Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jeff Layton | 4199 | 35.18% | 98 | 25.00% |
Linus Torvalds (pre-git) | 2190 | 18.35% | 60 | 15.31% |
J. Bruce Fields | 813 | 6.81% | 32 | 8.16% |
Matthew Wilcox | 486 | 4.07% | 10 | 2.55% |
Trond Myklebust | 407 | 3.41% | 12 | 3.06% |
Neil Brown | 298 | 2.50% | 10 | 2.55% |
Stephen Rothwell | 279 | 2.34% | 4 | 1.02% |
Miklos Szeredi | 271 | 2.27% | 12 | 3.06% |
Benjamin Coddington | 261 | 2.19% | 7 | 1.79% |
Dai Ngo | 233 | 1.95% | 2 | 0.51% |
Peter Zijlstra | 217 | 1.82% | 6 | 1.53% |
Andrey Vagin | 191 | 1.60% | 1 | 0.26% |
Luo Longjun | 190 | 1.59% | 1 | 0.26% |
William A. Adamson | 163 | 1.37% | 6 | 1.53% |
Linus Torvalds | 152 | 1.27% | 11 | 2.81% |
Pavel Emelyanov | 150 | 1.26% | 3 | 0.77% |
Al Viro | 121 | 1.01% | 9 | 2.30% |
Kuniyuki Iwashima | 106 | 0.89% | 2 | 0.51% |
Ken Preslan | 103 | 0.86% | 1 | 0.26% |
Christoph Hellwig | 96 | 0.80% | 9 | 2.30% |
Marc Eshel | 94 | 0.79% | 4 | 1.02% |
Dmitriy Vyukov | 84 | 0.70% | 1 | 0.26% |
Amir Goldstein | 73 | 0.61% | 3 | 0.77% |
Kinglong Mee | 69 | 0.58% | 3 | 0.77% |
Luis R. Rodriguez | 63 | 0.53% | 1 | 0.26% |
Stas Sergeev | 58 | 0.49% | 1 | 0.26% |
Arnd Bergmann | 54 | 0.45% | 4 | 1.02% |
Nikolay Borisov | 41 | 0.34% | 2 | 0.51% |
Andy Adamson | 35 | 0.29% | 2 | 0.51% |
Ira Weiny | 35 | 0.29% | 1 | 0.26% |
Andrew Morton | 28 | 0.23% | 6 | 1.53% |
Peter Staubach | 26 | 0.22% | 1 | 0.26% |
Andries E. Brouwer | 25 | 0.21% | 2 | 0.51% |
Alexey Dobriyan | 23 | 0.19% | 4 | 1.02% |
Filipe Brandenburger | 23 | 0.19% | 1 | 0.26% |
Andi Kleen | 21 | 0.18% | 3 | 0.77% |
Konstantin Khorenko | 16 | 0.13% | 2 | 0.51% |
Jerome Marchand | 16 | 0.13% | 1 | 0.26% |
Heiko Carstens | 12 | 0.10% | 2 | 0.51% |
Art Haas | 12 | 0.10% | 1 | 0.26% |
Vitaliy Gusev | 11 | 0.09% | 1 | 0.26% |
Luca Vizzarro | 10 | 0.08% | 1 | 0.26% |
Fabian Frederick | 10 | 0.08% | 1 | 0.26% |
Arnaldo Carvalho de Melo | 10 | 0.08% | 1 | 0.26% |
Yan Zheng | 9 | 0.08% | 1 | 0.26% |
Stephen D. Smalley | 8 | 0.07% | 1 | 0.26% |
Greg Kroah-Hartman | 7 | 0.06% | 3 | 0.77% |
Nicholas Piggin | 7 | 0.06% | 2 | 0.51% |
Eric W. Biedermann | 7 | 0.06% | 2 | 0.51% |
Pavel Begunkov | 7 | 0.06% | 1 | 0.26% |
yangerkun | 7 | 0.06% | 1 | 0.26% |
Jann Horn | 6 | 0.05% | 2 | 0.51% |
David Howells | 6 | 0.05% | 1 | 0.26% |
Alexey Gladkov | 6 | 0.05% | 1 | 0.26% |
Christoph Lameter | 6 | 0.05% | 2 | 0.51% |
Gustavo A. R. Silva | 6 | 0.05% | 1 | 0.26% |
Chip Salzenberg | 5 | 0.04% | 1 | 0.26% |
Felix Blyakher | 5 | 0.04% | 1 | 0.26% |
Wenwen Wang | 5 | 0.04% | 1 | 0.26% |
Mimi Zohar | 5 | 0.04% | 1 | 0.26% |
Dave Jones | 4 | 0.03% | 1 | 0.26% |
Roland Dreier | 4 | 0.03% | 1 | 0.26% |
Namhyung Kim | 4 | 0.03% | 1 | 0.26% |
Ingo Molnar | 4 | 0.03% | 1 | 0.26% |
Christian Ehrhardt | 4 | 0.03% | 1 | 0.26% |
Kirill Korotaev | 4 | 0.03% | 1 | 0.26% |
Olaf Kirch | 3 | 0.03% | 1 | 0.26% |
Adrian Bunk | 3 | 0.03% | 2 | 0.51% |
Steve French | 3 | 0.03% | 1 | 0.26% |
Dipankar Sarma | 3 | 0.03% | 1 | 0.26% |
Josef 'Jeff' Sipek | 3 | 0.03% | 1 | 0.26% |
Daniel Wagner | 3 | 0.03% | 1 | 0.26% |
Arjan van de Ven | 3 | 0.03% | 1 | 0.26% |
Luo Meng | 2 | 0.02% | 1 | 0.26% |
Matthias Kaehlcke | 2 | 0.02% | 1 | 0.26% |
Geliang Tang | 2 | 0.02% | 1 | 0.26% |
Deepa Dinamani | 2 | 0.02% | 2 | 0.51% |
Randy Hron | 1 | 0.01% | 1 | 0.26% |
Alexander Aring | 1 | 0.01% | 1 | 0.26% |
Paul Gortmaker | 1 | 0.01% | 1 | 0.26% |
Jakub Wilk | 1 | 0.01% | 1 | 0.26% |
Thomas Gleixner | 1 | 0.01% | 1 | 0.26% |
Omar Sandoval | 1 | 0.01% | 1 | 0.26% |
Total | 11936 | 392 |
// SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/locks.c * * We implement four types of file locks: BSD locks, posix locks, open * file description locks, and leases. For details about BSD locks, * see the flock(2) man page; for details about the other three, see * fcntl(2). * * * Locking conflicts and dependencies: * If multiple threads attempt to lock the same byte (or flock the same file) * only one can be granted the lock, and other must wait their turn. * The first lock has been "applied" or "granted", the others are "waiting" * and are "blocked" by the "applied" lock.. * * Waiting and applied locks are all kept in trees whose properties are: * * - the root of a tree may be an applied or waiting lock. * - every other node in the tree is a waiting lock that * conflicts with every ancestor of that node. * * Every such tree begins life as a waiting singleton which obviously * satisfies the above properties. * * The only ways we modify trees preserve these properties: * * 1. We may add a new leaf node, but only after first verifying that it * conflicts with all of its ancestors. * 2. We may remove the root of a tree, creating a new singleton * tree from the root and N new trees rooted in the immediate * children. * 3. If the root of a tree is not currently an applied lock, we may * apply it (if possible). * 4. We may upgrade the root of the tree (either extend its range, * or upgrade its entire range from read to write). * * When an applied lock is modified in a way that reduces or downgrades any * part of its range, we remove all its children (2 above). This particularly * happens when a lock is unlocked. * * For each of those child trees we "wake up" the thread which is * waiting for the lock so it can continue handling as follows: if the * root of the tree applies, we do so (3). If it doesn't, it must * conflict with some applied lock. We remove (wake up) all of its children * (2), and add it is a new leaf to the tree rooted in the applied * lock (1). We then repeat the process recursively with those * children. * */ #include <linux/capability.h> #include <linux/file.h> #include <linux/fdtable.h> #include <linux/filelock.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/security.h> #include <linux/slab.h> #include <linux/syscalls.h> #include <linux/time.h> #include <linux/rcupdate.h> #include <linux/pid_namespace.h> #include <linux/hashtable.h> #include <linux/percpu.h> #include <linux/sysctl.h> #define CREATE_TRACE_POINTS #include <trace/events/filelock.h> #include <linux/uaccess.h> static struct file_lock *file_lock(struct file_lock_core *flc) { return container_of(flc, struct file_lock, c); } static struct file_lease *file_lease(struct file_lock_core *flc) { return container_of(flc, struct file_lease, c); } static bool lease_breaking(struct file_lease *fl) { return fl->c.flc_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING); } static int target_leasetype(struct file_lease *fl) { if (fl->c.flc_flags & FL_UNLOCK_PENDING) return F_UNLCK; if (fl->c.flc_flags & FL_DOWNGRADE_PENDING) return F_RDLCK; return fl->c.flc_type; } static int leases_enable = 1; static int lease_break_time = 45; #ifdef CONFIG_SYSCTL static struct ctl_table locks_sysctls[] = { { .procname = "leases-enable", .data = &leases_enable, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, #ifdef CONFIG_MMU { .procname = "lease-break-time", .data = &lease_break_time, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, #endif /* CONFIG_MMU */ }; static int __init init_fs_locks_sysctls(void) { register_sysctl_init("fs", locks_sysctls); return 0; } early_initcall(init_fs_locks_sysctls); #endif /* CONFIG_SYSCTL */ /* * The global file_lock_list is only used for displaying /proc/locks, so we * keep a list on each CPU, with each list protected by its own spinlock. * Global serialization is done using file_rwsem. * * Note that alterations to the list also require that the relevant flc_lock is * held. */ struct file_lock_list_struct { spinlock_t lock; struct hlist_head hlist; }; static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list); DEFINE_STATIC_PERCPU_RWSEM(file_rwsem); /* * The blocked_hash is used to find POSIX lock loops for deadlock detection. * It is protected by blocked_lock_lock. * * We hash locks by lockowner in order to optimize searching for the lock a * particular lockowner is waiting on. * * FIXME: make this value scale via some heuristic? We generally will want more * buckets when we have more lockowners holding locks, but that's a little * difficult to determine without knowing what the workload will look like. */ #define BLOCKED_HASH_BITS 7 static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS); /* * This lock protects the blocked_hash. Generally, if you're accessing it, you * want to be holding this lock. * * In addition, it also protects the fl->fl_blocked_requests list, and the * fl->fl_blocker pointer for file_lock structures that are acting as lock * requests (in contrast to those that are acting as records of acquired locks). * * Note that when we acquire this lock in order to change the above fields, * we often hold the flc_lock as well. In certain cases, when reading the fields * protected by this lock, we can skip acquiring it iff we already hold the * flc_lock. */ static DEFINE_SPINLOCK(blocked_lock_lock); static struct kmem_cache *flctx_cache __ro_after_init; static struct kmem_cache *filelock_cache __ro_after_init; static struct kmem_cache *filelease_cache __ro_after_init; static struct file_lock_context * locks_get_lock_context(struct inode *inode, int type) { struct file_lock_context *ctx; /* paired with cmpxchg() below */ ctx = locks_inode_context(inode); if (likely(ctx) || type == F_UNLCK) goto out; ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL); if (!ctx) goto out; spin_lock_init(&ctx->flc_lock); INIT_LIST_HEAD(&ctx->flc_flock); INIT_LIST_HEAD(&ctx->flc_posix); INIT_LIST_HEAD(&ctx->flc_lease); /* * Assign the pointer if it's not already assigned. If it is, then * free the context we just allocated. */ if (cmpxchg(&inode->i_flctx, NULL, ctx)) { kmem_cache_free(flctx_cache, ctx); ctx = locks_inode_context(inode); } out: trace_locks_get_lock_context(inode, type, ctx); return ctx; } static void locks_dump_ctx_list(struct list_head *list, char *list_type) { struct file_lock_core *flc; list_for_each_entry(flc, list, flc_list) pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, flc->flc_owner, flc->flc_flags, flc->flc_type, flc->flc_pid); } static void locks_check_ctx_lists(struct inode *inode) { struct file_lock_context *ctx = inode->i_flctx; if (unlikely(!list_empty(&ctx->flc_flock) || !list_empty(&ctx->flc_posix) || !list_empty(&ctx->flc_lease))) { pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n", MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev), inode->i_ino); locks_dump_ctx_list(&ctx->flc_flock, "FLOCK"); locks_dump_ctx_list(&ctx->flc_posix, "POSIX"); locks_dump_ctx_list(&ctx->flc_lease, "LEASE"); } } static void locks_check_ctx_file_list(struct file *filp, struct list_head *list, char *list_type) { struct file_lock_core *flc; struct inode *inode = file_inode(filp); list_for_each_entry(flc, list, flc_list) if (flc->flc_file == filp) pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx " " fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev), inode->i_ino, flc->flc_owner, flc->flc_flags, flc->flc_type, flc->flc_pid); } void locks_free_lock_context(struct inode *inode) { struct file_lock_context *ctx = locks_inode_context(inode); if (unlikely(ctx)) { locks_check_ctx_lists(inode); kmem_cache_free(flctx_cache, ctx); } } static void locks_init_lock_heads(struct file_lock_core *flc) { INIT_HLIST_NODE(&flc->flc_link); INIT_LIST_HEAD(&flc->flc_list); INIT_LIST_HEAD(&flc->flc_blocked_requests); INIT_LIST_HEAD(&flc->flc_blocked_member); init_waitqueue_head(&flc->flc_wait); } /* Allocate an empty lock structure. */ struct file_lock *locks_alloc_lock(void) { struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL); if (fl) locks_init_lock_heads(&fl->c); return fl; } EXPORT_SYMBOL_GPL(locks_alloc_lock); /* Allocate an empty lock structure. */ struct file_lease *locks_alloc_lease(void) { struct file_lease *fl = kmem_cache_zalloc(filelease_cache, GFP_KERNEL); if (fl) locks_init_lock_heads(&fl->c); return fl; } EXPORT_SYMBOL_GPL(locks_alloc_lease); void locks_release_private(struct file_lock *fl) { struct file_lock_core *flc = &fl->c; BUG_ON(waitqueue_active(&flc->flc_wait)); BUG_ON(!list_empty(&flc->flc_list)); BUG_ON(!list_empty(&flc->flc_blocked_requests)); BUG_ON(!list_empty(&flc->flc_blocked_member)); BUG_ON(!hlist_unhashed(&flc->flc_link)); if (fl->fl_ops) { if (fl->fl_ops->fl_release_private) fl->fl_ops->fl_release_private(fl); fl->fl_ops = NULL; } if (fl->fl_lmops) { if (fl->fl_lmops->lm_put_owner) { fl->fl_lmops->lm_put_owner(flc->flc_owner); flc->flc_owner = NULL; } fl->fl_lmops = NULL; } } EXPORT_SYMBOL_GPL(locks_release_private); /** * locks_owner_has_blockers - Check for blocking lock requests * @flctx: file lock context * @owner: lock owner * * Return values: * %true: @owner has at least one blocker * %false: @owner has no blockers */ bool locks_owner_has_blockers(struct file_lock_context *flctx, fl_owner_t owner) { struct file_lock_core *flc; spin_lock(&flctx->flc_lock); list_for_each_entry(flc, &flctx->flc_posix, flc_list) { if (flc->flc_owner != owner) continue; if (!list_empty(&flc->flc_blocked_requests)) { spin_unlock(&flctx->flc_lock); return true; } } spin_unlock(&flctx->flc_lock); return false; } EXPORT_SYMBOL_GPL(locks_owner_has_blockers); /* Free a lock which is not in use. */ void locks_free_lock(struct file_lock *fl) { locks_release_private(fl); kmem_cache_free(filelock_cache, fl); } EXPORT_SYMBOL(locks_free_lock); /* Free a lease which is not in use. */ void locks_free_lease(struct file_lease *fl) { kmem_cache_free(filelease_cache, fl); } EXPORT_SYMBOL(locks_free_lease); static void locks_dispose_list(struct list_head *dispose) { struct file_lock_core *flc; while (!list_empty(dispose)) { flc = list_first_entry(dispose, struct file_lock_core, flc_list); list_del_init(&flc->flc_list); if (flc->flc_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT)) locks_free_lease(file_lease(flc)); else locks_free_lock(file_lock(flc)); } } void locks_init_lock(struct file_lock *fl) { memset(fl, 0, sizeof(struct file_lock)); locks_init_lock_heads(&fl->c); } EXPORT_SYMBOL(locks_init_lock); void locks_init_lease(struct file_lease *fl) { memset(fl, 0, sizeof(*fl)); locks_init_lock_heads(&fl->c); } EXPORT_SYMBOL(locks_init_lease); /* * Initialize a new lock from an existing file_lock structure. */ void locks_copy_conflock(struct file_lock *new, struct file_lock *fl) { new->c.flc_owner = fl->c.flc_owner; new->c.flc_pid = fl->c.flc_pid; new->c.flc_file = NULL; new->c.flc_flags = fl->c.flc_flags; new->c.flc_type = fl->c.flc_type; new->fl_start = fl->fl_start; new->fl_end = fl->fl_end; new->fl_lmops = fl->fl_lmops; new->fl_ops = NULL; if (fl->fl_lmops) { if (fl->fl_lmops->lm_get_owner) fl->fl_lmops->lm_get_owner(fl->c.flc_owner); } } EXPORT_SYMBOL(locks_copy_conflock); void locks_copy_lock(struct file_lock *new, struct file_lock *fl) { /* "new" must be a freshly-initialized lock */ WARN_ON_ONCE(new->fl_ops); locks_copy_conflock(new, fl); new->c.flc_file = fl->c.flc_file; new->fl_ops = fl->fl_ops; if (fl->fl_ops) { if (fl->fl_ops->fl_copy_lock) fl->fl_ops->fl_copy_lock(new, fl); } } EXPORT_SYMBOL(locks_copy_lock); static void locks_move_blocks(struct file_lock *new, struct file_lock *fl) { struct file_lock *f; /* * As ctx->flc_lock is held, new requests cannot be added to * ->flc_blocked_requests, so we don't need a lock to check if it * is empty. */ if (list_empty(&fl->c.flc_blocked_requests)) return; spin_lock(&blocked_lock_lock); list_splice_init(&fl->c.flc_blocked_requests, &new->c.flc_blocked_requests); list_for_each_entry(f, &new->c.flc_blocked_requests, c.flc_blocked_member) f->c.flc_blocker = &new->c; spin_unlock(&blocked_lock_lock); } static inline int flock_translate_cmd(int cmd) { switch (cmd) { case LOCK_SH: return F_RDLCK; case LOCK_EX: return F_WRLCK; case LOCK_UN: return F_UNLCK; } return -EINVAL; } /* Fill in a file_lock structure with an appropriate FLOCK lock. */ static void flock_make_lock(struct file *filp, struct file_lock *fl, int type) { locks_init_lock(fl); fl->c.flc_file = filp; fl->c.flc_owner = filp; fl->c.flc_pid = current->tgid; fl->c.flc_flags = FL_FLOCK; fl->c.flc_type = type; fl->fl_end = OFFSET_MAX; } static int assign_type(struct file_lock_core *flc, int type) { switch (type) { case F_RDLCK: case F_WRLCK: case F_UNLCK: flc->flc_type = type; break; default: return -EINVAL; } return 0; } static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl, struct flock64 *l) { switch (l->l_whence) { case SEEK_SET: fl->fl_start = 0; break; case SEEK_CUR: fl->fl_start = filp->f_pos; break; case SEEK_END: fl->fl_start = i_size_read(file_inode(filp)); break; default: return -EINVAL; } if (l->l_start > OFFSET_MAX - fl->fl_start) return -EOVERFLOW; fl->fl_start += l->l_start; if (fl->fl_start < 0) return -EINVAL; /* POSIX-1996 leaves the case l->l_len < 0 undefined; POSIX-2001 defines it. */ if (l->l_len > 0) { if (l->l_len - 1 > OFFSET_MAX - fl->fl_start) return -EOVERFLOW; fl->fl_end = fl->fl_start + (l->l_len - 1); } else if (l->l_len < 0) { if (fl->fl_start + l->l_len < 0) return -EINVAL; fl->fl_end = fl->fl_start - 1; fl->fl_start += l->l_len; } else fl->fl_end = OFFSET_MAX; fl->c.flc_owner = current->files; fl->c.flc_pid = current->tgid; fl->c.flc_file = filp; fl->c.flc_flags = FL_POSIX; fl->fl_ops = NULL; fl->fl_lmops = NULL; return assign_type(&fl->c, l->l_type); } /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX * style lock. */ static int flock_to_posix_lock(struct file *filp, struct file_lock *fl, struct flock *l) { struct flock64 ll = { .l_type = l->l_type, .l_whence = l->l_whence, .l_start = l->l_start, .l_len = l->l_len, }; return flock64_to_posix_lock(filp, fl, &ll); } /* default lease lock manager operations */ static bool lease_break_callback(struct file_lease *fl) { kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG); return false; } static void lease_setup(struct file_lease *fl, void **priv) { struct file *filp = fl->c.flc_file; struct fasync_struct *fa = *priv; /* * fasync_insert_entry() returns the old entry if any. If there was no * old entry, then it used "priv" and inserted it into the fasync list. * Clear the pointer to indicate that it shouldn't be freed. */ if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa)) *priv = NULL; __f_setown(filp, task_pid(current), PIDTYPE_TGID, 0); } static const struct lease_manager_operations lease_manager_ops = { .lm_break = lease_break_callback, .lm_change = lease_modify, .lm_setup = lease_setup, }; /* * Initialize a lease, use the default lock manager operations */ static int lease_init(struct file *filp, int type, struct file_lease *fl) { if (assign_type(&fl->c, type) != 0) return -EINVAL; fl->c.flc_owner = filp; fl->c.flc_pid = current->tgid; fl->c.flc_file = filp; fl->c.flc_flags = FL_LEASE; fl->fl_lmops = &lease_manager_ops; return 0; } /* Allocate a file_lock initialised to this type of lease */ static struct file_lease *lease_alloc(struct file *filp, int type) { struct file_lease *fl = locks_alloc_lease(); int error = -ENOMEM; if (fl == NULL) return ERR_PTR(error); error = lease_init(filp, type, fl); if (error) { locks_free_lease(fl); return ERR_PTR(error); } return fl; } /* Check if two locks overlap each other. */ static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2) { return ((fl1->fl_end >= fl2->fl_start) && (fl2->fl_end >= fl1->fl_start)); } /* * Check whether two locks have the same owner. */ static int posix_same_owner(struct file_lock_core *fl1, struct file_lock_core *fl2) { return fl1->flc_owner == fl2->flc_owner; } /* Must be called with the flc_lock held! */ static void locks_insert_global_locks(struct file_lock_core *flc) { struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list); percpu_rwsem_assert_held(&file_rwsem); spin_lock(&fll->lock); flc->flc_link_cpu = smp_processor_id(); hlist_add_head(&flc->flc_link, &fll->hlist); spin_unlock(&fll->lock); } /* Must be called with the flc_lock held! */ static void locks_delete_global_locks(struct file_lock_core *flc) { struct file_lock_list_struct *fll; percpu_rwsem_assert_held(&file_rwsem); /* * Avoid taking lock if already unhashed. This is safe since this check * is done while holding the flc_lock, and new insertions into the list * also require that it be held. */ if (hlist_unhashed(&flc->flc_link)) return; fll = per_cpu_ptr(&file_lock_list, flc->flc_link_cpu); spin_lock(&fll->lock); hlist_del_init(&flc->flc_link); spin_unlock(&fll->lock); } static unsigned long posix_owner_key(struct file_lock_core *flc) { return (unsigned long) flc->flc_owner; } static void locks_insert_global_blocked(struct file_lock_core *waiter) { lockdep_assert_held(&blocked_lock_lock); hash_add(blocked_hash, &waiter->flc_link, posix_owner_key(waiter)); } static void locks_delete_global_blocked(struct file_lock_core *waiter) { lockdep_assert_held(&blocked_lock_lock); hash_del(&waiter->flc_link); } /* Remove waiter from blocker's block list. * When blocker ends up pointing to itself then the list is empty. * * Must be called with blocked_lock_lock held. */ static void __locks_unlink_block(struct file_lock_core *waiter) { locks_delete_global_blocked(waiter); list_del_init(&waiter->flc_blocked_member); } static void __locks_wake_up_blocks(struct file_lock_core *blocker) { while (!list_empty(&blocker->flc_blocked_requests)) { struct file_lock_core *waiter; struct file_lock *fl; waiter = list_first_entry(&blocker->flc_blocked_requests, struct file_lock_core, flc_blocked_member); fl = file_lock(waiter); __locks_unlink_block(waiter); if ((waiter->flc_flags & (FL_POSIX | FL_FLOCK)) && fl->fl_lmops && fl->fl_lmops->lm_notify) fl->fl_lmops->lm_notify(fl); else locks_wake_up(fl); /* * The setting of flc_blocker to NULL marks the "done" * point in deleting a block. Paired with acquire at the top * of locks_delete_block(). */ smp_store_release(&waiter->flc_blocker, NULL); } } static int __locks_delete_block(struct file_lock_core *waiter) { int status = -ENOENT; /* * If fl_blocker is NULL, it won't be set again as this thread "owns" * the lock and is the only one that might try to claim the lock. * * We use acquire/release to manage fl_blocker so that we can * optimize away taking the blocked_lock_lock in many cases. * * The smp_load_acquire guarantees two things: * * 1/ that fl_blocked_requests can be tested locklessly. If something * was recently added to that list it must have been in a locked region * *before* the locked region when fl_blocker was set to NULL. * * 2/ that no other thread is accessing 'waiter', so it is safe to free * it. __locks_wake_up_blocks is careful not to touch waiter after * fl_blocker is released. * * If a lockless check of fl_blocker shows it to be NULL, we know that * no new locks can be inserted into its fl_blocked_requests list, and * can avoid doing anything further if the list is empty. */ if (!smp_load_acquire(&waiter->flc_blocker) && list_empty(&waiter->flc_blocked_requests)) return status; spin_lock(&blocked_lock_lock); if (waiter->flc_blocker) status = 0; __locks_wake_up_blocks(waiter); __locks_unlink_block(waiter); /* * The setting of fl_blocker to NULL marks the "done" point in deleting * a block. Paired with acquire at the top of this function. */ smp_store_release(&waiter->flc_blocker, NULL); spin_unlock(&blocked_lock_lock); return status; } /** * locks_delete_block - stop waiting for a file lock * @waiter: the lock which was waiting * * lockd/nfsd need to disconnect the lock while working on it. */ int locks_delete_block(struct file_lock *waiter) { return __locks_delete_block(&waiter->c); } EXPORT_SYMBOL(locks_delete_block); /* Insert waiter into blocker's block list. * We use a circular list so that processes can be easily woken up in * the order they blocked. The documentation doesn't require this but * it seems like the reasonable thing to do. * * Must be called with both the flc_lock and blocked_lock_lock held. The * fl_blocked_requests list itself is protected by the blocked_lock_lock, * but by ensuring that the flc_lock is also held on insertions we can avoid * taking the blocked_lock_lock in some cases when we see that the * fl_blocked_requests list is empty. * * Rather than just adding to the list, we check for conflicts with any existing * waiters, and add beneath any waiter that blocks the new waiter. * Thus wakeups don't happen until needed. */ static void __locks_insert_block(struct file_lock_core *blocker, struct file_lock_core *waiter, bool conflict(struct file_lock_core *, struct file_lock_core *)) { struct file_lock_core *flc; BUG_ON(!list_empty(&waiter->flc_blocked_member)); new_blocker: list_for_each_entry(flc, &blocker->flc_blocked_requests, flc_blocked_member) if (conflict(flc, waiter)) { blocker = flc; goto new_blocker; } waiter->flc_blocker = blocker; list_add_tail(&waiter->flc_blocked_member, &blocker->flc_blocked_requests); if ((blocker->flc_flags & (FL_POSIX|FL_OFDLCK)) == FL_POSIX) locks_insert_global_blocked(waiter); /* The requests in waiter->flc_blocked are known to conflict with * waiter, but might not conflict with blocker, or the requests * and lock which block it. So they all need to be woken. */ __locks_wake_up_blocks(waiter); } /* Must be called with flc_lock held. */ static void locks_insert_block(struct file_lock_core *blocker, struct file_lock_core *waiter, bool conflict(struct file_lock_core *, struct file_lock_core *)) { spin_lock(&blocked_lock_lock); __locks_insert_block(blocker, waiter, conflict); spin_unlock(&blocked_lock_lock); } /* * Wake up processes blocked waiting for blocker. * * Must be called with the inode->flc_lock held! */ static void locks_wake_up_blocks(struct file_lock_core *blocker) { /* * Avoid taking global lock if list is empty. This is safe since new * blocked requests are only added to the list under the flc_lock, and * the flc_lock is always held here. Note that removal from the * fl_blocked_requests list does not require the flc_lock, so we must * recheck list_empty() after acquiring the blocked_lock_lock. */ if (list_empty(&blocker->flc_blocked_requests)) return; spin_lock(&blocked_lock_lock); __locks_wake_up_blocks(blocker); spin_unlock(&blocked_lock_lock); } static void locks_insert_lock_ctx(struct file_lock_core *fl, struct list_head *before) { list_add_tail(&fl->flc_list, before); locks_insert_global_locks(fl); } static void locks_unlink_lock_ctx(struct file_lock_core *fl) { locks_delete_global_locks(fl); list_del_init(&fl->flc_list); locks_wake_up_blocks(fl); } static void locks_delete_lock_ctx(struct file_lock_core *fl, struct list_head *dispose) { locks_unlink_lock_ctx(fl); if (dispose) list_add(&fl->flc_list, dispose); else locks_free_lock(file_lock(fl)); } /* Determine if lock sys_fl blocks lock caller_fl. Common functionality * checks for shared/exclusive status of overlapping locks. */ static bool locks_conflict(struct file_lock_core *caller_flc, struct file_lock_core *sys_flc) { if (sys_flc->flc_type == F_WRLCK) return true; if (caller_flc->flc_type == F_WRLCK) return true; return false; } /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific * checking before calling the locks_conflict(). */ static bool posix_locks_conflict(struct file_lock_core *caller_flc, struct file_lock_core *sys_flc) { struct file_lock *caller_fl = file_lock(caller_flc); struct file_lock *sys_fl = file_lock(sys_flc); /* POSIX locks owned by the same process do not conflict with * each other. */ if (posix_same_owner(caller_flc, sys_flc)) return false; /* Check whether they overlap */ if (!locks_overlap(caller_fl, sys_fl)) return false; return locks_conflict(caller_flc, sys_flc); } /* Determine if lock sys_fl blocks lock caller_fl. Used on xx_GETLK * path so checks for additional GETLK-specific things like F_UNLCK. */ static bool posix_test_locks_conflict(struct file_lock *caller_fl, struct file_lock *sys_fl) { struct file_lock_core *caller = &caller_fl->c; struct file_lock_core *sys = &sys_fl->c; /* F_UNLCK checks any locks on the same fd. */ if (lock_is_unlock(caller_fl)) { if (!posix_same_owner(caller, sys)) return false; return locks_overlap(caller_fl, sys_fl); } return posix_locks_conflict(caller, sys); } /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific * checking before calling the locks_conflict(). */ static bool flock_locks_conflict(struct file_lock_core *caller_flc, struct file_lock_core *sys_flc) { /* FLOCK locks referring to the same filp do not conflict with * each other. */ if (caller_flc->flc_file == sys_flc->flc_file) return false; return locks_conflict(caller_flc, sys_flc); } void posix_test_lock(struct file *filp, struct file_lock *fl) { struct file_lock *cfl; struct file_lock_context *ctx; struct inode *inode = file_inode(filp); void *owner; void (*func)(void); ctx = locks_inode_context(inode); if (!ctx || list_empty_careful(&ctx->flc_posix)) { fl->c.flc_type = F_UNLCK; return; } retry: spin_lock(&ctx->flc_lock); list_for_each_entry(cfl, &ctx->flc_posix, c.flc_list) { if (!posix_test_locks_conflict(fl, cfl)) continue; if (cfl->fl_lmops && cfl->fl_lmops->lm_lock_expirable && (*cfl->fl_lmops->lm_lock_expirable)(cfl)) { owner = cfl->fl_lmops->lm_mod_owner; func = cfl->fl_lmops->lm_expire_lock; __module_get(owner); spin_unlock(&ctx->flc_lock); (*func)(); module_put(owner); goto retry; } locks_copy_conflock(fl, cfl); goto out; } fl->c.flc_type = F_UNLCK; out: spin_unlock(&ctx->flc_lock); return; } EXPORT_SYMBOL(posix_test_lock); /* * Deadlock detection: * * We attempt to detect deadlocks that are due purely to posix file * locks. * * We assume that a task can be waiting for at most one lock at a time. * So for any acquired lock, the process holding that lock may be * waiting on at most one other lock. That lock in turns may be held by * someone waiting for at most one other lock. Given a requested lock * caller_fl which is about to wait for a conflicting lock block_fl, we * follow this chain of waiters to ensure we are not about to create a * cycle. * * Since we do this before we ever put a process to sleep on a lock, we * are ensured that there is never a cycle; that is what guarantees that * the while() loop in posix_locks_deadlock() eventually completes. * * Note: the above assumption may not be true when handling lock * requests from a broken NFS client. It may also fail in the presence * of tasks (such as posix threads) sharing the same open file table. * To handle those cases, we just bail out after a few iterations. * * For FL_OFDLCK locks, the owner is the filp, not the files_struct. * Because the owner is not even nominally tied to a thread of * execution, the deadlock detection below can't reasonably work well. Just * skip it for those. * * In principle, we could do a more limited deadlock detection on FL_OFDLCK * locks that just checks for the case where two tasks are attempting to * upgrade from read to write locks on the same inode. */ #define MAX_DEADLK_ITERATIONS 10 /* Find a lock that the owner of the given @blocker is blocking on. */ static struct file_lock_core *what_owner_is_waiting_for(struct file_lock_core *blocker) { struct file_lock_core *flc; hash_for_each_possible(blocked_hash, flc, flc_link, posix_owner_key(blocker)) { if (posix_same_owner(flc, blocker)) { while (flc->flc_blocker) flc = flc->flc_blocker; return flc; } } return NULL; } /* Must be called with the blocked_lock_lock held! */ static bool posix_locks_deadlock(struct file_lock *caller_fl, struct file_lock *block_fl) { struct file_lock_core *caller = &caller_fl->c; struct file_lock_core *blocker = &block_fl->c; int i = 0; lockdep_assert_held(&blocked_lock_lock); /* * This deadlock detector can't reasonably detect deadlocks with * FL_OFDLCK locks, since they aren't owned by a process, per-se. */ if (caller->flc_flags & FL_OFDLCK) return false; while ((blocker = what_owner_is_waiting_for(blocker))) { if (i++ > MAX_DEADLK_ITERATIONS) return false; if (posix_same_owner(caller, blocker)) return true; } return false; } /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks * after any leases, but before any posix locks. * * Note that if called with an FL_EXISTS argument, the caller may determine * whether or not a lock was successfully freed by testing the return * value for -ENOENT. */ static int flock_lock_inode(struct inode *inode, struct file_lock *request) { struct file_lock *new_fl = NULL; struct file_lock *fl; struct file_lock_context *ctx; int error = 0; bool found = false; LIST_HEAD(dispose); ctx = locks_get_lock_context(inode, request->c.flc_type); if (!ctx) { if (request->c.flc_type != F_UNLCK) return -ENOMEM; return (request->c.flc_flags & FL_EXISTS) ? -ENOENT : 0; } if (!(request->c.flc_flags & FL_ACCESS) && (request->c.flc_type != F_UNLCK)) { new_fl = locks_alloc_lock(); if (!new_fl) return -ENOMEM; } percpu_down_read(&file_rwsem); spin_lock(&ctx->flc_lock); if (request->c.flc_flags & FL_ACCESS) goto find_conflict; list_for_each_entry(fl, &ctx->flc_flock, c.flc_list) { if (request->c.flc_file != fl->c.flc_file) continue; if (request->c.flc_type == fl->c.flc_type) goto out; found = true; locks_delete_lock_ctx(&fl->c, &dispose); break; } if (lock_is_unlock(request)) { if ((request->c.flc_flags & FL_EXISTS) && !found) error = -ENOENT; goto out; } find_conflict: list_for_each_entry(fl, &ctx->flc_flock, c.flc_list) { if (!flock_locks_conflict(&request->c, &fl->c)) continue; error = -EAGAIN; if (!(request->c.flc_flags & FL_SLEEP)) goto out; error = FILE_LOCK_DEFERRED; locks_insert_block(&fl->c, &request->c, flock_locks_conflict); goto out; } if (request->c.flc_flags & FL_ACCESS) goto out; locks_copy_lock(new_fl, request); locks_move_blocks(new_fl, request); locks_insert_lock_ctx(&new_fl->c, &ctx->flc_flock); new_fl = NULL; error = 0; out: spin_unlock(&ctx->flc_lock); percpu_up_read(&file_rwsem); if (new_fl) locks_free_lock(new_fl); locks_dispose_list(&dispose); trace_flock_lock_inode(inode, request, error); return error; } static int posix_lock_inode(struct inode *inode, struct file_lock *request, struct file_lock *conflock) { struct file_lock *fl, *tmp; struct file_lock *new_fl = NULL; struct file_lock *new_fl2 = NULL; struct file_lock *left = NULL; struct file_lock *right = NULL; struct file_lock_context *ctx; int error; bool added = false; LIST_HEAD(dispose); void *owner; void (*func)(void); ctx = locks_get_lock_context(inode, request->c.flc_type); if (!ctx) return lock_is_unlock(request) ? 0 : -ENOMEM; /* * We may need two file_lock structures for this operation, * so we get them in advance to avoid races. * * In some cases we can be sure, that no new locks will be needed */ if (!(request->c.flc_flags & FL_ACCESS) && (request->c.flc_type != F_UNLCK || request->fl_start != 0 || request->fl_end != OFFSET_MAX)) { new_fl = locks_alloc_lock(); new_fl2 = locks_alloc_lock(); } retry: percpu_down_read(&file_rwsem); spin_lock(&ctx->flc_lock); /* * New lock request. Walk all POSIX locks and look for conflicts. If * there are any, either return error or put the request on the * blocker's list of waiters and the global blocked_hash. */ if (request->c.flc_type != F_UNLCK) { list_for_each_entry(fl, &ctx->flc_posix, c.flc_list) { if (!posix_locks_conflict(&request->c, &fl->c)) continue; if (fl->fl_lmops && fl->fl_lmops->lm_lock_expirable && (*fl->fl_lmops->lm_lock_expirable)(fl)) { owner = fl->fl_lmops->lm_mod_owner; func = fl->fl_lmops->lm_expire_lock; __module_get(owner); spin_unlock(&ctx->flc_lock); percpu_up_read(&file_rwsem); (*func)(); module_put(owner); goto retry; } if (conflock) locks_copy_conflock(conflock, fl); error = -EAGAIN; if (!(request->c.flc_flags & FL_SLEEP)) goto out; /* * Deadlock detection and insertion into the blocked * locks list must be done while holding the same lock! */ error = -EDEADLK; spin_lock(&blocked_lock_lock); /* * Ensure that we don't find any locks blocked on this * request during deadlock detection. */ __locks_wake_up_blocks(&request->c); if (likely(!posix_locks_deadlock(request, fl))) { error = FILE_LOCK_DEFERRED; __locks_insert_block(&fl->c, &request->c, posix_locks_conflict); } spin_unlock(&blocked_lock_lock); goto out; } } /* If we're just looking for a conflict, we're done. */ error = 0; if (request->c.flc_flags & FL_ACCESS) goto out; /* Find the first old lock with the same owner as the new lock */ list_for_each_entry(fl, &ctx->flc_posix, c.flc_list) { if (posix_same_owner(&request->c, &fl->c)) break; } /* Process locks with this owner. */ list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, c.flc_list) { if (!posix_same_owner(&request->c, &fl->c)) break; /* Detect adjacent or overlapping regions (if same lock type) */ if (request->c.flc_type == fl->c.flc_type) { /* In all comparisons of start vs end, use * "start - 1" rather than "end + 1". If end * is OFFSET_MAX, end + 1 will become negative. */ if (fl->fl_end < request->fl_start - 1) continue; /* If the next lock in the list has entirely bigger * addresses than the new one, insert the lock here. */ if (fl->fl_start - 1 > request->fl_end) break; /* If we come here, the new and old lock are of the * same type and adjacent or overlapping. Make one * lock yielding from the lower start address of both * locks to the higher end address. */ if (fl->fl_start > request->fl_start) fl->fl_start = request->fl_start; else request->fl_start = fl->fl_start; if (fl->fl_end < request->fl_end) fl->fl_end = request->fl_end; else request->fl_end = fl->fl_end; if (added) { locks_delete_lock_ctx(&fl->c, &dispose); continue; } request = fl; added = true; } else { /* Processing for different lock types is a bit * more complex. */ if (fl->fl_end < request->fl_start) continue; if (fl->fl_start > request->fl_end) break; if (lock_is_unlock(request)) added = true; if (fl->fl_start < request->fl_start) left = fl; /* If the next lock in the list has a higher end * address than the new one, insert the new one here. */ if (fl->fl_end > request->fl_end) { right = fl; break; } if (fl->fl_start >= request->fl_start) { /* The new lock completely replaces an old * one (This may happen several times). */ if (added) { locks_delete_lock_ctx(&fl->c, &dispose); continue; } /* * Replace the old lock with new_fl, and * remove the old one. It's safe to do the * insert here since we know that we won't be * using new_fl later, and that the lock is * just replacing an existing lock. */ error = -ENOLCK; if (!new_fl) goto out; locks_copy_lock(new_fl, request); locks_move_blocks(new_fl, request); request = new_fl; new_fl = NULL; locks_insert_lock_ctx(&request->c, &fl->c.flc_list); locks_delete_lock_ctx(&fl->c, &dispose); added = true; } } } /* * The above code only modifies existing locks in case of merging or * replacing. If new lock(s) need to be inserted all modifications are * done below this, so it's safe yet to bail out. */ error = -ENOLCK; /* "no luck" */ if (right && left == right && !new_fl2) goto out; error = 0; if (!added) { if (lock_is_unlock(request)) { if (request->c.flc_flags & FL_EXISTS) error = -ENOENT; goto out; } if (!new_fl) { error = -ENOLCK; goto out; } locks_copy_lock(new_fl, request); locks_move_blocks(new_fl, request); locks_insert_lock_ctx(&new_fl->c, &fl->c.flc_list); fl = new_fl; new_fl = NULL; } if (right) { if (left == right) { /* The new lock breaks the old one in two pieces, * so we have to use the second new lock. */ left = new_fl2; new_fl2 = NULL; locks_copy_lock(left, right); locks_insert_lock_ctx(&left->c, &fl->c.flc_list); } right->fl_start = request->fl_end + 1; locks_wake_up_blocks(&right->c); } if (left) { left->fl_end = request->fl_start - 1; locks_wake_up_blocks(&left->c); } out: trace_posix_lock_inode(inode, request, error); spin_unlock(&ctx->flc_lock); percpu_up_read(&file_rwsem); /* * Free any unused locks. */ if (new_fl) locks_free_lock(new_fl); if (new_fl2) locks_free_lock(new_fl2); locks_dispose_list(&dispose); return error; } /** * posix_lock_file - Apply a POSIX-style lock to a file * @filp: The file to apply the lock to * @fl: The lock to be applied * @conflock: Place to return a copy of the conflicting lock, if found. * * Add a POSIX style lock to a file. * We merge adjacent & overlapping locks whenever possible. * POSIX locks are sorted by owner task, then by starting address * * Note that if called with an FL_EXISTS argument, the caller may determine * whether or not a lock was successfully freed by testing the return * value for -ENOENT. */ int posix_lock_file(struct file *filp, struct file_lock *fl, struct file_lock *conflock) { return posix_lock_inode(file_inode(filp), fl, conflock); } EXPORT_SYMBOL(posix_lock_file); /** * posix_lock_inode_wait - Apply a POSIX-style lock to a file * @inode: inode of file to which lock request should be applied * @fl: The lock to be applied * * Apply a POSIX style lock request to an inode. */ static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl) { int error; might_sleep (); for (;;) { error = posix_lock_inode(inode, fl, NULL); if (error != FILE_LOCK_DEFERRED) break; error = wait_event_interruptible(fl->c.flc_wait, list_empty(&fl->c.flc_blocked_member)); if (error) break; } locks_delete_block(fl); return error; } static void lease_clear_pending(struct file_lease *fl, int arg) { switch (arg) { case F_UNLCK: fl->c.flc_flags &= ~FL_UNLOCK_PENDING; fallthrough; case F_RDLCK: fl->c.flc_flags &= ~FL_DOWNGRADE_PENDING; } } /* We already had a lease on this file; just change its type */ int lease_modify(struct file_lease *fl, int arg, struct list_head *dispose) { int error = assign_type(&fl->c, arg); if (error) return error; lease_clear_pending(fl, arg); locks_wake_up_blocks(&fl->c); if (arg == F_UNLCK) { struct file *filp = fl->c.flc_file; f_delown(filp); filp->f_owner.signum = 0; fasync_helper(0, fl->c.flc_file, 0, &fl->fl_fasync); if (fl->fl_fasync != NULL) { printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync); fl->fl_fasync = NULL; } locks_delete_lock_ctx(&fl->c, dispose); } return 0; } EXPORT_SYMBOL(lease_modify); static bool past_time(unsigned long then) { if (!then) /* 0 is a special value meaning "this never expires": */ return false; return time_after(jiffies, then); } static void time_out_leases(struct inode *inode, struct list_head *dispose) { struct file_lock_context *ctx = inode->i_flctx; struct file_lease *fl, *tmp; lockdep_assert_held(&ctx->flc_lock); list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, c.flc_list) { trace_time_out_leases(inode, fl); if (past_time(fl->fl_downgrade_time)) lease_modify(fl, F_RDLCK, dispose); if (past_time(fl->fl_break_time)) lease_modify(fl, F_UNLCK, dispose); } } static bool leases_conflict(struct file_lock_core *lc, struct file_lock_core *bc) { bool rc; struct file_lease *lease = file_lease(lc); struct file_lease *breaker = file_lease(bc); if (lease->fl_lmops->lm_breaker_owns_lease && lease->fl_lmops->lm_breaker_owns_lease(lease)) return false; if ((bc->flc_flags & FL_LAYOUT) != (lc->flc_flags & FL_LAYOUT)) { rc = false; goto trace; } if ((bc->flc_flags & FL_DELEG) && (lc->flc_flags & FL_LEASE)) { rc = false; goto trace; } rc = locks_conflict(bc, lc); trace: trace_leases_conflict(rc, lease, breaker); return rc; } static bool any_leases_conflict(struct inode *inode, struct file_lease *breaker) { struct file_lock_context *ctx = inode->i_flctx; struct file_lock_core *flc; lockdep_assert_held(&ctx->flc_lock); list_for_each_entry(flc, &ctx->flc_lease, flc_list) { if (leases_conflict(flc, &breaker->c)) return true; } return false; } /** * __break_lease - revoke all outstanding leases on file * @inode: the inode of the file to return * @mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR: * break all leases * @type: FL_LEASE: break leases and delegations; FL_DELEG: break * only delegations * * break_lease (inlined for speed) has checked there already is at least * some kind of lock (maybe a lease) on this file. Leases are broken on * a call to open() or truncate(). This function can sleep unless you * specified %O_NONBLOCK to your open(). */ int __break_lease(struct inode *inode, unsigned int mode, unsigned int type) { int error = 0; struct file_lock_context *ctx; struct file_lease *new_fl, *fl, *tmp; unsigned long break_time; int want_write = (mode & O_ACCMODE) != O_RDONLY; LIST_HEAD(dispose); new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK); if (IS_ERR(new_fl)) return PTR_ERR(new_fl); new_fl->c.flc_flags = type; /* typically we will check that ctx is non-NULL before calling */ ctx = locks_inode_context(inode); if (!ctx) { WARN_ON_ONCE(1); goto free_lock; } percpu_down_read(&file_rwsem); spin_lock(&ctx->flc_lock); time_out_leases(inode, &dispose); if (!any_leases_conflict(inode, new_fl)) goto out; break_time = 0; if (lease_break_time > 0) { break_time = jiffies + lease_break_time * HZ; if (break_time == 0) break_time++; /* so that 0 means no break time */ } list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, c.flc_list) { if (!leases_conflict(&fl->c, &new_fl->c)) continue; if (want_write) { if (fl->c.flc_flags & FL_UNLOCK_PENDING) continue; fl->c.flc_flags |= FL_UNLOCK_PENDING; fl->fl_break_time = break_time; } else { if (lease_breaking(fl)) continue; fl->c.flc_flags |= FL_DOWNGRADE_PENDING; fl->fl_downgrade_time = break_time; } if (fl->fl_lmops->lm_break(fl)) locks_delete_lock_ctx(&fl->c, &dispose); } if (list_empty(&ctx->flc_lease)) goto out; if (mode & O_NONBLOCK) { trace_break_lease_noblock(inode, new_fl); error = -EWOULDBLOCK; goto out; } restart: fl = list_first_entry(&ctx->flc_lease, struct file_lease, c.flc_list); break_time = fl->fl_break_time; if (break_time != 0) break_time -= jiffies; if (break_time == 0) break_time++; locks_insert_block(&fl->c, &new_fl->c, leases_conflict); trace_break_lease_block(inode, new_fl); spin_unlock(&ctx->flc_lock); percpu_up_read(&file_rwsem); locks_dispose_list(&dispose); error = wait_event_interruptible_timeout(new_fl->c.flc_wait, list_empty(&new_fl->c.flc_blocked_member), break_time); percpu_down_read(&file_rwsem); spin_lock(&ctx->flc_lock); trace_break_lease_unblock(inode, new_fl); __locks_delete_block(&new_fl->c); if (error >= 0) { /* * Wait for the next conflicting lease that has not been * broken yet */ if (error == 0) time_out_leases(inode, &dispose); if (any_leases_conflict(inode, new_fl)) goto restart; error = 0; } out: spin_unlock(&ctx->flc_lock); percpu_up_read(&file_rwsem); locks_dispose_list(&dispose); free_lock: locks_free_lease(new_fl); return error; } EXPORT_SYMBOL(__break_lease); /** * lease_get_mtime - update modified time of an inode with exclusive lease * @inode: the inode * @time: pointer to a timespec which contains the last modified time * * This is to force NFS clients to flush their caches for files with * exclusive leases. The justification is that if someone has an * exclusive lease, then they could be modifying it. */ void lease_get_mtime(struct inode *inode, struct timespec64 *time) { bool has_lease = false; struct file_lock_context *ctx; struct file_lock_core *flc; ctx = locks_inode_context(inode); if (ctx && !list_empty_careful(&ctx->flc_lease)) { spin_lock(&ctx->flc_lock); flc = list_first_entry_or_null(&ctx->flc_lease, struct file_lock_core, flc_list); if (flc && flc->flc_type == F_WRLCK) has_lease = true; spin_unlock(&ctx->flc_lock); } if (has_lease) *time = current_time(inode); } EXPORT_SYMBOL(lease_get_mtime); /** * fcntl_getlease - Enquire what lease is currently active * @filp: the file * * The value returned by this function will be one of * (if no lease break is pending): * * %F_RDLCK to indicate a shared lease is held. * * %F_WRLCK to indicate an exclusive lease is held. * * %F_UNLCK to indicate no lease is held. * * (if a lease break is pending): * * %F_RDLCK to indicate an exclusive lease needs to be * changed to a shared lease (or removed). * * %F_UNLCK to indicate the lease needs to be removed. * * XXX: sfr & willy disagree over whether F_INPROGRESS * should be returned to userspace. */ int fcntl_getlease(struct file *filp) { struct file_lease *fl; struct inode *inode = file_inode(filp); struct file_lock_context *ctx; int type = F_UNLCK; LIST_HEAD(dispose); ctx = locks_inode_context(inode); if (ctx && !list_empty_careful(&ctx->flc_lease)) { percpu_down_read(&file_rwsem); spin_lock(&ctx->flc_lock); time_out_leases(inode, &dispose); list_for_each_entry(fl, &ctx->flc_lease, c.flc_list) { if (fl->c.flc_file != filp) continue; type = target_leasetype(fl); break; } spin_unlock(&ctx->flc_lock); percpu_up_read(&file_rwsem); locks_dispose_list(&dispose); } return type; } /** * check_conflicting_open - see if the given file points to an inode that has * an existing open that would conflict with the * desired lease. * @filp: file to check * @arg: type of lease that we're trying to acquire * @flags: current lock flags * * Check to see if there's an existing open fd on this file that would * conflict with the lease we're trying to set. */ static int check_conflicting_open(struct file *filp, const int arg, int flags) { struct inode *inode = file_inode(filp); int self_wcount = 0, self_rcount = 0; if (flags & FL_LAYOUT) return 0; if (flags & FL_DELEG) /* We leave these checks to the caller */ return 0; if (arg == F_RDLCK) return inode_is_open_for_write(inode) ? -EAGAIN : 0; else if (arg != F_WRLCK) return 0; /* * Make sure that only read/write count is from lease requestor. * Note that this will result in denying write leases when i_writecount * is negative, which is what we want. (We shouldn't grant write leases * on files open for execution.) */ if (filp->f_mode & FMODE_WRITE) self_wcount = 1; else if (filp->f_mode & FMODE_READ) self_rcount = 1; if (atomic_read(&inode->i_writecount) != self_wcount || atomic_read(&inode->i_readcount) != self_rcount) return -EAGAIN; return 0; } static int generic_add_lease(struct file *filp, int arg, struct file_lease **flp, void **priv) { struct file_lease *fl, *my_fl = NULL, *lease; struct inode *inode = file_inode(filp); struct file_lock_context *ctx; bool is_deleg = (*flp)->c.flc_flags & FL_DELEG; int error; LIST_HEAD(dispose); lease = *flp; trace_generic_add_lease(inode, lease); /* Note that arg is never F_UNLCK here */ ctx = locks_get_lock_context(inode, arg); if (!ctx) return -ENOMEM; /* * In the delegation case we need mutual exclusion with * a number of operations that take the i_mutex. We trylock * because delegations are an optional optimization, and if * there's some chance of a conflict--we'd rather not * bother, maybe that's a sign this just isn't a good file to * hand out a delegation on. */ if (is_deleg && !inode_trylock(inode)) return -EAGAIN; percpu_down_read(&file_rwsem); spin_lock(&ctx->flc_lock); time_out_leases(inode, &dispose); error = check_conflicting_open(filp, arg, lease->c.flc_flags); if (error) goto out; /* * At this point, we know that if there is an exclusive * lease on this file, then we hold it on this filp * (otherwise our open of this file would have blocked). * And if we are trying to acquire an exclusive lease, * then the file is not open by anyone (including us) * except for this filp. */ error = -EAGAIN; list_for_each_entry(fl, &ctx->flc_lease, c.flc_list) { if (fl->c.flc_file == filp && fl->c.flc_owner == lease->c.flc_owner) { my_fl = fl; continue; } /* * No exclusive leases if someone else has a lease on * this file: */ if (arg == F_WRLCK) goto out; /* * Modifying our existing lease is OK, but no getting a * new lease if someone else is opening for write: */ if (fl->c.flc_flags & FL_UNLOCK_PENDING) goto out; } if (my_fl != NULL) { lease = my_fl; error = lease->fl_lmops->lm_change(lease, arg, &dispose); if (error) goto out; goto out_setup; } error = -EINVAL; if (!leases_enable) goto out; locks_insert_lock_ctx(&lease->c, &ctx->flc_lease); /* * The check in break_lease() is lockless. It's possible for another * open to race in after we did the earlier check for a conflicting * open but before the lease was inserted. Check again for a * conflicting open and cancel the lease if there is one. * * We also add a barrier here to ensure that the insertion of the lock * precedes these checks. */ smp_mb(); error = check_conflicting_open(filp, arg, lease->c.flc_flags); if (error) { locks_unlink_lock_ctx(&lease->c); goto out; } out_setup: if (lease->fl_lmops->lm_setup) lease->fl_lmops->lm_setup(lease, priv); out: spin_unlock(&ctx->flc_lock); percpu_up_read(&file_rwsem); locks_dispose_list(&dispose); if (is_deleg) inode_unlock(inode); if (!error && !my_fl) *flp = NULL; return error; } static int generic_delete_lease(struct file *filp, void *owner) { int error = -EAGAIN; struct file_lease *fl, *victim = NULL; struct inode *inode = file_inode(filp); struct file_lock_context *ctx; LIST_HEAD(dispose); ctx = locks_inode_context(inode); if (!ctx) { trace_generic_delete_lease(inode, NULL); return error; } percpu_down_read(&file_rwsem); spin_lock(&ctx->flc_lock); list_for_each_entry(fl, &ctx->flc_lease, c.flc_list) { if (fl->c.flc_file == filp && fl->c.flc_owner == owner) { victim = fl; break; } } trace_generic_delete_lease(inode, victim); if (victim) error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose); spin_unlock(&ctx->flc_lock); percpu_up_read(&file_rwsem); locks_dispose_list(&dispose); return error; } /** * generic_setlease - sets a lease on an open file * @filp: file pointer * @arg: type of lease to obtain * @flp: input - file_lock to use, output - file_lock inserted * @priv: private data for lm_setup (may be NULL if lm_setup * doesn't require it) * * The (input) flp->fl_lmops->lm_break function is required * by break_lease(). */ int generic_setlease(struct file *filp, int arg, struct file_lease **flp, void **priv) { switch (arg) { case F_UNLCK: return generic_delete_lease(filp, *priv); case F_RDLCK: case F_WRLCK: if (!(*flp)->fl_lmops->lm_break) { WARN_ON_ONCE(1); return -ENOLCK; } return generic_add_lease(filp, arg, flp, priv); default: return -EINVAL; } } EXPORT_SYMBOL(generic_setlease); /* * Kernel subsystems can register to be notified on any attempt to set * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd * to close files that it may have cached when there is an attempt to set a * conflicting lease. */ static struct srcu_notifier_head lease_notifier_chain; static inline void lease_notifier_chain_init(void) { srcu_init_notifier_head(&lease_notifier_chain); } static inline void setlease_notifier(int arg, struct file_lease *lease) { if (arg != F_UNLCK) srcu_notifier_call_chain(&lease_notifier_chain, arg, lease); } int lease_register_notifier(struct notifier_block *nb) { return srcu_notifier_chain_register(&lease_notifier_chain, nb); } EXPORT_SYMBOL_GPL(lease_register_notifier); void lease_unregister_notifier(struct notifier_block *nb) { srcu_notifier_chain_unregister(&lease_notifier_chain, nb); } EXPORT_SYMBOL_GPL(lease_unregister_notifier); int kernel_setlease(struct file *filp, int arg, struct file_lease **lease, void **priv) { if (lease) setlease_notifier(arg, *lease); if (filp->f_op->setlease) return filp->f_op->setlease(filp, arg, lease, priv); else return generic_setlease(filp, arg, lease, priv); } EXPORT_SYMBOL_GPL(kernel_setlease); /** * vfs_setlease - sets a lease on an open file * @filp: file pointer * @arg: type of lease to obtain * @lease: file_lock to use when adding a lease * @priv: private info for lm_setup when adding a lease (may be * NULL if lm_setup doesn't require it) * * Call this to establish a lease on the file. The "lease" argument is not * used for F_UNLCK requests and may be NULL. For commands that set or alter * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be * set; if not, this function will return -ENOLCK (and generate a scary-looking * stack trace). * * The "priv" pointer is passed directly to the lm_setup function as-is. It * may be NULL if the lm_setup operation doesn't require it. */ int vfs_setlease(struct file *filp, int arg, struct file_lease **lease, void **priv) { struct inode *inode = file_inode(filp); vfsuid_t vfsuid = i_uid_into_vfsuid(file_mnt_idmap(filp), inode); int error; if ((!vfsuid_eq_kuid(vfsuid, current_fsuid())) && !capable(CAP_LEASE)) return -EACCES; if (!S_ISREG(inode->i_mode)) return -EINVAL; error = security_file_lock(filp, arg); if (error) return error; return kernel_setlease(filp, arg, lease, priv); } EXPORT_SYMBOL_GPL(vfs_setlease); static int do_fcntl_add_lease(unsigned int fd, struct file *filp, int arg) { struct file_lease *fl; struct fasync_struct *new; int error; fl = lease_alloc(filp, arg); if (IS_ERR(fl)) return PTR_ERR(fl); new = fasync_alloc(); if (!new) { locks_free_lease(fl); return -ENOMEM; } new->fa_fd = fd; error = vfs_setlease(filp, arg, &fl, (void **)&new); if (fl) locks_free_lease(fl); if (new) fasync_free(new); return error; } /** * fcntl_setlease - sets a lease on an open file * @fd: open file descriptor * @filp: file pointer * @arg: type of lease to obtain * * Call this fcntl to establish a lease on the file. * Note that you also need to call %F_SETSIG to * receive a signal when the lease is broken. */ int fcntl_setlease(unsigned int fd, struct file *filp, int arg) { if (arg == F_UNLCK) return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp); return do_fcntl_add_lease(fd, filp, arg); } /** * flock_lock_inode_wait - Apply a FLOCK-style lock to a file * @inode: inode of the file to apply to * @fl: The lock to be applied * * Apply a FLOCK style lock request to an inode. */ static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl) { int error; might_sleep(); for (;;) { error = flock_lock_inode(inode, fl); if (error != FILE_LOCK_DEFERRED) break; error = wait_event_interruptible(fl->c.flc_wait, list_empty(&fl->c.flc_blocked_member)); if (error) break; } locks_delete_block(fl); return error; } /** * locks_lock_inode_wait - Apply a lock to an inode * @inode: inode of the file to apply to * @fl: The lock to be applied * * Apply a POSIX or FLOCK style lock request to an inode. */ int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl) { int res = 0; switch (fl->c.flc_flags & (FL_POSIX|FL_FLOCK)) { case FL_POSIX: res = posix_lock_inode_wait(inode, fl); break; case FL_FLOCK: res = flock_lock_inode_wait(inode, fl); break; default: BUG(); } return res; } EXPORT_SYMBOL(locks_lock_inode_wait); /** * sys_flock: - flock() system call. * @fd: the file descriptor to lock. * @cmd: the type of lock to apply. * * Apply a %FL_FLOCK style lock to an open file descriptor. * The @cmd can be one of: * * - %LOCK_SH -- a shared lock. * - %LOCK_EX -- an exclusive lock. * - %LOCK_UN -- remove an existing lock. * - %LOCK_MAND -- a 'mandatory' flock. (DEPRECATED) * * %LOCK_MAND support has been removed from the kernel. */ SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd) { int can_sleep, error, type; struct file_lock fl; struct fd f; /* * LOCK_MAND locks were broken for a long time in that they never * conflicted with one another and didn't prevent any sort of open, * read or write activity. * * Just ignore these requests now, to preserve legacy behavior, but * throw a warning to let people know that they don't actually work. */ if (cmd & LOCK_MAND) { pr_warn_once("%s(%d): Attempt to set a LOCK_MAND lock via flock(2). This support has been removed and the request ignored.\n", current->comm, current->pid); return 0; } type = flock_translate_cmd(cmd & ~LOCK_NB); if (type < 0) return type; error = -EBADF; f = fdget(fd); if (!f.file) return error; if (type != F_UNLCK && !(f.file->f_mode & (FMODE_READ | FMODE_WRITE))) goto out_putf; flock_make_lock(f.file, &fl, type); error = security_file_lock(f.file, fl.c.flc_type); if (error) goto out_putf; can_sleep = !(cmd & LOCK_NB); if (can_sleep) fl.c.flc_flags |= FL_SLEEP; if (f.file->f_op->flock) error = f.file->f_op->flock(f.file, (can_sleep) ? F_SETLKW : F_SETLK, &fl); else error = locks_lock_file_wait(f.file, &fl); locks_release_private(&fl); out_putf: fdput(f); return error; } /** * vfs_test_lock - test file byte range lock * @filp: The file to test lock for * @fl: The lock to test; also used to hold result * * Returns -ERRNO on failure. Indicates presence of conflicting lock by * setting conf->fl_type to something other than F_UNLCK. */ int vfs_test_lock(struct file *filp, struct file_lock *fl) { WARN_ON_ONCE(filp != fl->c.flc_file); if (filp->f_op->lock) return filp->f_op->lock(filp, F_GETLK, fl); posix_test_lock(filp, fl); return 0; } EXPORT_SYMBOL_GPL(vfs_test_lock); /** * locks_translate_pid - translate a file_lock's fl_pid number into a namespace * @fl: The file_lock who's fl_pid should be translated * @ns: The namespace into which the pid should be translated * * Used to translate a fl_pid into a namespace virtual pid number */ static pid_t locks_translate_pid(struct file_lock_core *fl, struct pid_namespace *ns) { pid_t vnr; struct pid *pid; if (fl->flc_flags & FL_OFDLCK) return -1; /* Remote locks report a negative pid value */ if (fl->flc_pid <= 0) return fl->flc_pid; /* * If the flock owner process is dead and its pid has been already * freed, the translation below won't work, but we still want to show * flock owner pid number in init pidns. */ if (ns == &init_pid_ns) return (pid_t) fl->flc_pid; rcu_read_lock(); pid = find_pid_ns(fl->flc_pid, &init_pid_ns); vnr = pid_nr_ns(pid, ns); rcu_read_unlock(); return vnr; } static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl) { flock->l_pid = locks_translate_pid(&fl->c, task_active_pid_ns(current)); #if BITS_PER_LONG == 32 /* * Make sure we can represent the posix lock via * legacy 32bit flock. */ if (fl->fl_start > OFFT_OFFSET_MAX) return -EOVERFLOW; if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX) return -EOVERFLOW; #endif flock->l_start = fl->fl_start; flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : fl->fl_end - fl->fl_start + 1; flock->l_whence = 0; flock->l_type = fl->c.flc_type; return 0; } #if BITS_PER_LONG == 32 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl) { flock->l_pid = locks_translate_pid(&fl->c, task_active_pid_ns(current)); flock->l_start = fl->fl_start; flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : fl->fl_end - fl->fl_start + 1; flock->l_whence = 0; flock->l_type = fl->c.flc_type; } #endif /* Report the first existing lock that would conflict with l. * This implements the F_GETLK command of fcntl(). */ int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock) { struct file_lock *fl; int error; fl = locks_alloc_lock(); if (fl == NULL) return -ENOMEM; error = -EINVAL; if (cmd != F_OFD_GETLK && flock->l_type != F_RDLCK && flock->l_type != F_WRLCK) goto out; error = flock_to_posix_lock(filp, fl, flock); if (error) goto out; if (cmd == F_OFD_GETLK) { error = -EINVAL; if (flock->l_pid != 0) goto out; fl->c.flc_flags |= FL_OFDLCK; fl->c.flc_owner = filp; } error = vfs_test_lock(filp, fl); if (error) goto out; flock->l_type = fl->c.flc_type; if (fl->c.flc_type != F_UNLCK) { error = posix_lock_to_flock(flock, fl); if (error) goto out; } out: locks_free_lock(fl); return error; } /** * vfs_lock_file - file byte range lock * @filp: The file to apply the lock to * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.) * @fl: The lock to be applied * @conf: Place to return a copy of the conflicting lock, if found. * * A caller that doesn't care about the conflicting lock may pass NULL * as the final argument. * * If the filesystem defines a private ->lock() method, then @conf will * be left unchanged; so a caller that cares should initialize it to * some acceptable default. * * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX * locks, the ->lock() interface may return asynchronously, before the lock has * been granted or denied by the underlying filesystem, if (and only if) * lm_grant is set. Additionally EXPORT_OP_ASYNC_LOCK in export_operations * flags need to be set. * * Callers expecting ->lock() to return asynchronously will only use F_SETLK, * not F_SETLKW; they will set FL_SLEEP if (and only if) the request is for a * blocking lock. When ->lock() does return asynchronously, it must return * FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock request completes. * If the request is for non-blocking lock the file system should return * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine * with the result. If the request timed out the callback routine will return a * nonzero return code and the file system should release the lock. The file * system is also responsible to keep a corresponding posix lock when it * grants a lock so the VFS can find out which locks are locally held and do * the correct lock cleanup when required. * The underlying filesystem must not drop the kernel lock or call * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED * return code. */ int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf) { WARN_ON_ONCE(filp != fl->c.flc_file); if (filp->f_op->lock) return filp->f_op->lock(filp, cmd, fl); else return posix_lock_file(filp, fl, conf); } EXPORT_SYMBOL_GPL(vfs_lock_file); static int do_lock_file_wait(struct file *filp, unsigned int cmd, struct file_lock *fl) { int error; error = security_file_lock(filp, fl->c.flc_type); if (error) return error; for (;;) { error = vfs_lock_file(filp, cmd, fl, NULL); if (error != FILE_LOCK_DEFERRED) break; error = wait_event_interruptible(fl->c.flc_wait, list_empty(&fl->c.flc_blocked_member)); if (error) break; } locks_delete_block(fl); return error; } /* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */ static int check_fmode_for_setlk(struct file_lock *fl) { switch (fl->c.flc_type) { case F_RDLCK: if (!(fl->c.flc_file->f_mode & FMODE_READ)) return -EBADF; break; case F_WRLCK: if (!(fl->c.flc_file->f_mode & FMODE_WRITE)) return -EBADF; } return 0; } /* Apply the lock described by l to an open file descriptor. * This implements both the F_SETLK and F_SETLKW commands of fcntl(). */ int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd, struct flock *flock) { struct file_lock *file_lock = locks_alloc_lock(); struct inode *inode = file_inode(filp); struct file *f; int error; if (file_lock == NULL) return -ENOLCK; error = flock_to_posix_lock(filp, file_lock, flock); if (error) goto out; error = check_fmode_for_setlk(file_lock); if (error) goto out; /* * If the cmd is requesting file-private locks, then set the * FL_OFDLCK flag and override the owner. */ switch (cmd) { case F_OFD_SETLK: error = -EINVAL; if (flock->l_pid != 0) goto out; cmd = F_SETLK; file_lock->c.flc_flags |= FL_OFDLCK; file_lock->c.flc_owner = filp; break; case F_OFD_SETLKW: error = -EINVAL; if (flock->l_pid != 0) goto out; cmd = F_SETLKW; file_lock->c.flc_flags |= FL_OFDLCK; file_lock->c.flc_owner = filp; fallthrough; case F_SETLKW: file_lock->c.flc_flags |= FL_SLEEP; } error = do_lock_file_wait(filp, cmd, file_lock); /* * Detect close/fcntl races and recover by zapping all POSIX locks * associated with this file and our files_struct, just like on * filp_flush(). There is no need to do that when we're * unlocking though, or for OFD locks. */ if (!error && file_lock->c.flc_type != F_UNLCK && !(file_lock->c.flc_flags & FL_OFDLCK)) { struct files_struct *files = current->files; /* * We need that spin_lock here - it prevents reordering between * update of i_flctx->flc_posix and check for it done in * close(). rcu_read_lock() wouldn't do. */ spin_lock(&files->file_lock); f = files_lookup_fd_locked(files, fd); spin_unlock(&files->file_lock); if (f != filp) { locks_remove_posix(filp, files); error = -EBADF; } } out: trace_fcntl_setlk(inode, file_lock, error); locks_free_lock(file_lock); return error; } #if BITS_PER_LONG == 32 /* Report the first existing lock that would conflict with l. * This implements the F_GETLK command of fcntl(). */ int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock) { struct file_lock *fl; int error; fl = locks_alloc_lock(); if (fl == NULL) return -ENOMEM; error = -EINVAL; if (cmd != F_OFD_GETLK && flock->l_type != F_RDLCK && flock->l_type != F_WRLCK) goto out; error = flock64_to_posix_lock(filp, fl, flock); if (error) goto out; if (cmd == F_OFD_GETLK) { error = -EINVAL; if (flock->l_pid != 0) goto out; fl->c.flc_flags |= FL_OFDLCK; fl->c.flc_owner = filp; } error = vfs_test_lock(filp, fl); if (error) goto out; flock->l_type = fl->c.flc_type; if (fl->c.flc_type != F_UNLCK) posix_lock_to_flock64(flock, fl); out: locks_free_lock(fl); return error; } /* Apply the lock described by l to an open file descriptor. * This implements both the F_SETLK and F_SETLKW commands of fcntl(). */ int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd, struct flock64 *flock) { struct file_lock *file_lock = locks_alloc_lock(); struct file *f; int error; if (file_lock == NULL) return -ENOLCK; error = flock64_to_posix_lock(filp, file_lock, flock); if (error) goto out; error = check_fmode_for_setlk(file_lock); if (error) goto out; /* * If the cmd is requesting file-private locks, then set the * FL_OFDLCK flag and override the owner. */ switch (cmd) { case F_OFD_SETLK: error = -EINVAL; if (flock->l_pid != 0) goto out; cmd = F_SETLK64; file_lock->c.flc_flags |= FL_OFDLCK; file_lock->c.flc_owner = filp; break; case F_OFD_SETLKW: error = -EINVAL; if (flock->l_pid != 0) goto out; cmd = F_SETLKW64; file_lock->c.flc_flags |= FL_OFDLCK; file_lock->c.flc_owner = filp; fallthrough; case F_SETLKW64: file_lock->c.flc_flags |= FL_SLEEP; } error = do_lock_file_wait(filp, cmd, file_lock); /* * Detect close/fcntl races and recover by zapping all POSIX locks * associated with this file and our files_struct, just like on * filp_flush(). There is no need to do that when we're * unlocking though, or for OFD locks. */ if (!error && file_lock->c.flc_type != F_UNLCK && !(file_lock->c.flc_flags & FL_OFDLCK)) { struct files_struct *files = current->files; /* * We need that spin_lock here - it prevents reordering between * update of i_flctx->flc_posix and check for it done in * close(). rcu_read_lock() wouldn't do. */ spin_lock(&files->file_lock); f = files_lookup_fd_locked(files, fd); spin_unlock(&files->file_lock); if (f != filp) { locks_remove_posix(filp, files); error = -EBADF; } } out: locks_free_lock(file_lock); return error; } #endif /* BITS_PER_LONG == 32 */ /* * This function is called when the file is being removed * from the task's fd array. POSIX locks belonging to this task * are deleted at this time. */ void locks_remove_posix(struct file *filp, fl_owner_t owner) { int error; struct inode *inode = file_inode(filp); struct file_lock lock; struct file_lock_context *ctx; /* * If there are no locks held on this file, we don't need to call * posix_lock_file(). Another process could be setting a lock on this * file at the same time, but we wouldn't remove that lock anyway. */ ctx = locks_inode_context(inode); if (!ctx || list_empty(&ctx->flc_posix)) return; locks_init_lock(&lock); lock.c.flc_type = F_UNLCK; lock.c.flc_flags = FL_POSIX | FL_CLOSE; lock.fl_start = 0; lock.fl_end = OFFSET_MAX; lock.c.flc_owner = owner; lock.c.flc_pid = current->tgid; lock.c.flc_file = filp; lock.fl_ops = NULL; lock.fl_lmops = NULL; error = vfs_lock_file(filp, F_SETLK, &lock, NULL); if (lock.fl_ops && lock.fl_ops->fl_release_private) lock.fl_ops->fl_release_private(&lock); trace_locks_remove_posix(inode, &lock, error); } EXPORT_SYMBOL(locks_remove_posix); /* The i_flctx must be valid when calling into here */ static void locks_remove_flock(struct file *filp, struct file_lock_context *flctx) { struct file_lock fl; struct inode *inode = file_inode(filp); if (list_empty(&flctx->flc_flock)) return; flock_make_lock(filp, &fl, F_UNLCK); fl.c.flc_flags |= FL_CLOSE; if (filp->f_op->flock) filp->f_op->flock(filp, F_SETLKW, &fl); else flock_lock_inode(inode, &fl); if (fl.fl_ops && fl.fl_ops->fl_release_private) fl.fl_ops->fl_release_private(&fl); } /* The i_flctx must be valid when calling into here */ static void locks_remove_lease(struct file *filp, struct file_lock_context *ctx) { struct file_lease *fl, *tmp; LIST_HEAD(dispose); if (list_empty(&ctx->flc_lease)) return; percpu_down_read(&file_rwsem); spin_lock(&ctx->flc_lock); list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, c.flc_list) if (filp == fl->c.flc_file) lease_modify(fl, F_UNLCK, &dispose); spin_unlock(&ctx->flc_lock); percpu_up_read(&file_rwsem); locks_dispose_list(&dispose); } /* * This function is called on the last close of an open file. */ void locks_remove_file(struct file *filp) { struct file_lock_context *ctx; ctx = locks_inode_context(file_inode(filp)); if (!ctx) return; /* remove any OFD locks */ locks_remove_posix(filp, filp); /* remove flock locks */ locks_remove_flock(filp, ctx); /* remove any leases */ locks_remove_lease(filp, ctx); spin_lock(&ctx->flc_lock); locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX"); locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK"); locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE"); spin_unlock(&ctx->flc_lock); } /** * vfs_cancel_lock - file byte range unblock lock * @filp: The file to apply the unblock to * @fl: The lock to be unblocked * * Used by lock managers to cancel blocked requests */ int vfs_cancel_lock(struct file *filp, struct file_lock *fl) { WARN_ON_ONCE(filp != fl->c.flc_file); if (filp->f_op->lock) return filp->f_op->lock(filp, F_CANCELLK, fl); return 0; } EXPORT_SYMBOL_GPL(vfs_cancel_lock); /** * vfs_inode_has_locks - are any file locks held on @inode? * @inode: inode to check for locks * * Return true if there are any FL_POSIX or FL_FLOCK locks currently * set on @inode. */ bool vfs_inode_has_locks(struct inode *inode) { struct file_lock_context *ctx; bool ret; ctx = locks_inode_context(inode); if (!ctx) return false; spin_lock(&ctx->flc_lock); ret = !list_empty(&ctx->flc_posix) || !list_empty(&ctx->flc_flock); spin_unlock(&ctx->flc_lock); return ret; } EXPORT_SYMBOL_GPL(vfs_inode_has_locks); #ifdef CONFIG_PROC_FS #include <linux/proc_fs.h> #include <linux/seq_file.h> struct locks_iterator { int li_cpu; loff_t li_pos; }; static void lock_get_status(struct seq_file *f, struct file_lock_core *flc, loff_t id, char *pfx, int repeat) { struct inode *inode = NULL; unsigned int pid; struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb); int type = flc->flc_type; struct file_lock *fl = file_lock(flc); pid = locks_translate_pid(flc, proc_pidns); /* * If lock owner is dead (and pid is freed) or not visible in current * pidns, zero is shown as a pid value. Check lock info from * init_pid_ns to get saved lock pid value. */ if (flc->flc_file != NULL) inode = file_inode(flc->flc_file); seq_printf(f, "%lld: ", id); if (repeat) seq_printf(f, "%*s", repeat - 1 + (int)strlen(pfx), pfx); if (flc->flc_flags & FL_POSIX) { if (flc->flc_flags & FL_ACCESS) seq_puts(f, "ACCESS"); else if (flc->flc_flags & FL_OFDLCK) seq_puts(f, "OFDLCK"); else seq_puts(f, "POSIX "); seq_printf(f, " %s ", (inode == NULL) ? "*NOINODE*" : "ADVISORY "); } else if (flc->flc_flags & FL_FLOCK) { seq_puts(f, "FLOCK ADVISORY "); } else if (flc->flc_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT)) { struct file_lease *lease = file_lease(flc); type = target_leasetype(lease); if (flc->flc_flags & FL_DELEG) seq_puts(f, "DELEG "); else seq_puts(f, "LEASE "); if (lease_breaking(lease)) seq_puts(f, "BREAKING "); else if (flc->flc_file) seq_puts(f, "ACTIVE "); else seq_puts(f, "BREAKER "); } else { seq_puts(f, "UNKNOWN UNKNOWN "); } seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" : (type == F_RDLCK) ? "READ" : "UNLCK"); if (inode) { /* userspace relies on this representation of dev_t */ seq_printf(f, "%d %02x:%02x:%lu ", pid, MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev), inode->i_ino); } else { seq_printf(f, "%d <none>:0 ", pid); } if (flc->flc_flags & FL_POSIX) { if (fl->fl_end == OFFSET_MAX) seq_printf(f, "%Ld EOF\n", fl->fl_start); else seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end); } else { seq_puts(f, "0 EOF\n"); } } static struct file_lock_core *get_next_blocked_member(struct file_lock_core *node) { struct file_lock_core *tmp; /* NULL node or root node */ if (node == NULL || node->flc_blocker == NULL) return NULL; /* Next member in the linked list could be itself */ tmp = list_next_entry(node, flc_blocked_member); if (list_entry_is_head(tmp, &node->flc_blocker->flc_blocked_requests, flc_blocked_member) || tmp == node) { return NULL; } return tmp; } static int locks_show(struct seq_file *f, void *v) { struct locks_iterator *iter = f->private; struct file_lock_core *cur, *tmp; struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb); int level = 0; cur = hlist_entry(v, struct file_lock_core, flc_link); if (locks_translate_pid(cur, proc_pidns) == 0) return 0; /* View this crossed linked list as a binary tree, the first member of flc_blocked_requests * is the left child of current node, the next silibing in flc_blocked_member is the * right child, we can alse get the parent of current node from flc_blocker, so this * question becomes traversal of a binary tree */ while (cur != NULL) { if (level) lock_get_status(f, cur, iter->li_pos, "-> ", level); else lock_get_status(f, cur, iter->li_pos, "", level); if (!list_empty(&cur->flc_blocked_requests)) { /* Turn left */ cur = list_first_entry_or_null(&cur->flc_blocked_requests, struct file_lock_core, flc_blocked_member); level++; } else { /* Turn right */ tmp = get_next_blocked_member(cur); /* Fall back to parent node */ while (tmp == NULL && cur->flc_blocker != NULL) { cur = cur->flc_blocker; level--; tmp = get_next_blocked_member(cur); } cur = tmp; } } return 0; } static void __show_fd_locks(struct seq_file *f, struct list_head *head, int *id, struct file *filp, struct files_struct *files) { struct file_lock_core *fl; list_for_each_entry(fl, head, flc_list) { if (filp != fl->flc_file) continue; if (fl->flc_owner != files && fl->flc_owner != filp) continue; (*id)++; seq_puts(f, "lock:\t"); lock_get_status(f, fl, *id, "", 0); } } void show_fd_locks(struct seq_file *f, struct file *filp, struct files_struct *files) { struct inode *inode = file_inode(filp); struct file_lock_context *ctx; int id = 0; ctx = locks_inode_context(inode); if (!ctx) return; spin_lock(&ctx->flc_lock); __show_fd_locks(f, &ctx->flc_flock, &id, filp, files); __show_fd_locks(f, &ctx->flc_posix, &id, filp, files); __show_fd_locks(f, &ctx->flc_lease, &id, filp, files); spin_unlock(&ctx->flc_lock); } static void *locks_start(struct seq_file *f, loff_t *pos) __acquires(&blocked_lock_lock) { struct locks_iterator *iter = f->private; iter->li_pos = *pos + 1; percpu_down_write(&file_rwsem); spin_lock(&blocked_lock_lock); return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos); } static void *locks_next(struct seq_file *f, void *v, loff_t *pos) { struct locks_iterator *iter = f->private; ++iter->li_pos; return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos); } static void locks_stop(struct seq_file *f, void *v) __releases(&blocked_lock_lock) { spin_unlock(&blocked_lock_lock); percpu_up_write(&file_rwsem); } static const struct seq_operations locks_seq_operations = { .start = locks_start, .next = locks_next, .stop = locks_stop, .show = locks_show, }; static int __init proc_locks_init(void) { proc_create_seq_private("locks", 0, NULL, &locks_seq_operations, sizeof(struct locks_iterator), NULL); return 0; } fs_initcall(proc_locks_init); #endif static int __init filelock_init(void) { int i; flctx_cache = kmem_cache_create("file_lock_ctx", sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL); filelock_cache = kmem_cache_create("file_lock_cache", sizeof(struct file_lock), 0, SLAB_PANIC, NULL); filelease_cache = kmem_cache_create("file_lease_cache", sizeof(struct file_lease), 0, SLAB_PANIC, NULL); for_each_possible_cpu(i) { struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i); spin_lock_init(&fll->lock); INIT_HLIST_HEAD(&fll->hlist); } lease_notifier_chain_init(); return 0; } core_initcall(filelock_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1