Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Al Viro | 1043 | 11.03% | 39 | 7.98% |
Linus Torvalds (pre-git) | 964 | 10.19% | 73 | 14.93% |
David Chinner | 823 | 8.70% | 24 | 4.91% |
Andrew Morton | 477 | 5.04% | 33 | 6.75% |
Christoph Hellwig | 462 | 4.88% | 25 | 5.11% |
Miklos Szeredi | 386 | 4.08% | 8 | 1.64% |
Jeff Layton | 295 | 3.12% | 13 | 2.66% |
David Howells | 294 | 3.11% | 7 | 1.43% |
Linus Torvalds | 291 | 3.08% | 14 | 2.86% |
Mateusz Guzik | 290 | 3.07% | 3 | 0.61% |
Jan Kara | 272 | 2.88% | 20 | 4.09% |
Jan Harkes | 253 | 2.67% | 5 | 1.02% |
Nicholas Piggin | 253 | 2.67% | 9 | 1.84% |
Theodore Y. Ts'o | 246 | 2.60% | 4 | 0.82% |
Stefan Roesch | 215 | 2.27% | 4 | 0.82% |
Zhihao Cheng | 187 | 1.98% | 1 | 0.20% |
Deepa Dinamani | 184 | 1.95% | 6 | 1.23% |
Andi Kleen | 157 | 1.66% | 6 | 1.23% |
Jean Noel Cordenner | 150 | 1.59% | 1 | 0.20% |
Eric Dumazet | 128 | 1.35% | 7 | 1.43% |
Christian Brauner | 122 | 1.29% | 19 | 3.89% |
Peter Zijlstra | 99 | 1.05% | 4 | 0.82% |
Vlastimil Babka | 97 | 1.03% | 1 | 0.20% |
Luis R. Rodriguez | 93 | 0.98% | 1 | 0.20% |
Américo Wang | 93 | 0.98% | 1 | 0.20% |
Arnaldo Carvalho de Melo | 92 | 0.97% | 1 | 0.20% |
Josef Bacik | 86 | 0.91% | 2 | 0.41% |
Johannes Weiner | 83 | 0.88% | 4 | 0.82% |
Matthew Garrett | 83 | 0.88% | 1 | 0.20% |
Dmitriy Monakhov | 75 | 0.79% | 1 | 0.20% |
Neil Brown | 73 | 0.77% | 1 | 0.20% |
Matthew Wilcox | 67 | 0.71% | 8 | 1.64% |
J. Bruce Fields | 60 | 0.63% | 5 | 1.02% |
Yang Xu | 58 | 0.61% | 1 | 0.20% |
Amir Goldstein | 50 | 0.53% | 2 | 0.41% |
Serge E. Hallyn | 48 | 0.51% | 2 | 0.41% |
Nadia Yvette Chambers | 41 | 0.43% | 2 | 0.41% |
Eric Paris | 32 | 0.34% | 3 | 0.61% |
Brian Gerst | 31 | 0.33% | 1 | 0.20% |
Eric W. Biedermann | 30 | 0.32% | 4 | 0.82% |
Carlos Maiolino | 28 | 0.30% | 2 | 0.41% |
Michal Hocko | 27 | 0.29% | 1 | 0.20% |
Tahsin Erdogan | 23 | 0.24% | 1 | 0.20% |
Andreas Gruenbacher | 23 | 0.24% | 3 | 0.61% |
Eric Sandeen | 21 | 0.22% | 1 | 0.20% |
Anton Altaparmakov | 21 | 0.22% | 2 | 0.41% |
Brent Casavant | 20 | 0.21% | 2 | 0.41% |
Eric Biggers | 20 | 0.21% | 2 | 0.41% |
Vladimir Davydov | 18 | 0.19% | 3 | 0.61% |
Jens Axboe | 17 | 0.18% | 3 | 0.61% |
Artem B. Bityutskiy | 17 | 0.18% | 1 | 0.20% |
Andrew Lutomirski | 17 | 0.18% | 1 | 0.20% |
Mimi Zohar | 15 | 0.16% | 1 | 0.20% |
David Herrmann | 15 | 0.16% | 1 | 0.20% |
Glauber de Oliveira Costa | 14 | 0.15% | 2 | 0.41% |
Josef Whiter | 14 | 0.15% | 2 | 0.41% |
Trond Myklebust | 14 | 0.15% | 2 | 0.41% |
Manish Katiyar | 13 | 0.14% | 2 | 0.41% |
Josh Boyer | 12 | 0.13% | 1 | 0.20% |
Valerie Henson | 12 | 0.13% | 1 | 0.20% |
Baolin Wang | 12 | 0.13% | 1 | 0.20% |
Akira Fujita | 12 | 0.13% | 1 | 0.20% |
Darrick J. Wong | 12 | 0.13% | 3 | 0.61% |
Sebastian Andrzej Siewior | 11 | 0.12% | 1 | 0.20% |
Ingo Molnar | 10 | 0.11% | 2 | 0.41% |
Christoph Lameter | 10 | 0.11% | 4 | 0.82% |
Song Liu | 10 | 0.11% | 1 | 0.20% |
Dongliang Mu | 10 | 0.11% | 1 | 0.20% |
Hao Li | 9 | 0.10% | 1 | 0.20% |
Hideaki Yoshifuji / 吉藤英明 | 9 | 0.10% | 2 | 0.41% |
Dave Hansen | 9 | 0.10% | 2 | 0.41% |
Arnd Bergmann | 9 | 0.10% | 2 | 0.41% |
Matthias Kaehlcke | 8 | 0.08% | 1 | 0.20% |
Kent Overstreet | 8 | 0.08% | 1 | 0.20% |
Alexander Lochmann | 8 | 0.08% | 1 | 0.20% |
Arjan van de Ven | 7 | 0.07% | 2 | 0.41% |
Ryusuke Konishi | 7 | 0.07% | 2 | 0.41% |
gehao | 6 | 0.06% | 1 | 0.20% |
Ralph Campbell | 6 | 0.06% | 1 | 0.20% |
Eric Van Hensbergen | 6 | 0.06% | 1 | 0.20% |
Mel Gorman | 6 | 0.06% | 1 | 0.20% |
Youling Tang | 5 | 0.05% | 1 | 0.20% |
Greg Kroah-Hartman | 5 | 0.05% | 2 | 0.41% |
Sasha Levin | 5 | 0.05% | 2 | 0.41% |
Tejun Heo | 5 | 0.05% | 1 | 0.20% |
Andreas Mohr | 5 | 0.05% | 1 | 0.20% |
Jörn Engel | 5 | 0.05% | 1 | 0.20% |
Tim Bird | 4 | 0.04% | 1 | 0.20% |
Alexey Dobriyan | 4 | 0.04% | 1 | 0.20% |
Vineet Gupta | 4 | 0.04% | 1 | 0.20% |
Stephen D. Smalley | 4 | 0.04% | 1 | 0.20% |
Chris Mason | 4 | 0.04% | 1 | 0.20% |
Mauro Carvalho Chehab | 3 | 0.03% | 2 | 0.41% |
Paul Jackson | 3 | 0.03% | 1 | 0.20% |
Pavel Tatashin | 3 | 0.03% | 1 | 0.20% |
Cédric Le Goater | 3 | 0.03% | 1 | 0.20% |
Hugh Dickins | 3 | 0.03% | 3 | 0.61% |
Namhyung Kim | 3 | 0.03% | 1 | 0.20% |
Oscar Salvador | 3 | 0.03% | 1 | 0.20% |
Josef 'Jeff' Sipek | 3 | 0.03% | 1 | 0.20% |
Chris Wright | 3 | 0.03% | 1 | 0.20% |
Robert Love | 3 | 0.03% | 1 | 0.20% |
Eric Sesterhenn / Snakebyte | 3 | 0.03% | 1 | 0.20% |
Alexei Starovoitov | 3 | 0.03% | 1 | 0.20% |
Mark Fasheh | 3 | 0.03% | 1 | 0.20% |
Song Muchun | 3 | 0.03% | 1 | 0.20% |
Davidlohr Bueso A | 3 | 0.03% | 2 | 0.41% |
Bart Van Assche | 3 | 0.03% | 1 | 0.20% |
Andrea Arcangeli | 3 | 0.03% | 2 | 0.41% |
Yosry Ahmed | 3 | 0.03% | 1 | 0.20% |
Stephen Kitt | 3 | 0.03% | 1 | 0.20% |
Nhat Pham | 2 | 0.02% | 1 | 0.20% |
Joel Granados | 2 | 0.02% | 2 | 0.41% |
Dmitry Torokhov | 2 | 0.02% | 1 | 0.20% |
Thomas Gleixner | 2 | 0.02% | 2 | 0.41% |
Dave Jones | 2 | 0.02% | 1 | 0.20% |
Kees Cook | 2 | 0.02% | 1 | 0.20% |
Masahiro Yamada | 1 | 0.01% | 1 | 0.20% |
Andries E. Brouwer | 1 | 0.01% | 1 | 0.20% |
Jchao Sun | 1 | 0.01% | 1 | 0.20% |
Pavel Emelyanov | 1 | 0.01% | 1 | 0.20% |
Randy Dunlap | 1 | 0.01% | 1 | 0.20% |
Alexander Block | 1 | 0.01% | 1 | 0.20% |
Michel Lespinasse | 1 | 0.01% | 1 | 0.20% |
Nguyen Dinh Phi | 1 | 0.01% | 1 | 0.20% |
Joe Perches | 1 | 0.01% | 1 | 0.20% |
Mike Rapoport | 1 | 0.01% | 1 | 0.20% |
Cheng Renquan | 1 | 0.01% | 1 | 0.20% |
Alexander Mikhalitsyn | 1 | 0.01% | 1 | 0.20% |
Total | 9460 | 489 |
// SPDX-License-Identifier: GPL-2.0-only /* * (C) 1997 Linus Torvalds * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) */ #include <linux/export.h> #include <linux/fs.h> #include <linux/filelock.h> #include <linux/mm.h> #include <linux/backing-dev.h> #include <linux/hash.h> #include <linux/swap.h> #include <linux/security.h> #include <linux/cdev.h> #include <linux/memblock.h> #include <linux/fsnotify.h> #include <linux/mount.h> #include <linux/posix_acl.h> #include <linux/buffer_head.h> /* for inode_has_buffers */ #include <linux/ratelimit.h> #include <linux/list_lru.h> #include <linux/iversion.h> #include <linux/rw_hint.h> #include <trace/events/writeback.h> #include "internal.h" /* * Inode locking rules: * * inode->i_lock protects: * inode->i_state, inode->i_hash, __iget(), inode->i_io_list * Inode LRU list locks protect: * inode->i_sb->s_inode_lru, inode->i_lru * inode->i_sb->s_inode_list_lock protects: * inode->i_sb->s_inodes, inode->i_sb_list * bdi->wb.list_lock protects: * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list * inode_hash_lock protects: * inode_hashtable, inode->i_hash * * Lock ordering: * * inode->i_sb->s_inode_list_lock * inode->i_lock * Inode LRU list locks * * bdi->wb.list_lock * inode->i_lock * * inode_hash_lock * inode->i_sb->s_inode_list_lock * inode->i_lock * * iunique_lock * inode_hash_lock */ static unsigned int i_hash_mask __ro_after_init; static unsigned int i_hash_shift __ro_after_init; static struct hlist_head *inode_hashtable __ro_after_init; static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); /* * Empty aops. Can be used for the cases where the user does not * define any of the address_space operations. */ const struct address_space_operations empty_aops = { }; EXPORT_SYMBOL(empty_aops); static DEFINE_PER_CPU(unsigned long, nr_inodes); static DEFINE_PER_CPU(unsigned long, nr_unused); static struct kmem_cache *inode_cachep __ro_after_init; static long get_nr_inodes(void) { int i; long sum = 0; for_each_possible_cpu(i) sum += per_cpu(nr_inodes, i); return sum < 0 ? 0 : sum; } static inline long get_nr_inodes_unused(void) { int i; long sum = 0; for_each_possible_cpu(i) sum += per_cpu(nr_unused, i); return sum < 0 ? 0 : sum; } long get_nr_dirty_inodes(void) { /* not actually dirty inodes, but a wild approximation */ long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); return nr_dirty > 0 ? nr_dirty : 0; } /* * Handle nr_inode sysctl */ #ifdef CONFIG_SYSCTL /* * Statistics gathering.. */ static struct inodes_stat_t inodes_stat; static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { inodes_stat.nr_inodes = get_nr_inodes(); inodes_stat.nr_unused = get_nr_inodes_unused(); return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); } static struct ctl_table inodes_sysctls[] = { { .procname = "inode-nr", .data = &inodes_stat, .maxlen = 2*sizeof(long), .mode = 0444, .proc_handler = proc_nr_inodes, }, { .procname = "inode-state", .data = &inodes_stat, .maxlen = 7*sizeof(long), .mode = 0444, .proc_handler = proc_nr_inodes, }, }; static int __init init_fs_inode_sysctls(void) { register_sysctl_init("fs", inodes_sysctls); return 0; } early_initcall(init_fs_inode_sysctls); #endif static int no_open(struct inode *inode, struct file *file) { return -ENXIO; } /** * inode_init_always - perform inode structure initialisation * @sb: superblock inode belongs to * @inode: inode to initialise * * These are initializations that need to be done on every inode * allocation as the fields are not initialised by slab allocation. */ int inode_init_always(struct super_block *sb, struct inode *inode) { static const struct inode_operations empty_iops; static const struct file_operations no_open_fops = {.open = no_open}; struct address_space *const mapping = &inode->i_data; inode->i_sb = sb; inode->i_blkbits = sb->s_blocksize_bits; inode->i_flags = 0; inode->i_state = 0; atomic64_set(&inode->i_sequence, 0); atomic_set(&inode->i_count, 1); inode->i_op = &empty_iops; inode->i_fop = &no_open_fops; inode->i_ino = 0; inode->__i_nlink = 1; inode->i_opflags = 0; if (sb->s_xattr) inode->i_opflags |= IOP_XATTR; i_uid_write(inode, 0); i_gid_write(inode, 0); atomic_set(&inode->i_writecount, 0); inode->i_size = 0; inode->i_write_hint = WRITE_LIFE_NOT_SET; inode->i_blocks = 0; inode->i_bytes = 0; inode->i_generation = 0; inode->i_pipe = NULL; inode->i_cdev = NULL; inode->i_link = NULL; inode->i_dir_seq = 0; inode->i_rdev = 0; inode->dirtied_when = 0; #ifdef CONFIG_CGROUP_WRITEBACK inode->i_wb_frn_winner = 0; inode->i_wb_frn_avg_time = 0; inode->i_wb_frn_history = 0; #endif spin_lock_init(&inode->i_lock); lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); init_rwsem(&inode->i_rwsem); lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); atomic_set(&inode->i_dio_count, 0); mapping->a_ops = &empty_aops; mapping->host = inode; mapping->flags = 0; mapping->wb_err = 0; atomic_set(&mapping->i_mmap_writable, 0); #ifdef CONFIG_READ_ONLY_THP_FOR_FS atomic_set(&mapping->nr_thps, 0); #endif mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); mapping->i_private_data = NULL; mapping->writeback_index = 0; init_rwsem(&mapping->invalidate_lock); lockdep_set_class_and_name(&mapping->invalidate_lock, &sb->s_type->invalidate_lock_key, "mapping.invalidate_lock"); if (sb->s_iflags & SB_I_STABLE_WRITES) mapping_set_stable_writes(mapping); inode->i_private = NULL; inode->i_mapping = mapping; INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ #ifdef CONFIG_FS_POSIX_ACL inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; #endif #ifdef CONFIG_FSNOTIFY inode->i_fsnotify_mask = 0; #endif inode->i_flctx = NULL; if (unlikely(security_inode_alloc(inode))) return -ENOMEM; this_cpu_inc(nr_inodes); return 0; } EXPORT_SYMBOL(inode_init_always); void free_inode_nonrcu(struct inode *inode) { kmem_cache_free(inode_cachep, inode); } EXPORT_SYMBOL(free_inode_nonrcu); static void i_callback(struct rcu_head *head) { struct inode *inode = container_of(head, struct inode, i_rcu); if (inode->free_inode) inode->free_inode(inode); else free_inode_nonrcu(inode); } static struct inode *alloc_inode(struct super_block *sb) { const struct super_operations *ops = sb->s_op; struct inode *inode; if (ops->alloc_inode) inode = ops->alloc_inode(sb); else inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); if (!inode) return NULL; if (unlikely(inode_init_always(sb, inode))) { if (ops->destroy_inode) { ops->destroy_inode(inode); if (!ops->free_inode) return NULL; } inode->free_inode = ops->free_inode; i_callback(&inode->i_rcu); return NULL; } return inode; } void __destroy_inode(struct inode *inode) { BUG_ON(inode_has_buffers(inode)); inode_detach_wb(inode); security_inode_free(inode); fsnotify_inode_delete(inode); locks_free_lock_context(inode); if (!inode->i_nlink) { WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); atomic_long_dec(&inode->i_sb->s_remove_count); } #ifdef CONFIG_FS_POSIX_ACL if (inode->i_acl && !is_uncached_acl(inode->i_acl)) posix_acl_release(inode->i_acl); if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) posix_acl_release(inode->i_default_acl); #endif this_cpu_dec(nr_inodes); } EXPORT_SYMBOL(__destroy_inode); static void destroy_inode(struct inode *inode) { const struct super_operations *ops = inode->i_sb->s_op; BUG_ON(!list_empty(&inode->i_lru)); __destroy_inode(inode); if (ops->destroy_inode) { ops->destroy_inode(inode); if (!ops->free_inode) return; } inode->free_inode = ops->free_inode; call_rcu(&inode->i_rcu, i_callback); } /** * drop_nlink - directly drop an inode's link count * @inode: inode * * This is a low-level filesystem helper to replace any * direct filesystem manipulation of i_nlink. In cases * where we are attempting to track writes to the * filesystem, a decrement to zero means an imminent * write when the file is truncated and actually unlinked * on the filesystem. */ void drop_nlink(struct inode *inode) { WARN_ON(inode->i_nlink == 0); inode->__i_nlink--; if (!inode->i_nlink) atomic_long_inc(&inode->i_sb->s_remove_count); } EXPORT_SYMBOL(drop_nlink); /** * clear_nlink - directly zero an inode's link count * @inode: inode * * This is a low-level filesystem helper to replace any * direct filesystem manipulation of i_nlink. See * drop_nlink() for why we care about i_nlink hitting zero. */ void clear_nlink(struct inode *inode) { if (inode->i_nlink) { inode->__i_nlink = 0; atomic_long_inc(&inode->i_sb->s_remove_count); } } EXPORT_SYMBOL(clear_nlink); /** * set_nlink - directly set an inode's link count * @inode: inode * @nlink: new nlink (should be non-zero) * * This is a low-level filesystem helper to replace any * direct filesystem manipulation of i_nlink. */ void set_nlink(struct inode *inode, unsigned int nlink) { if (!nlink) { clear_nlink(inode); } else { /* Yes, some filesystems do change nlink from zero to one */ if (inode->i_nlink == 0) atomic_long_dec(&inode->i_sb->s_remove_count); inode->__i_nlink = nlink; } } EXPORT_SYMBOL(set_nlink); /** * inc_nlink - directly increment an inode's link count * @inode: inode * * This is a low-level filesystem helper to replace any * direct filesystem manipulation of i_nlink. Currently, * it is only here for parity with dec_nlink(). */ void inc_nlink(struct inode *inode) { if (unlikely(inode->i_nlink == 0)) { WARN_ON(!(inode->i_state & I_LINKABLE)); atomic_long_dec(&inode->i_sb->s_remove_count); } inode->__i_nlink++; } EXPORT_SYMBOL(inc_nlink); static void __address_space_init_once(struct address_space *mapping) { xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); init_rwsem(&mapping->i_mmap_rwsem); INIT_LIST_HEAD(&mapping->i_private_list); spin_lock_init(&mapping->i_private_lock); mapping->i_mmap = RB_ROOT_CACHED; } void address_space_init_once(struct address_space *mapping) { memset(mapping, 0, sizeof(*mapping)); __address_space_init_once(mapping); } EXPORT_SYMBOL(address_space_init_once); /* * These are initializations that only need to be done * once, because the fields are idempotent across use * of the inode, so let the slab aware of that. */ void inode_init_once(struct inode *inode) { memset(inode, 0, sizeof(*inode)); INIT_HLIST_NODE(&inode->i_hash); INIT_LIST_HEAD(&inode->i_devices); INIT_LIST_HEAD(&inode->i_io_list); INIT_LIST_HEAD(&inode->i_wb_list); INIT_LIST_HEAD(&inode->i_lru); INIT_LIST_HEAD(&inode->i_sb_list); __address_space_init_once(&inode->i_data); i_size_ordered_init(inode); } EXPORT_SYMBOL(inode_init_once); static void init_once(void *foo) { struct inode *inode = (struct inode *) foo; inode_init_once(inode); } /* * inode->i_lock must be held */ void __iget(struct inode *inode) { atomic_inc(&inode->i_count); } /* * get additional reference to inode; caller must already hold one. */ void ihold(struct inode *inode) { WARN_ON(atomic_inc_return(&inode->i_count) < 2); } EXPORT_SYMBOL(ihold); static void __inode_add_lru(struct inode *inode, bool rotate) { if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) return; if (atomic_read(&inode->i_count)) return; if (!(inode->i_sb->s_flags & SB_ACTIVE)) return; if (!mapping_shrinkable(&inode->i_data)) return; if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) this_cpu_inc(nr_unused); else if (rotate) inode->i_state |= I_REFERENCED; } /* * Add inode to LRU if needed (inode is unused and clean). * * Needs inode->i_lock held. */ void inode_add_lru(struct inode *inode) { __inode_add_lru(inode, false); } static void inode_lru_list_del(struct inode *inode) { if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) this_cpu_dec(nr_unused); } static void inode_pin_lru_isolating(struct inode *inode) { lockdep_assert_held(&inode->i_lock); WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE)); inode->i_state |= I_LRU_ISOLATING; } static void inode_unpin_lru_isolating(struct inode *inode) { spin_lock(&inode->i_lock); WARN_ON(!(inode->i_state & I_LRU_ISOLATING)); inode->i_state &= ~I_LRU_ISOLATING; smp_mb(); wake_up_bit(&inode->i_state, __I_LRU_ISOLATING); spin_unlock(&inode->i_lock); } static void inode_wait_for_lru_isolating(struct inode *inode) { spin_lock(&inode->i_lock); if (inode->i_state & I_LRU_ISOLATING) { DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LRU_ISOLATING); wait_queue_head_t *wqh; wqh = bit_waitqueue(&inode->i_state, __I_LRU_ISOLATING); spin_unlock(&inode->i_lock); __wait_on_bit(wqh, &wq, bit_wait, TASK_UNINTERRUPTIBLE); spin_lock(&inode->i_lock); WARN_ON(inode->i_state & I_LRU_ISOLATING); } spin_unlock(&inode->i_lock); } /** * inode_sb_list_add - add inode to the superblock list of inodes * @inode: inode to add */ void inode_sb_list_add(struct inode *inode) { spin_lock(&inode->i_sb->s_inode_list_lock); list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); spin_unlock(&inode->i_sb->s_inode_list_lock); } EXPORT_SYMBOL_GPL(inode_sb_list_add); static inline void inode_sb_list_del(struct inode *inode) { if (!list_empty(&inode->i_sb_list)) { spin_lock(&inode->i_sb->s_inode_list_lock); list_del_init(&inode->i_sb_list); spin_unlock(&inode->i_sb->s_inode_list_lock); } } static unsigned long hash(struct super_block *sb, unsigned long hashval) { unsigned long tmp; tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / L1_CACHE_BYTES; tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); return tmp & i_hash_mask; } /** * __insert_inode_hash - hash an inode * @inode: unhashed inode * @hashval: unsigned long value used to locate this object in the * inode_hashtable. * * Add an inode to the inode hash for this superblock. */ void __insert_inode_hash(struct inode *inode, unsigned long hashval) { struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); spin_lock(&inode_hash_lock); spin_lock(&inode->i_lock); hlist_add_head_rcu(&inode->i_hash, b); spin_unlock(&inode->i_lock); spin_unlock(&inode_hash_lock); } EXPORT_SYMBOL(__insert_inode_hash); /** * __remove_inode_hash - remove an inode from the hash * @inode: inode to unhash * * Remove an inode from the superblock. */ void __remove_inode_hash(struct inode *inode) { spin_lock(&inode_hash_lock); spin_lock(&inode->i_lock); hlist_del_init_rcu(&inode->i_hash); spin_unlock(&inode->i_lock); spin_unlock(&inode_hash_lock); } EXPORT_SYMBOL(__remove_inode_hash); void dump_mapping(const struct address_space *mapping) { struct inode *host; const struct address_space_operations *a_ops; struct hlist_node *dentry_first; struct dentry *dentry_ptr; struct dentry dentry; unsigned long ino; /* * If mapping is an invalid pointer, we don't want to crash * accessing it, so probe everything depending on it carefully. */ if (get_kernel_nofault(host, &mapping->host) || get_kernel_nofault(a_ops, &mapping->a_ops)) { pr_warn("invalid mapping:%px\n", mapping); return; } if (!host) { pr_warn("aops:%ps\n", a_ops); return; } if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || get_kernel_nofault(ino, &host->i_ino)) { pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); return; } if (!dentry_first) { pr_warn("aops:%ps ino:%lx\n", a_ops, ino); return; } dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); if (get_kernel_nofault(dentry, dentry_ptr) || !dentry.d_parent || !dentry.d_name.name) { pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", a_ops, ino, dentry_ptr); return; } /* * if dentry is corrupted, the %pd handler may still crash, * but it's unlikely that we reach here with a corrupt mapping */ pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry); } void clear_inode(struct inode *inode) { /* * We have to cycle the i_pages lock here because reclaim can be in the * process of removing the last page (in __filemap_remove_folio()) * and we must not free the mapping under it. */ xa_lock_irq(&inode->i_data.i_pages); BUG_ON(inode->i_data.nrpages); /* * Almost always, mapping_empty(&inode->i_data) here; but there are * two known and long-standing ways in which nodes may get left behind * (when deep radix-tree node allocation failed partway; or when THP * collapse_file() failed). Until those two known cases are cleaned up, * or a cleanup function is called here, do not BUG_ON(!mapping_empty), * nor even WARN_ON(!mapping_empty). */ xa_unlock_irq(&inode->i_data.i_pages); BUG_ON(!list_empty(&inode->i_data.i_private_list)); BUG_ON(!(inode->i_state & I_FREEING)); BUG_ON(inode->i_state & I_CLEAR); BUG_ON(!list_empty(&inode->i_wb_list)); /* don't need i_lock here, no concurrent mods to i_state */ inode->i_state = I_FREEING | I_CLEAR; } EXPORT_SYMBOL(clear_inode); /* * Free the inode passed in, removing it from the lists it is still connected * to. We remove any pages still attached to the inode and wait for any IO that * is still in progress before finally destroying the inode. * * An inode must already be marked I_FREEING so that we avoid the inode being * moved back onto lists if we race with other code that manipulates the lists * (e.g. writeback_single_inode). The caller is responsible for setting this. * * An inode must already be removed from the LRU list before being evicted from * the cache. This should occur atomically with setting the I_FREEING state * flag, so no inodes here should ever be on the LRU when being evicted. */ static void evict(struct inode *inode) { const struct super_operations *op = inode->i_sb->s_op; BUG_ON(!(inode->i_state & I_FREEING)); BUG_ON(!list_empty(&inode->i_lru)); if (!list_empty(&inode->i_io_list)) inode_io_list_del(inode); inode_sb_list_del(inode); inode_wait_for_lru_isolating(inode); /* * Wait for flusher thread to be done with the inode so that filesystem * does not start destroying it while writeback is still running. Since * the inode has I_FREEING set, flusher thread won't start new work on * the inode. We just have to wait for running writeback to finish. */ inode_wait_for_writeback(inode); if (op->evict_inode) { op->evict_inode(inode); } else { truncate_inode_pages_final(&inode->i_data); clear_inode(inode); } if (S_ISCHR(inode->i_mode) && inode->i_cdev) cd_forget(inode); remove_inode_hash(inode); /* * Wake up waiters in __wait_on_freeing_inode(). * * Lockless hash lookup may end up finding the inode before we removed * it above, but only lock it *after* we are done with the wakeup below. * In this case the potential waiter cannot safely block. * * The inode being unhashed after the call to remove_inode_hash() is * used as an indicator whether blocking on it is safe. */ spin_lock(&inode->i_lock); wake_up_bit(&inode->i_state, __I_NEW); BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); spin_unlock(&inode->i_lock); destroy_inode(inode); } /* * dispose_list - dispose of the contents of a local list * @head: the head of the list to free * * Dispose-list gets a local list with local inodes in it, so it doesn't * need to worry about list corruption and SMP locks. */ static void dispose_list(struct list_head *head) { while (!list_empty(head)) { struct inode *inode; inode = list_first_entry(head, struct inode, i_lru); list_del_init(&inode->i_lru); evict(inode); cond_resched(); } } /** * evict_inodes - evict all evictable inodes for a superblock * @sb: superblock to operate on * * Make sure that no inodes with zero refcount are retained. This is * called by superblock shutdown after having SB_ACTIVE flag removed, * so any inode reaching zero refcount during or after that call will * be immediately evicted. */ void evict_inodes(struct super_block *sb) { struct inode *inode, *next; LIST_HEAD(dispose); again: spin_lock(&sb->s_inode_list_lock); list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { if (atomic_read(&inode->i_count)) continue; spin_lock(&inode->i_lock); if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { spin_unlock(&inode->i_lock); continue; } inode->i_state |= I_FREEING; inode_lru_list_del(inode); spin_unlock(&inode->i_lock); list_add(&inode->i_lru, &dispose); /* * We can have a ton of inodes to evict at unmount time given * enough memory, check to see if we need to go to sleep for a * bit so we don't livelock. */ if (need_resched()) { spin_unlock(&sb->s_inode_list_lock); cond_resched(); dispose_list(&dispose); goto again; } } spin_unlock(&sb->s_inode_list_lock); dispose_list(&dispose); } EXPORT_SYMBOL_GPL(evict_inodes); /** * invalidate_inodes - attempt to free all inodes on a superblock * @sb: superblock to operate on * * Attempts to free all inodes (including dirty inodes) for a given superblock. */ void invalidate_inodes(struct super_block *sb) { struct inode *inode, *next; LIST_HEAD(dispose); again: spin_lock(&sb->s_inode_list_lock); list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { spin_lock(&inode->i_lock); if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { spin_unlock(&inode->i_lock); continue; } if (atomic_read(&inode->i_count)) { spin_unlock(&inode->i_lock); continue; } inode->i_state |= I_FREEING; inode_lru_list_del(inode); spin_unlock(&inode->i_lock); list_add(&inode->i_lru, &dispose); if (need_resched()) { spin_unlock(&sb->s_inode_list_lock); cond_resched(); dispose_list(&dispose); goto again; } } spin_unlock(&sb->s_inode_list_lock); dispose_list(&dispose); } /* * Isolate the inode from the LRU in preparation for freeing it. * * If the inode has the I_REFERENCED flag set, then it means that it has been * used recently - the flag is set in iput_final(). When we encounter such an * inode, clear the flag and move it to the back of the LRU so it gets another * pass through the LRU before it gets reclaimed. This is necessary because of * the fact we are doing lazy LRU updates to minimise lock contention so the * LRU does not have strict ordering. Hence we don't want to reclaim inodes * with this flag set because they are the inodes that are out of order. */ static enum lru_status inode_lru_isolate(struct list_head *item, struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) { struct list_head *freeable = arg; struct inode *inode = container_of(item, struct inode, i_lru); /* * We are inverting the lru lock/inode->i_lock here, so use a * trylock. If we fail to get the lock, just skip it. */ if (!spin_trylock(&inode->i_lock)) return LRU_SKIP; /* * Inodes can get referenced, redirtied, or repopulated while * they're already on the LRU, and this can make them * unreclaimable for a while. Remove them lazily here; iput, * sync, or the last page cache deletion will requeue them. */ if (atomic_read(&inode->i_count) || (inode->i_state & ~I_REFERENCED) || !mapping_shrinkable(&inode->i_data)) { list_lru_isolate(lru, &inode->i_lru); spin_unlock(&inode->i_lock); this_cpu_dec(nr_unused); return LRU_REMOVED; } /* Recently referenced inodes get one more pass */ if (inode->i_state & I_REFERENCED) { inode->i_state &= ~I_REFERENCED; spin_unlock(&inode->i_lock); return LRU_ROTATE; } /* * On highmem systems, mapping_shrinkable() permits dropping * page cache in order to free up struct inodes: lowmem might * be under pressure before the cache inside the highmem zone. */ if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { inode_pin_lru_isolating(inode); spin_unlock(&inode->i_lock); spin_unlock(lru_lock); if (remove_inode_buffers(inode)) { unsigned long reap; reap = invalidate_mapping_pages(&inode->i_data, 0, -1); if (current_is_kswapd()) __count_vm_events(KSWAPD_INODESTEAL, reap); else __count_vm_events(PGINODESTEAL, reap); mm_account_reclaimed_pages(reap); } inode_unpin_lru_isolating(inode); spin_lock(lru_lock); return LRU_RETRY; } WARN_ON(inode->i_state & I_NEW); inode->i_state |= I_FREEING; list_lru_isolate_move(lru, &inode->i_lru, freeable); spin_unlock(&inode->i_lock); this_cpu_dec(nr_unused); return LRU_REMOVED; } /* * Walk the superblock inode LRU for freeable inodes and attempt to free them. * This is called from the superblock shrinker function with a number of inodes * to trim from the LRU. Inodes to be freed are moved to a temporary list and * then are freed outside inode_lock by dispose_list(). */ long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) { LIST_HEAD(freeable); long freed; freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, inode_lru_isolate, &freeable); dispose_list(&freeable); return freed; } static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked); /* * Called with the inode lock held. */ static struct inode *find_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data, bool is_inode_hash_locked) { struct inode *inode = NULL; if (is_inode_hash_locked) lockdep_assert_held(&inode_hash_lock); else lockdep_assert_not_held(&inode_hash_lock); rcu_read_lock(); repeat: hlist_for_each_entry_rcu(inode, head, i_hash) { if (inode->i_sb != sb) continue; if (!test(inode, data)) continue; spin_lock(&inode->i_lock); if (inode->i_state & (I_FREEING|I_WILL_FREE)) { __wait_on_freeing_inode(inode, is_inode_hash_locked); goto repeat; } if (unlikely(inode->i_state & I_CREATING)) { spin_unlock(&inode->i_lock); rcu_read_unlock(); return ERR_PTR(-ESTALE); } __iget(inode); spin_unlock(&inode->i_lock); rcu_read_unlock(); return inode; } rcu_read_unlock(); return NULL; } /* * find_inode_fast is the fast path version of find_inode, see the comment at * iget_locked for details. */ static struct inode *find_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino, bool is_inode_hash_locked) { struct inode *inode = NULL; if (is_inode_hash_locked) lockdep_assert_held(&inode_hash_lock); else lockdep_assert_not_held(&inode_hash_lock); rcu_read_lock(); repeat: hlist_for_each_entry_rcu(inode, head, i_hash) { if (inode->i_ino != ino) continue; if (inode->i_sb != sb) continue; spin_lock(&inode->i_lock); if (inode->i_state & (I_FREEING|I_WILL_FREE)) { __wait_on_freeing_inode(inode, is_inode_hash_locked); goto repeat; } if (unlikely(inode->i_state & I_CREATING)) { spin_unlock(&inode->i_lock); rcu_read_unlock(); return ERR_PTR(-ESTALE); } __iget(inode); spin_unlock(&inode->i_lock); rcu_read_unlock(); return inode; } rcu_read_unlock(); return NULL; } /* * Each cpu owns a range of LAST_INO_BATCH numbers. * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, * to renew the exhausted range. * * This does not significantly increase overflow rate because every CPU can * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the * 2^32 range, and is a worst-case. Even a 50% wastage would only increase * overflow rate by 2x, which does not seem too significant. * * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW * error if st_ino won't fit in target struct field. Use 32bit counter * here to attempt to avoid that. */ #define LAST_INO_BATCH 1024 static DEFINE_PER_CPU(unsigned int, last_ino); unsigned int get_next_ino(void) { unsigned int *p = &get_cpu_var(last_ino); unsigned int res = *p; #ifdef CONFIG_SMP if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { static atomic_t shared_last_ino; int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); res = next - LAST_INO_BATCH; } #endif res++; /* get_next_ino should not provide a 0 inode number */ if (unlikely(!res)) res++; *p = res; put_cpu_var(last_ino); return res; } EXPORT_SYMBOL(get_next_ino); /** * new_inode_pseudo - obtain an inode * @sb: superblock * * Allocates a new inode for given superblock. * Inode wont be chained in superblock s_inodes list * This means : * - fs can't be unmount * - quotas, fsnotify, writeback can't work */ struct inode *new_inode_pseudo(struct super_block *sb) { return alloc_inode(sb); } /** * new_inode - obtain an inode * @sb: superblock * * Allocates a new inode for given superblock. The default gfp_mask * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. * If HIGHMEM pages are unsuitable or it is known that pages allocated * for the page cache are not reclaimable or migratable, * mapping_set_gfp_mask() must be called with suitable flags on the * newly created inode's mapping * */ struct inode *new_inode(struct super_block *sb) { struct inode *inode; inode = new_inode_pseudo(sb); if (inode) inode_sb_list_add(inode); return inode; } EXPORT_SYMBOL(new_inode); #ifdef CONFIG_DEBUG_LOCK_ALLOC void lockdep_annotate_inode_mutex_key(struct inode *inode) { if (S_ISDIR(inode->i_mode)) { struct file_system_type *type = inode->i_sb->s_type; /* Set new key only if filesystem hasn't already changed it */ if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { /* * ensure nobody is actually holding i_mutex */ // mutex_destroy(&inode->i_mutex); init_rwsem(&inode->i_rwsem); lockdep_set_class(&inode->i_rwsem, &type->i_mutex_dir_key); } } } EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); #endif /** * unlock_new_inode - clear the I_NEW state and wake up any waiters * @inode: new inode to unlock * * Called when the inode is fully initialised to clear the new state of the * inode and wake up anyone waiting for the inode to finish initialisation. */ void unlock_new_inode(struct inode *inode) { lockdep_annotate_inode_mutex_key(inode); spin_lock(&inode->i_lock); WARN_ON(!(inode->i_state & I_NEW)); inode->i_state &= ~I_NEW & ~I_CREATING; smp_mb(); wake_up_bit(&inode->i_state, __I_NEW); spin_unlock(&inode->i_lock); } EXPORT_SYMBOL(unlock_new_inode); void discard_new_inode(struct inode *inode) { lockdep_annotate_inode_mutex_key(inode); spin_lock(&inode->i_lock); WARN_ON(!(inode->i_state & I_NEW)); inode->i_state &= ~I_NEW; smp_mb(); wake_up_bit(&inode->i_state, __I_NEW); spin_unlock(&inode->i_lock); iput(inode); } EXPORT_SYMBOL(discard_new_inode); /** * lock_two_nondirectories - take two i_mutexes on non-directory objects * * Lock any non-NULL argument. Passed objects must not be directories. * Zero, one or two objects may be locked by this function. * * @inode1: first inode to lock * @inode2: second inode to lock */ void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) { if (inode1) WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); if (inode2) WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); if (inode1 > inode2) swap(inode1, inode2); if (inode1) inode_lock(inode1); if (inode2 && inode2 != inode1) inode_lock_nested(inode2, I_MUTEX_NONDIR2); } EXPORT_SYMBOL(lock_two_nondirectories); /** * unlock_two_nondirectories - release locks from lock_two_nondirectories() * @inode1: first inode to unlock * @inode2: second inode to unlock */ void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) { if (inode1) { WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); inode_unlock(inode1); } if (inode2 && inode2 != inode1) { WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); inode_unlock(inode2); } } EXPORT_SYMBOL(unlock_two_nondirectories); /** * inode_insert5 - obtain an inode from a mounted file system * @inode: pre-allocated inode to use for insert to cache * @hashval: hash value (usually inode number) to get * @test: callback used for comparisons between inodes * @set: callback used to initialize a new struct inode * @data: opaque data pointer to pass to @test and @set * * Search for the inode specified by @hashval and @data in the inode cache, * and if present it is return it with an increased reference count. This is * a variant of iget5_locked() for callers that don't want to fail on memory * allocation of inode. * * If the inode is not in cache, insert the pre-allocated inode to cache and * return it locked, hashed, and with the I_NEW flag set. The file system gets * to fill it in before unlocking it via unlock_new_inode(). * * Note both @test and @set are called with the inode_hash_lock held, so can't * sleep. */ struct inode *inode_insert5(struct inode *inode, unsigned long hashval, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) { struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); struct inode *old; again: spin_lock(&inode_hash_lock); old = find_inode(inode->i_sb, head, test, data, true); if (unlikely(old)) { /* * Uhhuh, somebody else created the same inode under us. * Use the old inode instead of the preallocated one. */ spin_unlock(&inode_hash_lock); if (IS_ERR(old)) return NULL; wait_on_inode(old); if (unlikely(inode_unhashed(old))) { iput(old); goto again; } return old; } if (set && unlikely(set(inode, data))) { inode = NULL; goto unlock; } /* * Return the locked inode with I_NEW set, the * caller is responsible for filling in the contents */ spin_lock(&inode->i_lock); inode->i_state |= I_NEW; hlist_add_head_rcu(&inode->i_hash, head); spin_unlock(&inode->i_lock); /* * Add inode to the sb list if it's not already. It has I_NEW at this * point, so it should be safe to test i_sb_list locklessly. */ if (list_empty(&inode->i_sb_list)) inode_sb_list_add(inode); unlock: spin_unlock(&inode_hash_lock); return inode; } EXPORT_SYMBOL(inode_insert5); /** * iget5_locked - obtain an inode from a mounted file system * @sb: super block of file system * @hashval: hash value (usually inode number) to get * @test: callback used for comparisons between inodes * @set: callback used to initialize a new struct inode * @data: opaque data pointer to pass to @test and @set * * Search for the inode specified by @hashval and @data in the inode cache, * and if present it is return it with an increased reference count. This is * a generalized version of iget_locked() for file systems where the inode * number is not sufficient for unique identification of an inode. * * If the inode is not in cache, allocate a new inode and return it locked, * hashed, and with the I_NEW flag set. The file system gets to fill it in * before unlocking it via unlock_new_inode(). * * Note both @test and @set are called with the inode_hash_lock held, so can't * sleep. */ struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) { struct inode *inode = ilookup5(sb, hashval, test, data); if (!inode) { struct inode *new = alloc_inode(sb); if (new) { inode = inode_insert5(new, hashval, test, set, data); if (unlikely(inode != new)) destroy_inode(new); } } return inode; } EXPORT_SYMBOL(iget5_locked); /** * iget5_locked_rcu - obtain an inode from a mounted file system * @sb: super block of file system * @hashval: hash value (usually inode number) to get * @test: callback used for comparisons between inodes * @set: callback used to initialize a new struct inode * @data: opaque data pointer to pass to @test and @set * * This is equivalent to iget5_locked, except the @test callback must * tolerate the inode not being stable, including being mid-teardown. */ struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) { struct hlist_head *head = inode_hashtable + hash(sb, hashval); struct inode *inode, *new; again: inode = find_inode(sb, head, test, data, false); if (inode) { if (IS_ERR(inode)) return NULL; wait_on_inode(inode); if (unlikely(inode_unhashed(inode))) { iput(inode); goto again; } return inode; } new = alloc_inode(sb); if (new) { inode = inode_insert5(new, hashval, test, set, data); if (unlikely(inode != new)) destroy_inode(new); } return inode; } EXPORT_SYMBOL_GPL(iget5_locked_rcu); /** * iget_locked - obtain an inode from a mounted file system * @sb: super block of file system * @ino: inode number to get * * Search for the inode specified by @ino in the inode cache and if present * return it with an increased reference count. This is for file systems * where the inode number is sufficient for unique identification of an inode. * * If the inode is not in cache, allocate a new inode and return it locked, * hashed, and with the I_NEW flag set. The file system gets to fill it in * before unlocking it via unlock_new_inode(). */ struct inode *iget_locked(struct super_block *sb, unsigned long ino) { struct hlist_head *head = inode_hashtable + hash(sb, ino); struct inode *inode; again: inode = find_inode_fast(sb, head, ino, false); if (inode) { if (IS_ERR(inode)) return NULL; wait_on_inode(inode); if (unlikely(inode_unhashed(inode))) { iput(inode); goto again; } return inode; } inode = alloc_inode(sb); if (inode) { struct inode *old; spin_lock(&inode_hash_lock); /* We released the lock, so.. */ old = find_inode_fast(sb, head, ino, true); if (!old) { inode->i_ino = ino; spin_lock(&inode->i_lock); inode->i_state = I_NEW; hlist_add_head_rcu(&inode->i_hash, head); spin_unlock(&inode->i_lock); inode_sb_list_add(inode); spin_unlock(&inode_hash_lock); /* Return the locked inode with I_NEW set, the * caller is responsible for filling in the contents */ return inode; } /* * Uhhuh, somebody else created the same inode under * us. Use the old inode instead of the one we just * allocated. */ spin_unlock(&inode_hash_lock); destroy_inode(inode); if (IS_ERR(old)) return NULL; inode = old; wait_on_inode(inode); if (unlikely(inode_unhashed(inode))) { iput(inode); goto again; } } return inode; } EXPORT_SYMBOL(iget_locked); /* * search the inode cache for a matching inode number. * If we find one, then the inode number we are trying to * allocate is not unique and so we should not use it. * * Returns 1 if the inode number is unique, 0 if it is not. */ static int test_inode_iunique(struct super_block *sb, unsigned long ino) { struct hlist_head *b = inode_hashtable + hash(sb, ino); struct inode *inode; hlist_for_each_entry_rcu(inode, b, i_hash) { if (inode->i_ino == ino && inode->i_sb == sb) return 0; } return 1; } /** * iunique - get a unique inode number * @sb: superblock * @max_reserved: highest reserved inode number * * Obtain an inode number that is unique on the system for a given * superblock. This is used by file systems that have no natural * permanent inode numbering system. An inode number is returned that * is higher than the reserved limit but unique. * * BUGS: * With a large number of inodes live on the file system this function * currently becomes quite slow. */ ino_t iunique(struct super_block *sb, ino_t max_reserved) { /* * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW * error if st_ino won't fit in target struct field. Use 32bit counter * here to attempt to avoid that. */ static DEFINE_SPINLOCK(iunique_lock); static unsigned int counter; ino_t res; rcu_read_lock(); spin_lock(&iunique_lock); do { if (counter <= max_reserved) counter = max_reserved + 1; res = counter++; } while (!test_inode_iunique(sb, res)); spin_unlock(&iunique_lock); rcu_read_unlock(); return res; } EXPORT_SYMBOL(iunique); struct inode *igrab(struct inode *inode) { spin_lock(&inode->i_lock); if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { __iget(inode); spin_unlock(&inode->i_lock); } else { spin_unlock(&inode->i_lock); /* * Handle the case where s_op->clear_inode is not been * called yet, and somebody is calling igrab * while the inode is getting freed. */ inode = NULL; } return inode; } EXPORT_SYMBOL(igrab); /** * ilookup5_nowait - search for an inode in the inode cache * @sb: super block of file system to search * @hashval: hash value (usually inode number) to search for * @test: callback used for comparisons between inodes * @data: opaque data pointer to pass to @test * * Search for the inode specified by @hashval and @data in the inode cache. * If the inode is in the cache, the inode is returned with an incremented * reference count. * * Note: I_NEW is not waited upon so you have to be very careful what you do * with the returned inode. You probably should be using ilookup5() instead. * * Note2: @test is called with the inode_hash_lock held, so can't sleep. */ struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data) { struct hlist_head *head = inode_hashtable + hash(sb, hashval); struct inode *inode; spin_lock(&inode_hash_lock); inode = find_inode(sb, head, test, data, true); spin_unlock(&inode_hash_lock); return IS_ERR(inode) ? NULL : inode; } EXPORT_SYMBOL(ilookup5_nowait); /** * ilookup5 - search for an inode in the inode cache * @sb: super block of file system to search * @hashval: hash value (usually inode number) to search for * @test: callback used for comparisons between inodes * @data: opaque data pointer to pass to @test * * Search for the inode specified by @hashval and @data in the inode cache, * and if the inode is in the cache, return the inode with an incremented * reference count. Waits on I_NEW before returning the inode. * returned with an incremented reference count. * * This is a generalized version of ilookup() for file systems where the * inode number is not sufficient for unique identification of an inode. * * Note: @test is called with the inode_hash_lock held, so can't sleep. */ struct inode *ilookup5(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data) { struct inode *inode; again: inode = ilookup5_nowait(sb, hashval, test, data); if (inode) { wait_on_inode(inode); if (unlikely(inode_unhashed(inode))) { iput(inode); goto again; } } return inode; } EXPORT_SYMBOL(ilookup5); /** * ilookup - search for an inode in the inode cache * @sb: super block of file system to search * @ino: inode number to search for * * Search for the inode @ino in the inode cache, and if the inode is in the * cache, the inode is returned with an incremented reference count. */ struct inode *ilookup(struct super_block *sb, unsigned long ino) { struct hlist_head *head = inode_hashtable + hash(sb, ino); struct inode *inode; again: spin_lock(&inode_hash_lock); inode = find_inode_fast(sb, head, ino, true); spin_unlock(&inode_hash_lock); if (inode) { if (IS_ERR(inode)) return NULL; wait_on_inode(inode); if (unlikely(inode_unhashed(inode))) { iput(inode); goto again; } } return inode; } EXPORT_SYMBOL(ilookup); /** * find_inode_nowait - find an inode in the inode cache * @sb: super block of file system to search * @hashval: hash value (usually inode number) to search for * @match: callback used for comparisons between inodes * @data: opaque data pointer to pass to @match * * Search for the inode specified by @hashval and @data in the inode * cache, where the helper function @match will return 0 if the inode * does not match, 1 if the inode does match, and -1 if the search * should be stopped. The @match function must be responsible for * taking the i_lock spin_lock and checking i_state for an inode being * freed or being initialized, and incrementing the reference count * before returning 1. It also must not sleep, since it is called with * the inode_hash_lock spinlock held. * * This is a even more generalized version of ilookup5() when the * function must never block --- find_inode() can block in * __wait_on_freeing_inode() --- or when the caller can not increment * the reference count because the resulting iput() might cause an * inode eviction. The tradeoff is that the @match funtion must be * very carefully implemented. */ struct inode *find_inode_nowait(struct super_block *sb, unsigned long hashval, int (*match)(struct inode *, unsigned long, void *), void *data) { struct hlist_head *head = inode_hashtable + hash(sb, hashval); struct inode *inode, *ret_inode = NULL; int mval; spin_lock(&inode_hash_lock); hlist_for_each_entry(inode, head, i_hash) { if (inode->i_sb != sb) continue; mval = match(inode, hashval, data); if (mval == 0) continue; if (mval == 1) ret_inode = inode; goto out; } out: spin_unlock(&inode_hash_lock); return ret_inode; } EXPORT_SYMBOL(find_inode_nowait); /** * find_inode_rcu - find an inode in the inode cache * @sb: Super block of file system to search * @hashval: Key to hash * @test: Function to test match on an inode * @data: Data for test function * * Search for the inode specified by @hashval and @data in the inode cache, * where the helper function @test will return 0 if the inode does not match * and 1 if it does. The @test function must be responsible for taking the * i_lock spin_lock and checking i_state for an inode being freed or being * initialized. * * If successful, this will return the inode for which the @test function * returned 1 and NULL otherwise. * * The @test function is not permitted to take a ref on any inode presented. * It is also not permitted to sleep. * * The caller must hold the RCU read lock. */ struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data) { struct hlist_head *head = inode_hashtable + hash(sb, hashval); struct inode *inode; RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "suspicious find_inode_rcu() usage"); hlist_for_each_entry_rcu(inode, head, i_hash) { if (inode->i_sb == sb && !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && test(inode, data)) return inode; } return NULL; } EXPORT_SYMBOL(find_inode_rcu); /** * find_inode_by_ino_rcu - Find an inode in the inode cache * @sb: Super block of file system to search * @ino: The inode number to match * * Search for the inode specified by @hashval and @data in the inode cache, * where the helper function @test will return 0 if the inode does not match * and 1 if it does. The @test function must be responsible for taking the * i_lock spin_lock and checking i_state for an inode being freed or being * initialized. * * If successful, this will return the inode for which the @test function * returned 1 and NULL otherwise. * * The @test function is not permitted to take a ref on any inode presented. * It is also not permitted to sleep. * * The caller must hold the RCU read lock. */ struct inode *find_inode_by_ino_rcu(struct super_block *sb, unsigned long ino) { struct hlist_head *head = inode_hashtable + hash(sb, ino); struct inode *inode; RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "suspicious find_inode_by_ino_rcu() usage"); hlist_for_each_entry_rcu(inode, head, i_hash) { if (inode->i_ino == ino && inode->i_sb == sb && !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) return inode; } return NULL; } EXPORT_SYMBOL(find_inode_by_ino_rcu); int insert_inode_locked(struct inode *inode) { struct super_block *sb = inode->i_sb; ino_t ino = inode->i_ino; struct hlist_head *head = inode_hashtable + hash(sb, ino); while (1) { struct inode *old = NULL; spin_lock(&inode_hash_lock); hlist_for_each_entry(old, head, i_hash) { if (old->i_ino != ino) continue; if (old->i_sb != sb) continue; spin_lock(&old->i_lock); if (old->i_state & (I_FREEING|I_WILL_FREE)) { spin_unlock(&old->i_lock); continue; } break; } if (likely(!old)) { spin_lock(&inode->i_lock); inode->i_state |= I_NEW | I_CREATING; hlist_add_head_rcu(&inode->i_hash, head); spin_unlock(&inode->i_lock); spin_unlock(&inode_hash_lock); return 0; } if (unlikely(old->i_state & I_CREATING)) { spin_unlock(&old->i_lock); spin_unlock(&inode_hash_lock); return -EBUSY; } __iget(old); spin_unlock(&old->i_lock); spin_unlock(&inode_hash_lock); wait_on_inode(old); if (unlikely(!inode_unhashed(old))) { iput(old); return -EBUSY; } iput(old); } } EXPORT_SYMBOL(insert_inode_locked); int insert_inode_locked4(struct inode *inode, unsigned long hashval, int (*test)(struct inode *, void *), void *data) { struct inode *old; inode->i_state |= I_CREATING; old = inode_insert5(inode, hashval, test, NULL, data); if (old != inode) { iput(old); return -EBUSY; } return 0; } EXPORT_SYMBOL(insert_inode_locked4); int generic_delete_inode(struct inode *inode) { return 1; } EXPORT_SYMBOL(generic_delete_inode); /* * Called when we're dropping the last reference * to an inode. * * Call the FS "drop_inode()" function, defaulting to * the legacy UNIX filesystem behaviour. If it tells * us to evict inode, do so. Otherwise, retain inode * in cache if fs is alive, sync and evict if fs is * shutting down. */ static void iput_final(struct inode *inode) { struct super_block *sb = inode->i_sb; const struct super_operations *op = inode->i_sb->s_op; unsigned long state; int drop; WARN_ON(inode->i_state & I_NEW); if (op->drop_inode) drop = op->drop_inode(inode); else drop = generic_drop_inode(inode); if (!drop && !(inode->i_state & I_DONTCACHE) && (sb->s_flags & SB_ACTIVE)) { __inode_add_lru(inode, true); spin_unlock(&inode->i_lock); return; } state = inode->i_state; if (!drop) { WRITE_ONCE(inode->i_state, state | I_WILL_FREE); spin_unlock(&inode->i_lock); write_inode_now(inode, 1); spin_lock(&inode->i_lock); state = inode->i_state; WARN_ON(state & I_NEW); state &= ~I_WILL_FREE; } WRITE_ONCE(inode->i_state, state | I_FREEING); if (!list_empty(&inode->i_lru)) inode_lru_list_del(inode); spin_unlock(&inode->i_lock); evict(inode); } /** * iput - put an inode * @inode: inode to put * * Puts an inode, dropping its usage count. If the inode use count hits * zero, the inode is then freed and may also be destroyed. * * Consequently, iput() can sleep. */ void iput(struct inode *inode) { if (!inode) return; BUG_ON(inode->i_state & I_CLEAR); retry: if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { atomic_inc(&inode->i_count); spin_unlock(&inode->i_lock); trace_writeback_lazytime_iput(inode); mark_inode_dirty_sync(inode); goto retry; } iput_final(inode); } } EXPORT_SYMBOL(iput); #ifdef CONFIG_BLOCK /** * bmap - find a block number in a file * @inode: inode owning the block number being requested * @block: pointer containing the block to find * * Replaces the value in ``*block`` with the block number on the device holding * corresponding to the requested block number in the file. * That is, asked for block 4 of inode 1 the function will replace the * 4 in ``*block``, with disk block relative to the disk start that holds that * block of the file. * * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a * hole, returns 0 and ``*block`` is also set to 0. */ int bmap(struct inode *inode, sector_t *block) { if (!inode->i_mapping->a_ops->bmap) return -EINVAL; *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); return 0; } EXPORT_SYMBOL(bmap); #endif /* * With relative atime, only update atime if the previous atime is * earlier than or equal to either the ctime or mtime, * or if at least a day has passed since the last atime update. */ static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode, struct timespec64 now) { struct timespec64 atime, mtime, ctime; if (!(mnt->mnt_flags & MNT_RELATIME)) return true; /* * Is mtime younger than or equal to atime? If yes, update atime: */ atime = inode_get_atime(inode); mtime = inode_get_mtime(inode); if (timespec64_compare(&mtime, &atime) >= 0) return true; /* * Is ctime younger than or equal to atime? If yes, update atime: */ ctime = inode_get_ctime(inode); if (timespec64_compare(&ctime, &atime) >= 0) return true; /* * Is the previous atime value older than a day? If yes, * update atime: */ if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60) return true; /* * Good, we can skip the atime update: */ return false; } /** * inode_update_timestamps - update the timestamps on the inode * @inode: inode to be updated * @flags: S_* flags that needed to be updated * * The update_time function is called when an inode's timestamps need to be * updated for a read or write operation. This function handles updating the * actual timestamps. It's up to the caller to ensure that the inode is marked * dirty appropriately. * * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, * attempt to update all three of them. S_ATIME updates can be handled * independently of the rest. * * Returns a set of S_* flags indicating which values changed. */ int inode_update_timestamps(struct inode *inode, int flags) { int updated = 0; struct timespec64 now; if (flags & (S_MTIME|S_CTIME|S_VERSION)) { struct timespec64 ctime = inode_get_ctime(inode); struct timespec64 mtime = inode_get_mtime(inode); now = inode_set_ctime_current(inode); if (!timespec64_equal(&now, &ctime)) updated |= S_CTIME; if (!timespec64_equal(&now, &mtime)) { inode_set_mtime_to_ts(inode, now); updated |= S_MTIME; } if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) updated |= S_VERSION; } else { now = current_time(inode); } if (flags & S_ATIME) { struct timespec64 atime = inode_get_atime(inode); if (!timespec64_equal(&now, &atime)) { inode_set_atime_to_ts(inode, now); updated |= S_ATIME; } } return updated; } EXPORT_SYMBOL(inode_update_timestamps); /** * generic_update_time - update the timestamps on the inode * @inode: inode to be updated * @flags: S_* flags that needed to be updated * * The update_time function is called when an inode's timestamps need to be * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME * updates can be handled done independently of the rest. * * Returns a S_* mask indicating which fields were updated. */ int generic_update_time(struct inode *inode, int flags) { int updated = inode_update_timestamps(inode, flags); int dirty_flags = 0; if (updated & (S_ATIME|S_MTIME|S_CTIME)) dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; if (updated & S_VERSION) dirty_flags |= I_DIRTY_SYNC; __mark_inode_dirty(inode, dirty_flags); return updated; } EXPORT_SYMBOL(generic_update_time); /* * This does the actual work of updating an inodes time or version. Must have * had called mnt_want_write() before calling this. */ int inode_update_time(struct inode *inode, int flags) { if (inode->i_op->update_time) return inode->i_op->update_time(inode, flags); generic_update_time(inode, flags); return 0; } EXPORT_SYMBOL(inode_update_time); /** * atime_needs_update - update the access time * @path: the &struct path to update * @inode: inode to update * * Update the accessed time on an inode and mark it for writeback. * This function automatically handles read only file systems and media, * as well as the "noatime" flag and inode specific "noatime" markers. */ bool atime_needs_update(const struct path *path, struct inode *inode) { struct vfsmount *mnt = path->mnt; struct timespec64 now, atime; if (inode->i_flags & S_NOATIME) return false; /* Atime updates will likely cause i_uid and i_gid to be written * back improprely if their true value is unknown to the vfs. */ if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) return false; if (IS_NOATIME(inode)) return false; if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) return false; if (mnt->mnt_flags & MNT_NOATIME) return false; if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) return false; now = current_time(inode); if (!relatime_need_update(mnt, inode, now)) return false; atime = inode_get_atime(inode); if (timespec64_equal(&atime, &now)) return false; return true; } void touch_atime(const struct path *path) { struct vfsmount *mnt = path->mnt; struct inode *inode = d_inode(path->dentry); if (!atime_needs_update(path, inode)) return; if (!sb_start_write_trylock(inode->i_sb)) return; if (mnt_get_write_access(mnt) != 0) goto skip_update; /* * File systems can error out when updating inodes if they need to * allocate new space to modify an inode (such is the case for * Btrfs), but since we touch atime while walking down the path we * really don't care if we failed to update the atime of the file, * so just ignore the return value. * We may also fail on filesystems that have the ability to make parts * of the fs read only, e.g. subvolumes in Btrfs. */ inode_update_time(inode, S_ATIME); mnt_put_write_access(mnt); skip_update: sb_end_write(inode->i_sb); } EXPORT_SYMBOL(touch_atime); /* * Return mask of changes for notify_change() that need to be done as a * response to write or truncate. Return 0 if nothing has to be changed. * Negative value on error (change should be denied). */ int dentry_needs_remove_privs(struct mnt_idmap *idmap, struct dentry *dentry) { struct inode *inode = d_inode(dentry); int mask = 0; int ret; if (IS_NOSEC(inode)) return 0; mask = setattr_should_drop_suidgid(idmap, inode); ret = security_inode_need_killpriv(dentry); if (ret < 0) return ret; if (ret) mask |= ATTR_KILL_PRIV; return mask; } static int __remove_privs(struct mnt_idmap *idmap, struct dentry *dentry, int kill) { struct iattr newattrs; newattrs.ia_valid = ATTR_FORCE | kill; /* * Note we call this on write, so notify_change will not * encounter any conflicting delegations: */ return notify_change(idmap, dentry, &newattrs, NULL); } int file_remove_privs_flags(struct file *file, unsigned int flags) { struct dentry *dentry = file_dentry(file); struct inode *inode = file_inode(file); int error = 0; int kill; if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) return 0; kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); if (kill < 0) return kill; if (kill) { if (flags & IOCB_NOWAIT) return -EAGAIN; error = __remove_privs(file_mnt_idmap(file), dentry, kill); } if (!error) inode_has_no_xattr(inode); return error; } EXPORT_SYMBOL_GPL(file_remove_privs_flags); /** * file_remove_privs - remove special file privileges (suid, capabilities) * @file: file to remove privileges from * * When file is modified by a write or truncation ensure that special * file privileges are removed. * * Return: 0 on success, negative errno on failure. */ int file_remove_privs(struct file *file) { return file_remove_privs_flags(file, 0); } EXPORT_SYMBOL(file_remove_privs); static int inode_needs_update_time(struct inode *inode) { int sync_it = 0; struct timespec64 now = current_time(inode); struct timespec64 ts; /* First try to exhaust all avenues to not sync */ if (IS_NOCMTIME(inode)) return 0; ts = inode_get_mtime(inode); if (!timespec64_equal(&ts, &now)) sync_it = S_MTIME; ts = inode_get_ctime(inode); if (!timespec64_equal(&ts, &now)) sync_it |= S_CTIME; if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) sync_it |= S_VERSION; return sync_it; } static int __file_update_time(struct file *file, int sync_mode) { int ret = 0; struct inode *inode = file_inode(file); /* try to update time settings */ if (!mnt_get_write_access_file(file)) { ret = inode_update_time(inode, sync_mode); mnt_put_write_access_file(file); } return ret; } /** * file_update_time - update mtime and ctime time * @file: file accessed * * Update the mtime and ctime members of an inode and mark the inode for * writeback. Note that this function is meant exclusively for usage in * the file write path of filesystems, and filesystems may choose to * explicitly ignore updates via this function with the _NOCMTIME inode * flag, e.g. for network filesystem where these imestamps are handled * by the server. This can return an error for file systems who need to * allocate space in order to update an inode. * * Return: 0 on success, negative errno on failure. */ int file_update_time(struct file *file) { int ret; struct inode *inode = file_inode(file); ret = inode_needs_update_time(inode); if (ret <= 0) return ret; return __file_update_time(file, ret); } EXPORT_SYMBOL(file_update_time); /** * file_modified_flags - handle mandated vfs changes when modifying a file * @file: file that was modified * @flags: kiocb flags * * When file has been modified ensure that special * file privileges are removed and time settings are updated. * * If IOCB_NOWAIT is set, special file privileges will not be removed and * time settings will not be updated. It will return -EAGAIN. * * Context: Caller must hold the file's inode lock. * * Return: 0 on success, negative errno on failure. */ static int file_modified_flags(struct file *file, int flags) { int ret; struct inode *inode = file_inode(file); /* * Clear the security bits if the process is not being run by root. * This keeps people from modifying setuid and setgid binaries. */ ret = file_remove_privs_flags(file, flags); if (ret) return ret; if (unlikely(file->f_mode & FMODE_NOCMTIME)) return 0; ret = inode_needs_update_time(inode); if (ret <= 0) return ret; if (flags & IOCB_NOWAIT) return -EAGAIN; return __file_update_time(file, ret); } /** * file_modified - handle mandated vfs changes when modifying a file * @file: file that was modified * * When file has been modified ensure that special * file privileges are removed and time settings are updated. * * Context: Caller must hold the file's inode lock. * * Return: 0 on success, negative errno on failure. */ int file_modified(struct file *file) { return file_modified_flags(file, 0); } EXPORT_SYMBOL(file_modified); /** * kiocb_modified - handle mandated vfs changes when modifying a file * @iocb: iocb that was modified * * When file has been modified ensure that special * file privileges are removed and time settings are updated. * * Context: Caller must hold the file's inode lock. * * Return: 0 on success, negative errno on failure. */ int kiocb_modified(struct kiocb *iocb) { return file_modified_flags(iocb->ki_filp, iocb->ki_flags); } EXPORT_SYMBOL_GPL(kiocb_modified); int inode_needs_sync(struct inode *inode) { if (IS_SYNC(inode)) return 1; if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) return 1; return 0; } EXPORT_SYMBOL(inode_needs_sync); /* * If we try to find an inode in the inode hash while it is being * deleted, we have to wait until the filesystem completes its * deletion before reporting that it isn't found. This function waits * until the deletion _might_ have completed. Callers are responsible * to recheck inode state. * * It doesn't matter if I_NEW is not set initially, a call to * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list * will DTRT. */ static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked) { wait_queue_head_t *wq; DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); /* * Handle racing against evict(), see that routine for more details. */ if (unlikely(inode_unhashed(inode))) { WARN_ON(is_inode_hash_locked); spin_unlock(&inode->i_lock); return; } wq = bit_waitqueue(&inode->i_state, __I_NEW); prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); spin_unlock(&inode->i_lock); rcu_read_unlock(); if (is_inode_hash_locked) spin_unlock(&inode_hash_lock); schedule(); finish_wait(wq, &wait.wq_entry); if (is_inode_hash_locked) spin_lock(&inode_hash_lock); rcu_read_lock(); } static __initdata unsigned long ihash_entries; static int __init set_ihash_entries(char *str) { if (!str) return 0; ihash_entries = simple_strtoul(str, &str, 0); return 1; } __setup("ihash_entries=", set_ihash_entries); /* * Initialize the waitqueues and inode hash table. */ void __init inode_init_early(void) { /* If hashes are distributed across NUMA nodes, defer * hash allocation until vmalloc space is available. */ if (hashdist) return; inode_hashtable = alloc_large_system_hash("Inode-cache", sizeof(struct hlist_head), ihash_entries, 14, HASH_EARLY | HASH_ZERO, &i_hash_shift, &i_hash_mask, 0, 0); } void __init inode_init(void) { /* inode slab cache */ inode_cachep = kmem_cache_create("inode_cache", sizeof(struct inode), 0, (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| SLAB_ACCOUNT), init_once); /* Hash may have been set up in inode_init_early */ if (!hashdist) return; inode_hashtable = alloc_large_system_hash("Inode-cache", sizeof(struct hlist_head), ihash_entries, 14, HASH_ZERO, &i_hash_shift, &i_hash_mask, 0, 0); } void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) { inode->i_mode = mode; if (S_ISCHR(mode)) { inode->i_fop = &def_chr_fops; inode->i_rdev = rdev; } else if (S_ISBLK(mode)) { if (IS_ENABLED(CONFIG_BLOCK)) inode->i_fop = &def_blk_fops; inode->i_rdev = rdev; } else if (S_ISFIFO(mode)) inode->i_fop = &pipefifo_fops; else if (S_ISSOCK(mode)) ; /* leave it no_open_fops */ else printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" " inode %s:%lu\n", mode, inode->i_sb->s_id, inode->i_ino); } EXPORT_SYMBOL(init_special_inode); /** * inode_init_owner - Init uid,gid,mode for new inode according to posix standards * @idmap: idmap of the mount the inode was created from * @inode: New inode * @dir: Directory inode * @mode: mode of the new inode * * If the inode has been created through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions * and initializing i_uid and i_gid. On non-idmapped mounts or if permission * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. */ void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, const struct inode *dir, umode_t mode) { inode_fsuid_set(inode, idmap); if (dir && dir->i_mode & S_ISGID) { inode->i_gid = dir->i_gid; /* Directories are special, and always inherit S_ISGID */ if (S_ISDIR(mode)) mode |= S_ISGID; } else inode_fsgid_set(inode, idmap); inode->i_mode = mode; } EXPORT_SYMBOL(inode_init_owner); /** * inode_owner_or_capable - check current task permissions to inode * @idmap: idmap of the mount the inode was found from * @inode: inode being checked * * Return true if current either has CAP_FOWNER in a namespace with the * inode owner uid mapped, or owns the file. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ bool inode_owner_or_capable(struct mnt_idmap *idmap, const struct inode *inode) { vfsuid_t vfsuid; struct user_namespace *ns; vfsuid = i_uid_into_vfsuid(idmap, inode); if (vfsuid_eq_kuid(vfsuid, current_fsuid())) return true; ns = current_user_ns(); if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) return true; return false; } EXPORT_SYMBOL(inode_owner_or_capable); /* * Direct i/o helper functions */ static void __inode_dio_wait(struct inode *inode) { wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); do { prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); if (atomic_read(&inode->i_dio_count)) schedule(); } while (atomic_read(&inode->i_dio_count)); finish_wait(wq, &q.wq_entry); } /** * inode_dio_wait - wait for outstanding DIO requests to finish * @inode: inode to wait for * * Waits for all pending direct I/O requests to finish so that we can * proceed with a truncate or equivalent operation. * * Must be called under a lock that serializes taking new references * to i_dio_count, usually by inode->i_mutex. */ void inode_dio_wait(struct inode *inode) { if (atomic_read(&inode->i_dio_count)) __inode_dio_wait(inode); } EXPORT_SYMBOL(inode_dio_wait); /* * inode_set_flags - atomically set some inode flags * * Note: the caller should be holding i_mutex, or else be sure that * they have exclusive access to the inode structure (i.e., while the * inode is being instantiated). The reason for the cmpxchg() loop * --- which wouldn't be necessary if all code paths which modify * i_flags actually followed this rule, is that there is at least one * code path which doesn't today so we use cmpxchg() out of an abundance * of caution. * * In the long run, i_mutex is overkill, and we should probably look * at using the i_lock spinlock to protect i_flags, and then make sure * it is so documented in include/linux/fs.h and that all code follows * the locking convention!! */ void inode_set_flags(struct inode *inode, unsigned int flags, unsigned int mask) { WARN_ON_ONCE(flags & ~mask); set_mask_bits(&inode->i_flags, mask, flags); } EXPORT_SYMBOL(inode_set_flags); void inode_nohighmem(struct inode *inode) { mapping_set_gfp_mask(inode->i_mapping, GFP_USER); } EXPORT_SYMBOL(inode_nohighmem); /** * timestamp_truncate - Truncate timespec to a granularity * @t: Timespec * @inode: inode being updated * * Truncate a timespec to the granularity supported by the fs * containing the inode. Always rounds down. gran must * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). */ struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) { struct super_block *sb = inode->i_sb; unsigned int gran = sb->s_time_gran; t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) t.tv_nsec = 0; /* Avoid division in the common cases 1 ns and 1 s. */ if (gran == 1) ; /* nothing */ else if (gran == NSEC_PER_SEC) t.tv_nsec = 0; else if (gran > 1 && gran < NSEC_PER_SEC) t.tv_nsec -= t.tv_nsec % gran; else WARN(1, "invalid file time granularity: %u", gran); return t; } EXPORT_SYMBOL(timestamp_truncate); /** * current_time - Return FS time * @inode: inode. * * Return the current time truncated to the time granularity supported by * the fs. * * Note that inode and inode->sb cannot be NULL. * Otherwise, the function warns and returns time without truncation. */ struct timespec64 current_time(struct inode *inode) { struct timespec64 now; ktime_get_coarse_real_ts64(&now); return timestamp_truncate(now, inode); } EXPORT_SYMBOL(current_time); /** * inode_set_ctime_current - set the ctime to current_time * @inode: inode * * Set the inode->i_ctime to the current value for the inode. Returns * the current value that was assigned to i_ctime. */ struct timespec64 inode_set_ctime_current(struct inode *inode) { struct timespec64 now = current_time(inode); inode_set_ctime_to_ts(inode, now); return now; } EXPORT_SYMBOL(inode_set_ctime_current); /** * in_group_or_capable - check whether caller is CAP_FSETID privileged * @idmap: idmap of the mount @inode was found from * @inode: inode to check * @vfsgid: the new/current vfsgid of @inode * * Check wether @vfsgid is in the caller's group list or if the caller is * privileged with CAP_FSETID over @inode. This can be used to determine * whether the setgid bit can be kept or must be dropped. * * Return: true if the caller is sufficiently privileged, false if not. */ bool in_group_or_capable(struct mnt_idmap *idmap, const struct inode *inode, vfsgid_t vfsgid) { if (vfsgid_in_group_p(vfsgid)) return true; if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) return true; return false; } EXPORT_SYMBOL(in_group_or_capable); /** * mode_strip_sgid - handle the sgid bit for non-directories * @idmap: idmap of the mount the inode was created from * @dir: parent directory inode * @mode: mode of the file to be created in @dir * * If the @mode of the new file has both the S_ISGID and S_IXGRP bit * raised and @dir has the S_ISGID bit raised ensure that the caller is * either in the group of the parent directory or they have CAP_FSETID * in their user namespace and are privileged over the parent directory. * In all other cases, strip the S_ISGID bit from @mode. * * Return: the new mode to use for the file */ umode_t mode_strip_sgid(struct mnt_idmap *idmap, const struct inode *dir, umode_t mode) { if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) return mode; if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) return mode; if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) return mode; return mode & ~S_ISGID; } EXPORT_SYMBOL(mode_strip_sgid);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1