * errorp will be valid only when the returned files_struct is NULL. */ struct files_struct *dup_fd(struct files_struct *oldf, unsigned int max_fds, int *errorp) { struct files_struct *newf; struct file **old_fds, **new_fds; unsigned int open_files, i; struct fdtable *old_fdt, *new_fdt; *errorp = -ENOMEM; newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); if (!newf) goto out; atomic_set(&newf->count, 1); spin_lock_init(&newf->file_lock); newf->resize_in_progress = false; init_waitqueue_head(&newf->resize_wait); newf->next_fd = 0; new_fdt = &newf->fdtab; new_fdt->max_fds = NR_OPEN_DEFAULT; new_fdt->close_on_exec = newf->close_on_exec_init; new_fdt->open_fds = newf->open_fds_init; new_fdt->full_fds_bits = newf->full_fds_bits_init; new_fdt->fd = &newf->fd_array[0]; spin_lock(&oldf->file_lock); old_fdt = files_fdtable(oldf); open_files = sane_fdtable_size(old_fdt, max_fds); /* * Check whether we need to allocate a larger fd array and fd set. */ while (unlikely(open_files > new_fdt->max_fds)) { spin_unlock(&oldf->file_lock); if (new_fdt != &newf->fdtab) __free_fdtable(new_fdt); new_fdt = alloc_fdtable(open_files - 1); if (!new_fdt) { *errorp = -ENOMEM; goto out_release; } /* beyond sysctl_nr_open; nothing to do */ if (unlikely(new_fdt->max_fds < open_files)) { __free_fdtable(new_fdt); *errorp = -EMFILE; goto out_release; } /* * Reacquire the oldf lock and a pointer to its fd table * who knows it may have a new bigger fd table. We need * the latest pointer. */ spin_lock(&oldf->file_lock); old_fdt = files_fdtable(oldf); open_files = sane_fdtable_size(old_fdt, max_fds); } copy_fd_bitmaps(new_fdt, old_fdt, open_files / BITS_PER_LONG); old_fds = old_fdt->fd; new_fds = new_fdt->fd; for (i = open_files; i != 0; i--) { struct file *f = *old_fds++; if (f) { get_file(f); } else { /* * The fd may be claimed in the fd bitmap but not yet * instantiated in the files array if a sibling thread * is partway through open(). So make sure that this * fd is available to the new process. */ __clear_open_fd(open_files - i, new_fdt); } rcu_assign_pointer(*new_fds++, f); } spin_unlock(&oldf->file_lock); /* clear the remainder */ memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *)); rcu_assign_pointer(newf->fdt, new_fdt); return newf; out_release: kmem_cache_free(files_cachep, newf); out: return NULL; } static struct fdtable *close_files(struct files_struct * files) { /* * It is safe to dereference the fd table without RCU or * ->file_lock because this is the last reference to the * files structure. */ struct fdtable *fdt = rcu_dereference_raw(files->fdt); unsigned int i, j = 0; for (;;) { unsigned long set; i = j * BITS_PER_LONG; if (i >= fdt->max_fds) break; set = fdt->open_fds[j++]; while (set) { if (set & 1) { struct file * file = xchg(&fdt->fd[i], NULL); if (file) { filp_close(file, files); cond_resched(); } } i++; set >>= 1; } } return fdt; } void put_files_struct(struct files_struct *files) { if (atomic_dec_and_test(&files->count)) { struct fdtable *fdt = close_files(files); /* free the arrays if they are not embedded */ if (fdt != &files->fdtab) __free_fdtable(fdt); kmem_cache_free(files_cachep, files); } } void exit_files(struct task_struct *tsk) { struct files_struct * files = tsk->files; if (files) { task_lock(tsk); tsk->files = NULL; task_unlock(tsk); put_files_struct(files); } } struct files_struct init_files = { .count = ATOMIC_INIT(1), .fdt = &init_files.fdtab, .fdtab = { .max_fds = NR_OPEN_DEFAULT, .fd = &init_files.fd_array[0], .close_on_exec = init_files.close_on_exec_init, .open_fds = init_files.open_fds_init, .full_fds_bits = init_files.full_fds_bits_init, }, .file_lock = __SPIN_LOCK_UNLOCKED(init_files.file_lock), .resize_wait = __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait), }; static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start) { unsigned int maxfd = fdt->max_fds; /* always multiple of BITS_PER_LONG */ unsigned int maxbit = maxfd / BITS_PER_LONG; unsigned int bitbit = start / BITS_PER_LONG; bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG; if (bitbit >= maxfd) return maxfd; if (bitbit > start) start = bitbit; return find_next_zero_bit(fdt->open_fds, maxfd, start); } /* * allocate a file descriptor, mark it busy. */ static int alloc_fd(unsigned start, unsigned end, unsigned flags) { struct files_struct *files = current->files; unsigned int fd; int error; struct fdtable *fdt; spin_lock(&files->file_lock); repeat: fdt = files_fdtable(files); fd = start; if (fd < files->next_fd) fd = files->next_fd; if (fd < fdt->max_fds) fd = find_next_fd(fdt, fd); /* * N.B. For clone tasks sharing a files structure, this test * will limit the total number of files that can be opened. */ error = -EMFILE; if (fd >= end) goto out; error = expand_files(files, fd); if (error < 0) goto out; /* * If we needed to expand the fs array we * might have blocked - try again. */ if (error) goto repeat; if (start <= files->next_fd) files->next_fd = fd + 1; __set_open_fd(fd, fdt); if (flags & O_CLOEXEC) __set_close_on_exec(fd, fdt); else __clear_close_on_exec(fd, fdt); error = fd; #if 1 /* Sanity check */ if (rcu_access_pointer(fdt->fd[fd]) != NULL) { printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd); rcu_assign_pointer(fdt->fd[fd], NULL); } #endif out: spin_unlock(&files->file_lock); return error; } int __get_unused_fd_flags(unsigned flags, unsigned long nofile) { return alloc_fd(0, nofile, flags); } int get_unused_fd_flags(unsigned flags) { return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE)); } EXPORT_SYMBOL(get_unused_fd_flags); static void __put_unused_fd(struct files_struct *files, unsigned int fd) { struct fdtable *fdt = files_fdtable(files); __clear_open_fd(fd, fdt); if (fd < files->next_fd) files->next_fd = fd; } void put_unused_fd(unsigned int fd) { struct files_struct *files = current->files; spin_lock(&files->file_lock); __put_unused_fd(files, fd); spin_unlock(&files->file_lock); } EXPORT_SYMBOL(put_unused_fd); /* * Install a file pointer in the fd array. * * The VFS is full of places where we drop the files lock between * setting the open_fds bitmap and installing the file in the file * array. At any such point, we are vulnerable to a dup2() race * installing a file in the array before us. We need to detect this and * fput() the struct file we are about to overwrite in this case. * * It should never happen - if we allow dup2() do it, _really_ bad things * will follow. * * This consumes the "file" refcount, so callers should treat it * as if they had called fput(file). */ void fd_install(unsigned int fd, struct file *file) { struct files_struct *files = current->files; struct fdtable *fdt; if (WARN_ON_ONCE(unlikely(file->f_mode & FMODE_BACKING))) return; rcu_read_lock_sched(); if (unlikely(files->resize_in_progress)) { rcu_read_unlock_sched(); spin_lock(&files->file_lock); fdt = files_fdtable(files); BUG_ON(fdt->fd[fd] != NULL); rcu_assign_pointer(fdt->fd[fd], file); spin_unlock(&files->file_lock); return; } /* coupled with smp_wmb() in expand_fdtable() */ smp_rmb(); fdt = rcu_dereference_sched(files->fdt); BUG_ON(fdt->fd[fd] != NULL); rcu_assign_pointer(fdt->fd[fd], file); rcu_read_unlock_sched(); } EXPORT_SYMBOL(fd_install); /** * file_close_fd_locked - return file associated with fd * @files: file struct to retrieve file from * @fd: file descriptor to retrieve file for * * Doesn't take a separate reference count. * * Context: files_lock must be held. * * Returns: The file associated with @fd (NULL if @fd is not open) */ struct file *file_close_fd_locked(struct files_struct *files, unsigned fd) { struct fdtable *fdt = files_fdtable(files); struct file *file; lockdep_assert_held(&files->file_lock); if (fd >= fdt->max_fds) return NULL; fd = array_index_nospec(fd, fdt->max_fds); file = fdt->fd[fd]; if (file) { rcu_assign_pointer(fdt->fd[fd], NULL); __put_unused_fd(files, fd); } return file; } int close_fd(unsigned fd) { struct files_struct *files = current->files; struct file *file; spin_lock(&files->file_lock); file = file_close_fd_locked(files, fd); spin_unlock(&files->file_lock); if (!file) return -EBADF; return filp_close(file, files); } EXPORT_SYMBOL(close_fd); /* for ksys_close() */ /** * last_fd - return last valid index into fd table * @fdt: File descriptor table. * * Context: Either rcu read lock or files_lock must be held. * * Returns: Last valid index into fdtable. */ static inline unsigned last_fd(struct fdtable *fdt) { return fdt->max_fds - 1; } static inline void __range_cloexec(struct files_struct *cur_fds, unsigned int fd, unsigned int max_fd) { struct fdtable *fdt; /* make sure we're using the correct maximum value */ spin_lock(&cur_fds->file_lock); fdt = files_fdtable(cur_fds); max_fd = min(last_fd(fdt), max_fd); if (fd <= max_fd) bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1); spin_unlock(&cur_fds->file_lock); } static inline void __range_close(struct files_struct *files, unsigned int fd, unsigned int max_fd) { struct file *file; unsigned n; spin_lock(&files->file_lock); n = last_fd(files_fdtable(files)); max_fd = min(max_fd, n); for (; fd <= max_fd; fd++) { file = file_close_fd_locked(files, fd); if (file) { spin_unlock(&files->file_lock); filp_close(file, files); cond_resched(); spin_lock(&files->file_lock); } else if (need_resched()) { spin_unlock(&files->file_lock); cond_resched(); spin_lock(&files->file_lock); } } spin_unlock(&files->file_lock); } /** * __close_range() - Close all file descriptors in a given range. * * @fd: starting file descriptor to close * @max_fd: last file descriptor to close * @flags: CLOSE_RANGE flags. * * This closes a range of file descriptors. All file descriptors * from @fd up to and including @max_fd are closed. */ int __close_range(unsigned fd, unsigned max_fd, unsigned int flags) { struct task_struct *me = current; struct files_struct *cur_fds = me->files, *fds = NULL; if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC)) return -EINVAL; if (fd > max_fd) return -EINVAL; if (flags & CLOSE_RANGE_UNSHARE) { int ret; unsigned int max_unshare_fds = NR_OPEN_MAX; /* * If the caller requested all fds to be made cloexec we always * copy all of the file descriptors since they still want to * use them. */ if (!(flags & CLOSE_RANGE_CLOEXEC)) { /* * If the requested range is greater than the current * maximum, we're closing everything so only copy all * file descriptors beneath the lowest file descriptor. */ rcu_read_lock(); if (max_fd >= last_fd(files_fdtable(cur_fds))) max_unshare_fds = fd; rcu_read_unlock(); } ret = unshare_fd(CLONE_FILES, max_unshare_fds, &fds); if (ret) return ret; /* * We used to share our file descriptor table, and have now * created a private one, make sure we're using it below. */ if (fds) swap(cur_fds, fds); } if (flags & CLOSE_RANGE_CLOEXEC) __range_cloexec(cur_fds, fd, max_fd); else __range_close(cur_fds, fd, max_fd); if (fds) { /* * We're done closing the files we were supposed to. Time to install * the new file descriptor table and drop the old one. */ task_lock(me); me->files = cur_fds; task_unlock(me); put_files_struct(fds); } return 0; } /** * file_close_fd - return file associated with fd * @fd: file descriptor to retrieve file for * * Doesn't take a separate reference count. * * Returns: The file associated with @fd (NULL if @fd is not open) */ struct file *file_close_fd(unsigned int fd) { struct files_struct *files = current->files; struct file *file; spin_lock(&files->file_lock); file = file_close_fd_locked(files, fd); spin_unlock(&files->file_lock); return file; } void do_close_on_exec(struct files_struct *files) { unsigned i; struct fdtable *fdt; /* exec unshares first */ spin_lock(&files->file_lock); for (i = 0; ; i++) { unsigned long set; unsigned fd = i * BITS_PER_LONG; fdt = files_fdtable(files); if (fd >= fdt->max_fds) break; set = fdt->close_on_exec[i]; if (!set) continue; fdt->close_on_exec[i] = 0; for ( ; set ; fd++, set >>= 1) { struct file *file; if (!(set & 1)) continue; file = fdt->fd[fd]; if (!file) continue; rcu_assign_pointer(fdt->fd[fd], NULL); __put_unused_fd(files, fd); spin_unlock(&files->file_lock); filp_close(file, files); cond_resched(); spin_lock(&files->file_lock); } } spin_unlock(&files->file_lock); } static struct file *__get_file_rcu(struct file __rcu **f) { struct file __rcu *file; struct file __rcu *file_reloaded; struct file __rcu *file_reloaded_cmp; file = rcu_dereference_raw(*f); if (!file) return NULL; if (unlikely(!atomic_long_inc_not_zero(&file->f_count))) return ERR_PTR(-EAGAIN); file_reloaded = rcu_dereference_raw(*f); /* * Ensure that all accesses have a dependency on the load from * rcu_dereference_raw() above so we get correct ordering * between reuse/allocation and the pointer check below. */ file_reloaded_cmp = file_reloaded; OPTIMIZER_HIDE_VAR(file_reloaded_cmp); /* * atomic_long_inc_not_zero() above provided a full memory * barrier when we acquired a reference. * * This is paired with the write barrier from assigning to the * __rcu protected file pointer so that if that pointer still * matches the current file, we know we have successfully * acquired a reference to the right file. * * If the pointers don't match the file has been reallocated by * SLAB_TYPESAFE_BY_RCU. */ if (file == file_reloaded_cmp) return file_reloaded; fput(file); return ERR_PTR(-EAGAIN); } /** * get_file_rcu - try go get a reference to a file under rcu * @f: the file to get a reference on * * This function tries to get a reference on @f carefully verifying that * @f hasn't been reused. * * This function should rarely have to be used and only by users who * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it. * * Return: Returns @f with the reference count increased or NULL. */ struct file *get_file_rcu(struct file __rcu **f) { for (;;) { struct file __rcu *file; file = __get_file_rcu(f); if (!IS_ERR(file)) return file; } } EXPORT_SYMBOL_GPL(get_file_rcu); /** * get_file_active - try go get a reference to a file * @f: the file to get a reference on * * In contast to get_file_rcu() the pointer itself isn't part of the * reference counting. * * This function should rarely have to be used and only by users who * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it. * * Return: Returns @f with the reference count increased or NULL. */ struct file *get_file_active(struct file **f) { struct file __rcu *file; rcu_read_lock(); file = __get_file_rcu(f); rcu_read_unlock(); if (IS_ERR(file)) file = NULL; return file; } EXPORT_SYMBOL_GPL(get_file_active); static inline struct file *__fget_files_rcu(struct files_struct *files, unsigned int fd, fmode_t mask) { for (;;) { struct file *file; struct fdtable *fdt = rcu_dereference_raw(files->fdt); struct file __rcu **fdentry; unsigned long nospec_mask; /* Mask is a 0 for invalid fd's, ~0 for valid ones */ nospec_mask = array_index_mask_nospec(fd, fdt->max_fds); /* * fdentry points to the 'fd' offset, or fdt->fd[0]. * Loading from fdt->fd[0] is always safe, because the * array always exists. */ fdentry = fdt->fd + (fd & nospec_mask); /* Do the load, then mask any invalid result */ file = rcu_dereference_raw(*fdentry); file = (void *)(nospec_mask & (unsigned long)file); if (unlikely(!file)) return NULL; /* * Ok, we have a file pointer that was valid at * some point, but it might have become stale since. * * We need to confirm it by incrementing the refcount * and then check the lookup again. * * atomic_long_inc_not_zero() gives us a full memory * barrier. We only really need an 'acquire' one to * protect the loads below, but we don't have that. */ if (unlikely(!atomic_long_inc_not_zero(&file->f_count))) continue; /* * Such a race can take two forms: * * (a) the file ref already went down to zero and the * file hasn't been reused yet or the file count * isn't zero but the file has already been reused. * * (b) the file table entry has changed under us. * Note that we don't need to re-check the 'fdt->fd' * pointer having changed, because it always goes * hand-in-hand with 'fdt'. * * If so, we need to put our ref and try again. */ if (unlikely(file != rcu_dereference_raw(*fdentry)) || unlikely(rcu_dereference_raw(files->fdt) != fdt)) { fput(file); continue; } /* * This isn't the file we're looking for or we're not * allowed to get a reference to it. */ if (unlikely(file->f_mode & mask)) { fput(file); return NULL; } /* * Ok, we have a ref to the file, and checked that it * still exists. */ return file; } } static struct file *__fget_files(struct files_struct *files, unsigned int fd, fmode_t mask) { struct file *file; rcu_read_lock(); file = __fget_files_rcu(files, fd, mask); rcu_read_unlock(); return file; } static inline struct file *__fget(unsigned int fd, fmode_t mask) { return __fget_files(current->files, fd, mask); } struct file *fget(unsigned int fd) { return __fget(fd, FMODE_PATH); } EXPORT_SYMBOL(fget); struct file *fget_raw(unsigned int fd) { return __fget(fd, 0); } EXPORT_SYMBOL(fget_raw); struct file *fget_task(struct task_struct *task, unsigned int fd) { struct file *file = NULL; task_lock(task); if (task->files) file = __fget_files(task->files, fd, 0); task_unlock(task); return file; } struct file *lookup_fdget_rcu(unsigned int fd) { return __fget_files_rcu(current->files, fd, 0); } EXPORT_SYMBOL_GPL(lookup_fdget_rcu); struct file *task_lookup_fdget_rcu(struct task_struct *task, unsigned int fd) { /* Must be called with rcu_read_lock held */ struct files_struct *files; struct file *file = NULL; task_lock(task); files = task->files; if (files) file = __fget_files_rcu(files, fd, 0); task_unlock(task); return file; } struct file *task_lookup_next_fdget_rcu(struct task_struct *task, unsigned int *ret_fd) { /* Must be called with rcu_read_lock held */ struct files_struct *files; unsigned int fd = *ret_fd; struct file *file = NULL; task_lock(task); files = task->files; if (files) { for (; fd < files_fdtable(files)->max_fds; fd++) { file = __fget_files_rcu(files, fd, 0); if (file) break; } } task_unlock(task); *ret_fd = fd; return file; } EXPORT_SYMBOL(task_lookup_next_fdget_rcu); /* * Lightweight file lookup - no refcnt increment if fd table isn't shared. * * You can use this instead of fget if you satisfy all of the following * conditions: * 1) You must call fput_light before exiting the syscall and returning control * to userspace (i.e. you cannot remember the returned struct file * after * returning to userspace). * 2) You must not call filp_close on the returned struct file * in between * calls to fget_light and fput_light. * 3) You must not clone the current task in between the calls to fget_light * and fput_light. * * The fput_needed flag returned by fget_light should be passed to the * corresponding fput_light. */ static unsigned long __fget_light(unsigned int fd, fmode_t mask) { struct files_struct *files = current->files; struct file *file; /* * If another thread is concurrently calling close_fd() followed * by put_files_struct(), we must not observe the old table * entry combined with the new refcount - otherwise we could * return a file that is concurrently being freed. * * atomic_read_acquire() pairs with atomic_dec_and_test() in * put_files_struct(). */ if (likely(atomic_read_acquire(&files->count) == 1)) { file = files_lookup_fd_raw(files, fd); if (!file || unlikely(file->f_mode & mask)) return 0; return (unsigned long)file; } else { file = __fget_files(files, fd, mask); if (!file) return 0; return FDPUT_FPUT | (unsigned long)file; } } unsigned long __fdget(unsigned int fd) { return __fget_light(fd, FMODE_PATH); } EXPORT_SYMBOL(__fdget); unsigned long __fdget_raw(unsigned int fd) { return __fget_light(fd, 0); } /* * Try to avoid f_pos locking. We only need it if the * file is marked for FMODE_ATOMIC_POS, and it can be * accessed multiple ways. * * Always do it for directories, because pidfd_getfd() * can make a file accessible even if it otherwise would * not be, and for directories this is a correctness * issue, not a "POSIX requirement". */ static inline bool file_needs_f_pos_lock(struct file *file) { return (file->f_mode & FMODE_ATOMIC_POS) && (file_count(file) > 1 || file->f_op->iterate_shared); } unsigned long __fdget_pos(unsigned int fd) { unsigned long v = __fdget(fd); struct file *file = (struct file *)(v & ~3); if (file && file_needs_f_pos_lock(file)) { v |= FDPUT_POS_UNLOCK; mutex_lock(&file->f_pos_lock); } return v; } void __f_unlock_pos(struct file *f) { mutex_unlock(&f->f_pos_lock); } /* * We only lock f_pos if we have threads or if the file might be * shared with another process. In both cases we'll have an elevated * file count (done either by fdget() or by fork()). */ void set_close_on_exec(unsigned int fd, int flag) { struct files_struct *files = current->files; struct fdtable *fdt; spin_lock(&files->file_lock); fdt = files_fdtable(files); if (flag) __set_close_on_exec(fd, fdt); else __clear_close_on_exec(fd, fdt); spin_unlock(&files->file_lock); } bool get_close_on_exec(unsigned int fd) { bool res; rcu_read_lock(); res = close_on_exec(fd, current->files); rcu_read_unlock(); return res; } static int do_dup2(struct files_struct *files, struct file *file, unsigned fd, unsigned flags) __releases(&files->file_lock) { struct file *tofree; struct fdtable *fdt; /* * We need to detect attempts to do dup2() over allocated but still * not finished descriptor. NB: OpenBSD avoids that at the price of * extra work in their equivalent of fget() - they insert struct * file immediately after grabbing descriptor, mark it larval if * more work (e.g. actual opening) is needed and make sure that * fget() treats larval files as absent. Potentially interesting, * but while extra work in fget() is trivial, locking implications * and amount of surgery on open()-related paths in VFS are not. * FreeBSD fails with -EBADF in the same situation, NetBSD "solution" * deadlocks in rather amusing ways, AFAICS. All of that is out of * scope of POSIX or SUS, since neither considers shared descriptor * tables and this condition does not arise without those. */ fdt = files_fdtable(files); fd = array_index_nospec(fd, fdt->max_fds); tofree = fdt->fd[fd]; if (!tofree && fd_is_open(fd, fdt)) goto Ebusy; get_file(file); rcu_assign_pointer(fdt->fd[fd], file); __set_open_fd(fd, fdt); if (flags & O_CLOEXEC) __set_close_on_exec(fd, fdt); else __clear_close_on_exec(fd, fdt); spin_unlock(&files->file_lock); if (tofree) filp_close(tofree, files); return fd; Ebusy: spin_unlock(&files->file_lock); return -EBUSY; } int replace_fd(unsigned fd, struct file *file, unsigned flags) { int err; struct files_struct *files = current->files; if (!file) return close_fd(fd); if (fd >= rlimit(RLIMIT_NOFILE)) return -EBADF; spin_lock(&files->file_lock); err = expand_files(files, fd); if (unlikely(err < 0)) goto out_unlock; return do_dup2(files, file, fd, flags); out_unlock: spin_unlock(&files->file_lock); return err; } /** * receive_fd() - Install received file into file descriptor table * @file: struct file that was received from another process * @ufd: __user pointer to write new fd number to * @o_flags: the O_* flags to apply to the new fd entry * * Installs a received file into the file descriptor table, with appropriate * checks and count updates. Optionally writes the fd number to userspace, if * @ufd is non-NULL. * * This helper handles its own reference counting of the incoming * struct file. * * Returns newly install fd or -ve on error. */ int receive_fd(struct file *file, int __user *ufd, unsigned int o_flags) { int new_fd; int error; error = security_file_receive(file); if (error) return error; new_fd = get_unused_fd_flags(o_flags); if (new_fd < 0) return new_fd; if (ufd) { error = put_user(new_fd, ufd); if (error) { put_unused_fd(new_fd); return error; } } fd_install(new_fd, get_file(file)); __receive_sock(file); return new_fd; } EXPORT_SYMBOL_GPL(receive_fd); int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags) { int error; error = security_file_receive(file); if (error) return error; error = replace_fd(new_fd, file, o_flags); if (error) return error; __receive_sock(file); return new_fd; } static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags) { int err = -EBADF; struct file *file; struct files_struct *files = current->files; if ((flags & ~O_CLOEXEC) != 0) return -EINVAL; if (unlikely(oldfd == newfd)) return -EINVAL; if (newfd >= rlimit(RLIMIT_NOFILE)) return -EBADF; spin_lock(&files->file_lock); err = expand_files(files, newfd); file = files_lookup_fd_locked(files, oldfd); if (unlikely(!file)) goto Ebadf; if (unlikely(err < 0)) { if (err == -EMFILE) goto Ebadf; goto out_unlock; } return do_dup2(files, file, newfd, flags); Ebadf: err = -EBADF; out_unlock: spin_unlock(&files->file_lock); return err; } SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags) { return ksys_dup3(oldfd, newfd, flags); } SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd) { if (unlikely(newfd == oldfd)) { /* corner case */ struct files_struct *files = current->files; struct file *f; int retval = oldfd; rcu_read_lock(); f = __fget_files_rcu(files, oldfd, 0); if (!f) retval = -EBADF; rcu_read_unlock(); if (f) fput(f); return retval; } return ksys_dup3(oldfd, newfd, 0); } SYSCALL_DEFINE1(dup, unsigned int, fildes) { int ret = -EBADF; struct file *file = fget_raw(fildes); if (file) { ret = get_unused_fd_flags(0); if (ret >= 0) fd_install(ret, file); else fput(file); } return ret; } int f_dupfd(unsigned int from, struct file *file, unsigned flags) { unsigned long nofile = rlimit(RLIMIT_NOFILE); int err; if (from >= nofile) return -EINVAL; err = alloc_fd(from, nofile, flags); if (err >= 0) { get_file(file); fd_install(err, file); } return err; } int iterate_fd(struct files_struct *files, unsigned n, int (*f)(const void *, struct file *, unsigned), const void *p) { struct fdtable *fdt; int res = 0; if (!files) return 0; spin_lock(&files->file_lock); for (fdt = files_fdtable(files); n < fdt->max_fds; n++) { struct file *file; file = rcu_dereference_check_fdtable(files, fdt->fd[n]); if (!file) continue; res = f(p, file, n); if (res) break; } spin_unlock(&files->file_lock); return res; } EXPORT_SYMBOL(iterate_fd);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1