Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Al Viro | 10029 | 43.40% | 371 | 40.50% |
Linus Torvalds (pre-git) | 2243 | 9.71% | 109 | 11.90% |
Miklos Szeredi | 1368 | 5.92% | 39 | 4.26% |
Linus Torvalds | 1246 | 5.39% | 48 | 5.24% |
Nicholas Piggin | 1005 | 4.35% | 9 | 0.98% |
Christian Brauner | 909 | 3.93% | 29 | 3.17% |
Jeff Layton | 416 | 1.80% | 24 | 2.62% |
David Howells | 402 | 1.74% | 20 | 2.18% |
Aleksa Sarai | 353 | 1.53% | 8 | 0.87% |
George Spelvin | 334 | 1.45% | 6 | 0.66% |
Kees Cook | 267 | 1.16% | 9 | 0.98% |
Eric W. Biedermann | 265 | 1.15% | 16 | 1.75% |
Dmitry Kadashev | 241 | 1.04% | 8 | 0.87% |
Dominik Brodowski | 224 | 0.97% | 5 | 0.55% |
Neil Brown | 222 | 0.96% | 10 | 1.09% |
Christoph Hellwig | 220 | 0.95% | 17 | 1.86% |
Ulrich Drepper | 199 | 0.86% | 3 | 0.33% |
Paul Moore | 178 | 0.77% | 3 | 0.33% |
Stephen Brennan | 170 | 0.74% | 3 | 0.33% |
J. Bruce Fields | 157 | 0.68% | 7 | 0.76% |
Amir Goldstein | 145 | 0.63% | 3 | 0.33% |
Andrew Morton | 144 | 0.62% | 14 | 1.53% |
Yang Xu | 133 | 0.58% | 2 | 0.22% |
Heiko Carstens | 130 | 0.56% | 5 | 0.55% |
Dave Hansen | 129 | 0.56% | 7 | 0.76% |
Namjae Jeon | 121 | 0.52% | 2 | 0.22% |
Jan Blunck | 110 | 0.48% | 3 | 0.33% |
Kentaro Takeda | 108 | 0.47% | 1 | 0.11% |
Stephen D. Smalley | 99 | 0.43% | 2 | 0.22% |
Jens Axboe | 95 | 0.41% | 3 | 0.33% |
Salvatore Mesoraca | 92 | 0.40% | 1 | 0.11% |
Jan Kara | 85 | 0.37% | 3 | 0.33% |
Eric Dumazet | 78 | 0.34% | 1 | 0.11% |
Luis R. Rodriguez | 77 | 0.33% | 1 | 0.11% |
Arnaldo Carvalho de Melo | 70 | 0.30% | 1 | 0.11% |
Eric Biggers | 67 | 0.29% | 2 | 0.22% |
Mateusz Guzik | 52 | 0.23% | 3 | 0.33% |
Greg Kroah-Hartman | 51 | 0.22% | 5 | 0.55% |
Matthew Wilcox | 47 | 0.20% | 4 | 0.44% |
Trond Myklebust | 45 | 0.19% | 3 | 0.33% |
Serge E. Hallyn | 44 | 0.19% | 4 | 0.44% |
Eric Paris | 43 | 0.19% | 4 | 0.44% |
Aneesh Kumar K.V | 41 | 0.18% | 2 | 0.22% |
Hugh Dickins | 40 | 0.17% | 2 | 0.22% |
Sage Weil | 35 | 0.15% | 4 | 0.44% |
Josef 'Jeff' Sipek | 30 | 0.13% | 2 | 0.22% |
Dave Kleikamp | 29 | 0.13% | 2 | 0.22% |
Kirill Korotaev | 28 | 0.12% | 1 | 0.11% |
Josef Bacik | 26 | 0.11% | 1 | 0.11% |
Theodore Y. Ts'o | 25 | 0.11% | 2 | 0.22% |
Dan Clash | 25 | 0.11% | 1 | 0.11% |
James Morris | 23 | 0.10% | 2 | 0.22% |
Duane Griffin | 21 | 0.09% | 1 | 0.11% |
Frank Cusack | 19 | 0.08% | 2 | 0.22% |
Ian Kent | 19 | 0.08% | 4 | 0.44% |
Seth Forshee | 14 | 0.06% | 2 | 0.22% |
Roberto Sassu | 14 | 0.06% | 3 | 0.33% |
Oleg Drokin | 14 | 0.06% | 1 | 0.11% |
Tim Chen | 13 | 0.06% | 1 | 0.11% |
Ingo Molnar | 13 | 0.06% | 1 | 0.11% |
Tao Ma | 12 | 0.05% | 1 | 0.11% |
Tetsuo Handa | 12 | 0.05% | 3 | 0.33% |
Mattias Nissler | 11 | 0.05% | 1 | 0.11% |
Robert Love | 10 | 0.04% | 1 | 0.11% |
Chris Wright | 10 | 0.04% | 1 | 0.11% |
John McCutchan | 10 | 0.04% | 2 | 0.22% |
Dmitriy Monakhov | 10 | 0.04% | 2 | 0.22% |
Török Edwin | 10 | 0.04% | 1 | 0.11% |
Richard Guy Briggs | 10 | 0.04% | 1 | 0.11% |
Mark Fasheh | 9 | 0.04% | 2 | 0.22% |
Marcin Ślusarz | 9 | 0.04% | 1 | 0.11% |
David Drysdale | 9 | 0.04% | 1 | 0.11% |
OGAWA Hirofumi | 8 | 0.03% | 2 | 0.22% |
Peter Griffin | 8 | 0.03% | 1 | 0.11% |
Andy Whitcroft | 8 | 0.03% | 1 | 0.11% |
Sasha Levin | 7 | 0.03% | 1 | 0.11% |
Richard Weinberger | 7 | 0.03% | 1 | 0.11% |
Alexander Mikhalitsyn | 6 | 0.03% | 1 | 0.11% |
Alexei Starovoitov | 5 | 0.02% | 2 | 0.22% |
Amy Griffis | 5 | 0.02% | 1 | 0.11% |
Andrew Lutomirski | 5 | 0.02% | 1 | 0.11% |
Luis Henriques | 5 | 0.02% | 1 | 0.11% |
KaiGai Kohei | 5 | 0.02% | 1 | 0.11% |
Congjie Zhou | 5 | 0.02% | 1 | 0.11% |
Matteo Croce | 4 | 0.02% | 1 | 0.11% |
Mimi Zohar | 4 | 0.02% | 1 | 0.11% |
Harvey Harrison | 4 | 0.02% | 1 | 0.11% |
Julius Hemanth Pitti | 4 | 0.02% | 1 | 0.11% |
Bernd Schubert | 4 | 0.02% | 1 | 0.11% |
Randy Dunlap | 4 | 0.02% | 2 | 0.22% |
Andreas Gruenbacher | 4 | 0.02% | 2 | 0.22% |
Will Deacon | 4 | 0.02% | 1 | 0.11% |
David Teigland | 3 | 0.01% | 1 | 0.11% |
Wang Ming | 3 | 0.01% | 1 | 0.11% |
Chuck Lever | 3 | 0.01% | 1 | 0.11% |
Danilo Krummrich | 3 | 0.01% | 1 | 0.11% |
Hanna V. Linder | 3 | 0.01% | 1 | 0.11% |
Tanzir Hasan | 2 | 0.01% | 1 | 0.11% |
Günther Noack | 2 | 0.01% | 1 | 0.11% |
Arjan van de Ven | 2 | 0.01% | 2 | 0.22% |
David S. Miller | 2 | 0.01% | 1 | 0.11% |
YangXin | 2 | 0.01% | 1 | 0.11% |
Art Haas | 2 | 0.01% | 1 | 0.11% |
nixiaoming | 2 | 0.01% | 1 | 0.11% |
Alexander Potapenko | 2 | 0.01% | 1 | 0.11% |
Hyeoncheol Lee | 1 | 0.00% | 1 | 0.11% |
Eryu Guan | 1 | 0.00% | 1 | 0.11% |
Pekka J Enberg | 1 | 0.00% | 1 | 0.11% |
Mike Marshall | 1 | 0.00% | 1 | 0.11% |
Paolo 'Blaisorblade' Giarrusso | 1 | 0.00% | 1 | 0.11% |
Jes Sorensen | 1 | 0.00% | 1 | 0.11% |
Paul Gortmaker | 1 | 0.00% | 1 | 0.11% |
Joel Granados | 1 | 0.00% | 1 | 0.11% |
Lucas De Marchi | 1 | 0.00% | 1 | 0.11% |
Total | 23110 | 916 |
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/namei.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * Some corrections by tytso. */ /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname * lookup logic. */ /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. */ #include <linux/init.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/wordpart.h> #include <linux/fs.h> #include <linux/filelock.h> #include <linux/namei.h> #include <linux/pagemap.h> #include <linux/sched/mm.h> #include <linux/fsnotify.h> #include <linux/personality.h> #include <linux/security.h> #include <linux/syscalls.h> #include <linux/mount.h> #include <linux/audit.h> #include <linux/capability.h> #include <linux/file.h> #include <linux/fcntl.h> #include <linux/device_cgroup.h> #include <linux/fs_struct.h> #include <linux/posix_acl.h> #include <linux/hash.h> #include <linux/bitops.h> #include <linux/init_task.h> #include <linux/uaccess.h> #include "internal.h" #include "mount.h" /* [Feb-1997 T. Schoebel-Theuer] * Fundamental changes in the pathname lookup mechanisms (namei) * were necessary because of omirr. The reason is that omirr needs * to know the _real_ pathname, not the user-supplied one, in case * of symlinks (and also when transname replacements occur). * * The new code replaces the old recursive symlink resolution with * an iterative one (in case of non-nested symlink chains). It does * this with calls to <fs>_follow_link(). * As a side effect, dir_namei(), _namei() and follow_link() are now * replaced with a single function lookup_dentry() that can handle all * the special cases of the former code. * * With the new dcache, the pathname is stored at each inode, at least as * long as the refcount of the inode is positive. As a side effect, the * size of the dcache depends on the inode cache and thus is dynamic. * * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink * resolution to correspond with current state of the code. * * Note that the symlink resolution is not *completely* iterative. * There is still a significant amount of tail- and mid- recursion in * the algorithm. Also, note that <fs>_readlink() is not used in * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() * may return different results than <fs>_follow_link(). Many virtual * filesystems (including /proc) exhibit this behavior. */ /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL * and the name already exists in form of a symlink, try to create the new * name indicated by the symlink. The old code always complained that the * name already exists, due to not following the symlink even if its target * is nonexistent. The new semantics affects also mknod() and link() when * the name is a symlink pointing to a non-existent name. * * I don't know which semantics is the right one, since I have no access * to standards. But I found by trial that HP-UX 9.0 has the full "new" * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the * "old" one. Personally, I think the new semantics is much more logical. * Note that "ln old new" where "new" is a symlink pointing to a non-existing * file does succeed in both HP-UX and SunOs, but not in Solaris * and in the old Linux semantics. */ /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink * semantics. See the comments in "open_namei" and "do_link" below. * * [10-Sep-98 Alan Modra] Another symlink change. */ /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: * inside the path - always follow. * in the last component in creation/removal/renaming - never follow. * if LOOKUP_FOLLOW passed - follow. * if the pathname has trailing slashes - follow. * otherwise - don't follow. * (applied in that order). * * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT * restored for 2.4. This is the last surviving part of old 4.2BSD bug. * During the 2.4 we need to fix the userland stuff depending on it - * hopefully we will be able to get rid of that wart in 2.5. So far only * XEmacs seems to be relying on it... */ /* * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives * any extra contention... */ /* In order to reduce some races, while at the same time doing additional * checking and hopefully speeding things up, we copy filenames to the * kernel data space before using them.. * * POSIX.1 2.4: an empty pathname is invalid (ENOENT). * PATH_MAX includes the nul terminator --RR. */ #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) struct filename * getname_flags(const char __user *filename, int flags) { struct filename *result; char *kname; int len; result = audit_reusename(filename); if (result) return result; result = __getname(); if (unlikely(!result)) return ERR_PTR(-ENOMEM); /* * First, try to embed the struct filename inside the names_cache * allocation */ kname = (char *)result->iname; result->name = kname; len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); /* * Handle both empty path and copy failure in one go. */ if (unlikely(len <= 0)) { if (unlikely(len < 0)) { __putname(result); return ERR_PTR(len); } /* The empty path is special. */ if (!(flags & LOOKUP_EMPTY)) { __putname(result); return ERR_PTR(-ENOENT); } } /* * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a * separate struct filename so we can dedicate the entire * names_cache allocation for the pathname, and re-do the copy from * userland. */ if (unlikely(len == EMBEDDED_NAME_MAX)) { const size_t size = offsetof(struct filename, iname[1]); kname = (char *)result; /* * size is chosen that way we to guarantee that * result->iname[0] is within the same object and that * kname can't be equal to result->iname, no matter what. */ result = kzalloc(size, GFP_KERNEL); if (unlikely(!result)) { __putname(kname); return ERR_PTR(-ENOMEM); } result->name = kname; len = strncpy_from_user(kname, filename, PATH_MAX); if (unlikely(len < 0)) { __putname(kname); kfree(result); return ERR_PTR(len); } /* The empty path is special. */ if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) { __putname(kname); kfree(result); return ERR_PTR(-ENOENT); } if (unlikely(len == PATH_MAX)) { __putname(kname); kfree(result); return ERR_PTR(-ENAMETOOLONG); } } atomic_set(&result->refcnt, 1); result->uptr = filename; result->aname = NULL; audit_getname(result); return result; } struct filename * getname_uflags(const char __user *filename, int uflags) { int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; return getname_flags(filename, flags); } struct filename * getname(const char __user * filename) { return getname_flags(filename, 0); } struct filename * getname_kernel(const char * filename) { struct filename *result; int len = strlen(filename) + 1; result = __getname(); if (unlikely(!result)) return ERR_PTR(-ENOMEM); if (len <= EMBEDDED_NAME_MAX) { result->name = (char *)result->iname; } else if (len <= PATH_MAX) { const size_t size = offsetof(struct filename, iname[1]); struct filename *tmp; tmp = kmalloc(size, GFP_KERNEL); if (unlikely(!tmp)) { __putname(result); return ERR_PTR(-ENOMEM); } tmp->name = (char *)result; result = tmp; } else { __putname(result); return ERR_PTR(-ENAMETOOLONG); } memcpy((char *)result->name, filename, len); result->uptr = NULL; result->aname = NULL; atomic_set(&result->refcnt, 1); audit_getname(result); return result; } EXPORT_SYMBOL(getname_kernel); void putname(struct filename *name) { if (IS_ERR(name)) return; if (WARN_ON_ONCE(!atomic_read(&name->refcnt))) return; if (!atomic_dec_and_test(&name->refcnt)) return; if (name->name != name->iname) { __putname(name->name); kfree(name); } else __putname(name); } EXPORT_SYMBOL(putname); /** * check_acl - perform ACL permission checking * @idmap: idmap of the mount the inode was found from * @inode: inode to check permissions on * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) * * This function performs the ACL permission checking. Since this function * retrieve POSIX acls it needs to know whether it is called from a blocking or * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ static int check_acl(struct mnt_idmap *idmap, struct inode *inode, int mask) { #ifdef CONFIG_FS_POSIX_ACL struct posix_acl *acl; if (mask & MAY_NOT_BLOCK) { acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); if (!acl) return -EAGAIN; /* no ->get_inode_acl() calls in RCU mode... */ if (is_uncached_acl(acl)) return -ECHILD; return posix_acl_permission(idmap, inode, acl, mask); } acl = get_inode_acl(inode, ACL_TYPE_ACCESS); if (IS_ERR(acl)) return PTR_ERR(acl); if (acl) { int error = posix_acl_permission(idmap, inode, acl, mask); posix_acl_release(acl); return error; } #endif return -EAGAIN; } /** * acl_permission_check - perform basic UNIX permission checking * @idmap: idmap of the mount the inode was found from * @inode: inode to check permissions on * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) * * This function performs the basic UNIX permission checking. Since this * function may retrieve POSIX acls it needs to know whether it is called from a * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ static int acl_permission_check(struct mnt_idmap *idmap, struct inode *inode, int mask) { unsigned int mode = inode->i_mode; vfsuid_t vfsuid; /* Are we the owner? If so, ACL's don't matter */ vfsuid = i_uid_into_vfsuid(idmap, inode); if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) { mask &= 7; mode >>= 6; return (mask & ~mode) ? -EACCES : 0; } /* Do we have ACL's? */ if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { int error = check_acl(idmap, inode, mask); if (error != -EAGAIN) return error; } /* Only RWX matters for group/other mode bits */ mask &= 7; /* * Are the group permissions different from * the other permissions in the bits we care * about? Need to check group ownership if so. */ if (mask & (mode ^ (mode >> 3))) { vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); if (vfsgid_in_group_p(vfsgid)) mode >>= 3; } /* Bits in 'mode' clear that we require? */ return (mask & ~mode) ? -EACCES : 0; } /** * generic_permission - check for access rights on a Posix-like filesystem * @idmap: idmap of the mount the inode was found from * @inode: inode to check access rights for * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, * %MAY_NOT_BLOCK ...) * * Used to check for read/write/execute permissions on a file. * We use "fsuid" for this, letting us set arbitrary permissions * for filesystem access without changing the "normal" uids which * are used for other things. * * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk * request cannot be satisfied (eg. requires blocking or too much complexity). * It would then be called again in ref-walk mode. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ int generic_permission(struct mnt_idmap *idmap, struct inode *inode, int mask) { int ret; /* * Do the basic permission checks. */ ret = acl_permission_check(idmap, inode, mask); if (ret != -EACCES) return ret; if (S_ISDIR(inode->i_mode)) { /* DACs are overridable for directories */ if (!(mask & MAY_WRITE)) if (capable_wrt_inode_uidgid(idmap, inode, CAP_DAC_READ_SEARCH)) return 0; if (capable_wrt_inode_uidgid(idmap, inode, CAP_DAC_OVERRIDE)) return 0; return -EACCES; } /* * Searching includes executable on directories, else just read. */ mask &= MAY_READ | MAY_WRITE | MAY_EXEC; if (mask == MAY_READ) if (capable_wrt_inode_uidgid(idmap, inode, CAP_DAC_READ_SEARCH)) return 0; /* * Read/write DACs are always overridable. * Executable DACs are overridable when there is * at least one exec bit set. */ if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) if (capable_wrt_inode_uidgid(idmap, inode, CAP_DAC_OVERRIDE)) return 0; return -EACCES; } EXPORT_SYMBOL(generic_permission); /** * do_inode_permission - UNIX permission checking * @idmap: idmap of the mount the inode was found from * @inode: inode to check permissions on * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) * * We _really_ want to just do "generic_permission()" without * even looking at the inode->i_op values. So we keep a cache * flag in inode->i_opflags, that says "this has not special * permission function, use the fast case". */ static inline int do_inode_permission(struct mnt_idmap *idmap, struct inode *inode, int mask) { if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { if (likely(inode->i_op->permission)) return inode->i_op->permission(idmap, inode, mask); /* This gets set once for the inode lifetime */ spin_lock(&inode->i_lock); inode->i_opflags |= IOP_FASTPERM; spin_unlock(&inode->i_lock); } return generic_permission(idmap, inode, mask); } /** * sb_permission - Check superblock-level permissions * @sb: Superblock of inode to check permission on * @inode: Inode to check permission on * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) * * Separate out file-system wide checks from inode-specific permission checks. */ static int sb_permission(struct super_block *sb, struct inode *inode, int mask) { if (unlikely(mask & MAY_WRITE)) { umode_t mode = inode->i_mode; /* Nobody gets write access to a read-only fs. */ if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) return -EROFS; } return 0; } /** * inode_permission - Check for access rights to a given inode * @idmap: idmap of the mount the inode was found from * @inode: Inode to check permission on * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) * * Check for read/write/execute permissions on an inode. We use fs[ug]id for * this, letting us set arbitrary permissions for filesystem access without * changing the "normal" UIDs which are used for other things. * * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. */ int inode_permission(struct mnt_idmap *idmap, struct inode *inode, int mask) { int retval; retval = sb_permission(inode->i_sb, inode, mask); if (retval) return retval; if (unlikely(mask & MAY_WRITE)) { /* * Nobody gets write access to an immutable file. */ if (IS_IMMUTABLE(inode)) return -EPERM; /* * Updating mtime will likely cause i_uid and i_gid to be * written back improperly if their true value is unknown * to the vfs. */ if (HAS_UNMAPPED_ID(idmap, inode)) return -EACCES; } retval = do_inode_permission(idmap, inode, mask); if (retval) return retval; retval = devcgroup_inode_permission(inode, mask); if (retval) return retval; return security_inode_permission(inode, mask); } EXPORT_SYMBOL(inode_permission); /** * path_get - get a reference to a path * @path: path to get the reference to * * Given a path increment the reference count to the dentry and the vfsmount. */ void path_get(const struct path *path) { mntget(path->mnt); dget(path->dentry); } EXPORT_SYMBOL(path_get); /** * path_put - put a reference to a path * @path: path to put the reference to * * Given a path decrement the reference count to the dentry and the vfsmount. */ void path_put(const struct path *path) { dput(path->dentry); mntput(path->mnt); } EXPORT_SYMBOL(path_put); #define EMBEDDED_LEVELS 2 struct nameidata { struct path path; struct qstr last; struct path root; struct inode *inode; /* path.dentry.d_inode */ unsigned int flags, state; unsigned seq, next_seq, m_seq, r_seq; int last_type; unsigned depth; int total_link_count; struct saved { struct path link; struct delayed_call done; const char *name; unsigned seq; } *stack, internal[EMBEDDED_LEVELS]; struct filename *name; struct nameidata *saved; unsigned root_seq; int dfd; vfsuid_t dir_vfsuid; umode_t dir_mode; } __randomize_layout; #define ND_ROOT_PRESET 1 #define ND_ROOT_GRABBED 2 #define ND_JUMPED 4 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) { struct nameidata *old = current->nameidata; p->stack = p->internal; p->depth = 0; p->dfd = dfd; p->name = name; p->path.mnt = NULL; p->path.dentry = NULL; p->total_link_count = old ? old->total_link_count : 0; p->saved = old; current->nameidata = p; } static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, const struct path *root) { __set_nameidata(p, dfd, name); p->state = 0; if (unlikely(root)) { p->state = ND_ROOT_PRESET; p->root = *root; } } static void restore_nameidata(void) { struct nameidata *now = current->nameidata, *old = now->saved; current->nameidata = old; if (old) old->total_link_count = now->total_link_count; if (now->stack != now->internal) kfree(now->stack); } static bool nd_alloc_stack(struct nameidata *nd) { struct saved *p; p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); if (unlikely(!p)) return false; memcpy(p, nd->internal, sizeof(nd->internal)); nd->stack = p; return true; } /** * path_connected - Verify that a dentry is below mnt.mnt_root * @mnt: The mountpoint to check. * @dentry: The dentry to check. * * Rename can sometimes move a file or directory outside of a bind * mount, path_connected allows those cases to be detected. */ static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) { struct super_block *sb = mnt->mnt_sb; /* Bind mounts can have disconnected paths */ if (mnt->mnt_root == sb->s_root) return true; return is_subdir(dentry, mnt->mnt_root); } static void drop_links(struct nameidata *nd) { int i = nd->depth; while (i--) { struct saved *last = nd->stack + i; do_delayed_call(&last->done); clear_delayed_call(&last->done); } } static void leave_rcu(struct nameidata *nd) { nd->flags &= ~LOOKUP_RCU; nd->seq = nd->next_seq = 0; rcu_read_unlock(); } static void terminate_walk(struct nameidata *nd) { drop_links(nd); if (!(nd->flags & LOOKUP_RCU)) { int i; path_put(&nd->path); for (i = 0; i < nd->depth; i++) path_put(&nd->stack[i].link); if (nd->state & ND_ROOT_GRABBED) { path_put(&nd->root); nd->state &= ~ND_ROOT_GRABBED; } } else { leave_rcu(nd); } nd->depth = 0; nd->path.mnt = NULL; nd->path.dentry = NULL; } /* path_put is needed afterwards regardless of success or failure */ static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) { int res = __legitimize_mnt(path->mnt, mseq); if (unlikely(res)) { if (res > 0) path->mnt = NULL; path->dentry = NULL; return false; } if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { path->dentry = NULL; return false; } return !read_seqcount_retry(&path->dentry->d_seq, seq); } static inline bool legitimize_path(struct nameidata *nd, struct path *path, unsigned seq) { return __legitimize_path(path, seq, nd->m_seq); } static bool legitimize_links(struct nameidata *nd) { int i; if (unlikely(nd->flags & LOOKUP_CACHED)) { drop_links(nd); nd->depth = 0; return false; } for (i = 0; i < nd->depth; i++) { struct saved *last = nd->stack + i; if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { drop_links(nd); nd->depth = i + 1; return false; } } return true; } static bool legitimize_root(struct nameidata *nd) { /* Nothing to do if nd->root is zero or is managed by the VFS user. */ if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) return true; nd->state |= ND_ROOT_GRABBED; return legitimize_path(nd, &nd->root, nd->root_seq); } /* * Path walking has 2 modes, rcu-walk and ref-walk (see * Documentation/filesystems/path-lookup.txt). In situations when we can't * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab * normal reference counts on dentries and vfsmounts to transition to ref-walk * mode. Refcounts are grabbed at the last known good point before rcu-walk * got stuck, so ref-walk may continue from there. If this is not successful * (eg. a seqcount has changed), then failure is returned and it's up to caller * to restart the path walk from the beginning in ref-walk mode. */ /** * try_to_unlazy - try to switch to ref-walk mode. * @nd: nameidata pathwalk data * Returns: true on success, false on failure * * try_to_unlazy attempts to legitimize the current nd->path and nd->root * for ref-walk mode. * Must be called from rcu-walk context. * Nothing should touch nameidata between try_to_unlazy() failure and * terminate_walk(). */ static bool try_to_unlazy(struct nameidata *nd) { struct dentry *parent = nd->path.dentry; BUG_ON(!(nd->flags & LOOKUP_RCU)); if (unlikely(!legitimize_links(nd))) goto out1; if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) goto out; if (unlikely(!legitimize_root(nd))) goto out; leave_rcu(nd); BUG_ON(nd->inode != parent->d_inode); return true; out1: nd->path.mnt = NULL; nd->path.dentry = NULL; out: leave_rcu(nd); return false; } /** * try_to_unlazy_next - try to switch to ref-walk mode. * @nd: nameidata pathwalk data * @dentry: next dentry to step into * Returns: true on success, false on failure * * Similar to try_to_unlazy(), but here we have the next dentry already * picked by rcu-walk and want to legitimize that in addition to the current * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. * Nothing should touch nameidata between try_to_unlazy_next() failure and * terminate_walk(). */ static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry) { int res; BUG_ON(!(nd->flags & LOOKUP_RCU)); if (unlikely(!legitimize_links(nd))) goto out2; res = __legitimize_mnt(nd->path.mnt, nd->m_seq); if (unlikely(res)) { if (res > 0) goto out2; goto out1; } if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) goto out1; /* * We need to move both the parent and the dentry from the RCU domain * to be properly refcounted. And the sequence number in the dentry * validates *both* dentry counters, since we checked the sequence * number of the parent after we got the child sequence number. So we * know the parent must still be valid if the child sequence number is */ if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) goto out; if (read_seqcount_retry(&dentry->d_seq, nd->next_seq)) goto out_dput; /* * Sequence counts matched. Now make sure that the root is * still valid and get it if required. */ if (unlikely(!legitimize_root(nd))) goto out_dput; leave_rcu(nd); return true; out2: nd->path.mnt = NULL; out1: nd->path.dentry = NULL; out: leave_rcu(nd); return false; out_dput: leave_rcu(nd); dput(dentry); return false; } static inline int d_revalidate(struct dentry *dentry, unsigned int flags) { if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) return dentry->d_op->d_revalidate(dentry, flags); else return 1; } /** * complete_walk - successful completion of path walk * @nd: pointer nameidata * * If we had been in RCU mode, drop out of it and legitimize nd->path. * Revalidate the final result, unless we'd already done that during * the path walk or the filesystem doesn't ask for it. Return 0 on * success, -error on failure. In case of failure caller does not * need to drop nd->path. */ static int complete_walk(struct nameidata *nd) { struct dentry *dentry = nd->path.dentry; int status; if (nd->flags & LOOKUP_RCU) { /* * We don't want to zero nd->root for scoped-lookups or * externally-managed nd->root. */ if (!(nd->state & ND_ROOT_PRESET)) if (!(nd->flags & LOOKUP_IS_SCOPED)) nd->root.mnt = NULL; nd->flags &= ~LOOKUP_CACHED; if (!try_to_unlazy(nd)) return -ECHILD; } if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { /* * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't * ever step outside the root during lookup" and should already * be guaranteed by the rest of namei, we want to avoid a namei * BUG resulting in userspace being given a path that was not * scoped within the root at some point during the lookup. * * So, do a final sanity-check to make sure that in the * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) * we won't silently return an fd completely outside of the * requested root to userspace. * * Userspace could move the path outside the root after this * check, but as discussed elsewhere this is not a concern (the * resolved file was inside the root at some point). */ if (!path_is_under(&nd->path, &nd->root)) return -EXDEV; } if (likely(!(nd->state & ND_JUMPED))) return 0; if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) return 0; status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); if (status > 0) return 0; if (!status) status = -ESTALE; return status; } static int set_root(struct nameidata *nd) { struct fs_struct *fs = current->fs; /* * Jumping to the real root in a scoped-lookup is a BUG in namei, but we * still have to ensure it doesn't happen because it will cause a breakout * from the dirfd. */ if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) return -ENOTRECOVERABLE; if (nd->flags & LOOKUP_RCU) { unsigned seq; do { seq = read_seqcount_begin(&fs->seq); nd->root = fs->root; nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); } while (read_seqcount_retry(&fs->seq, seq)); } else { get_fs_root(fs, &nd->root); nd->state |= ND_ROOT_GRABBED; } return 0; } static int nd_jump_root(struct nameidata *nd) { if (unlikely(nd->flags & LOOKUP_BENEATH)) return -EXDEV; if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { /* Absolute path arguments to path_init() are allowed. */ if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) return -EXDEV; } if (!nd->root.mnt) { int error = set_root(nd); if (error) return error; } if (nd->flags & LOOKUP_RCU) { struct dentry *d; nd->path = nd->root; d = nd->path.dentry; nd->inode = d->d_inode; nd->seq = nd->root_seq; if (read_seqcount_retry(&d->d_seq, nd->seq)) return -ECHILD; } else { path_put(&nd->path); nd->path = nd->root; path_get(&nd->path); nd->inode = nd->path.dentry->d_inode; } nd->state |= ND_JUMPED; return 0; } /* * Helper to directly jump to a known parsed path from ->get_link, * caller must have taken a reference to path beforehand. */ int nd_jump_link(const struct path *path) { int error = -ELOOP; struct nameidata *nd = current->nameidata; if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) goto err; error = -EXDEV; if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { if (nd->path.mnt != path->mnt) goto err; } /* Not currently safe for scoped-lookups. */ if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) goto err; path_put(&nd->path); nd->path = *path; nd->inode = nd->path.dentry->d_inode; nd->state |= ND_JUMPED; return 0; err: path_put(path); return error; } static inline void put_link(struct nameidata *nd) { struct saved *last = nd->stack + --nd->depth; do_delayed_call(&last->done); if (!(nd->flags & LOOKUP_RCU)) path_put(&last->link); } static int sysctl_protected_symlinks __read_mostly; static int sysctl_protected_hardlinks __read_mostly; static int sysctl_protected_fifos __read_mostly; static int sysctl_protected_regular __read_mostly; #ifdef CONFIG_SYSCTL static struct ctl_table namei_sysctls[] = { { .procname = "protected_symlinks", .data = &sysctl_protected_symlinks, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, { .procname = "protected_hardlinks", .data = &sysctl_protected_hardlinks, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, { .procname = "protected_fifos", .data = &sysctl_protected_fifos, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_TWO, }, { .procname = "protected_regular", .data = &sysctl_protected_regular, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_TWO, }, }; static int __init init_fs_namei_sysctls(void) { register_sysctl_init("fs", namei_sysctls); return 0; } fs_initcall(init_fs_namei_sysctls); #endif /* CONFIG_SYSCTL */ /** * may_follow_link - Check symlink following for unsafe situations * @nd: nameidata pathwalk data * @inode: Used for idmapping. * * In the case of the sysctl_protected_symlinks sysctl being enabled, * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is * in a sticky world-writable directory. This is to protect privileged * processes from failing races against path names that may change out * from under them by way of other users creating malicious symlinks. * It will permit symlinks to be followed only when outside a sticky * world-writable directory, or when the uid of the symlink and follower * match, or when the directory owner matches the symlink's owner. * * Returns 0 if following the symlink is allowed, -ve on error. */ static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) { struct mnt_idmap *idmap; vfsuid_t vfsuid; if (!sysctl_protected_symlinks) return 0; idmap = mnt_idmap(nd->path.mnt); vfsuid = i_uid_into_vfsuid(idmap, inode); /* Allowed if owner and follower match. */ if (vfsuid_eq_kuid(vfsuid, current_fsuid())) return 0; /* Allowed if parent directory not sticky and world-writable. */ if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) return 0; /* Allowed if parent directory and link owner match. */ if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid)) return 0; if (nd->flags & LOOKUP_RCU) return -ECHILD; audit_inode(nd->name, nd->stack[0].link.dentry, 0); audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); return -EACCES; } /** * safe_hardlink_source - Check for safe hardlink conditions * @idmap: idmap of the mount the inode was found from * @inode: the source inode to hardlink from * * Return false if at least one of the following conditions: * - inode is not a regular file * - inode is setuid * - inode is setgid and group-exec * - access failure for read and write * * Otherwise returns true. */ static bool safe_hardlink_source(struct mnt_idmap *idmap, struct inode *inode) { umode_t mode = inode->i_mode; /* Special files should not get pinned to the filesystem. */ if (!S_ISREG(mode)) return false; /* Setuid files should not get pinned to the filesystem. */ if (mode & S_ISUID) return false; /* Executable setgid files should not get pinned to the filesystem. */ if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) return false; /* Hardlinking to unreadable or unwritable sources is dangerous. */ if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE)) return false; return true; } /** * may_linkat - Check permissions for creating a hardlink * @idmap: idmap of the mount the inode was found from * @link: the source to hardlink from * * Block hardlink when all of: * - sysctl_protected_hardlinks enabled * - fsuid does not match inode * - hardlink source is unsafe (see safe_hardlink_source() above) * - not CAP_FOWNER in a namespace with the inode owner uid mapped * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. * * Returns 0 if successful, -ve on error. */ int may_linkat(struct mnt_idmap *idmap, const struct path *link) { struct inode *inode = link->dentry->d_inode; /* Inode writeback is not safe when the uid or gid are invalid. */ if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) return -EOVERFLOW; if (!sysctl_protected_hardlinks) return 0; /* Source inode owner (or CAP_FOWNER) can hardlink all they like, * otherwise, it must be a safe source. */ if (safe_hardlink_source(idmap, inode) || inode_owner_or_capable(idmap, inode)) return 0; audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); return -EPERM; } /** * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory * should be allowed, or not, on files that already * exist. * @idmap: idmap of the mount the inode was found from * @nd: nameidata pathwalk data * @inode: the inode of the file to open * * Block an O_CREAT open of a FIFO (or a regular file) when: * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled * - the file already exists * - we are in a sticky directory * - we don't own the file * - the owner of the directory doesn't own the file * - the directory is world writable * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 * the directory doesn't have to be world writable: being group writable will * be enough. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. * * Returns 0 if the open is allowed, -ve on error. */ static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd, struct inode *const inode) { umode_t dir_mode = nd->dir_mode; vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid; if (likely(!(dir_mode & S_ISVTX))) return 0; if (S_ISREG(inode->i_mode) && !sysctl_protected_regular) return 0; if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos) return 0; i_vfsuid = i_uid_into_vfsuid(idmap, inode); if (vfsuid_eq(i_vfsuid, dir_vfsuid)) return 0; if (vfsuid_eq_kuid(i_vfsuid, current_fsuid())) return 0; if (likely(dir_mode & 0002)) { audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create"); return -EACCES; } if (dir_mode & 0020) { if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) { audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create_fifo"); return -EACCES; } if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) { audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create_regular"); return -EACCES; } } return 0; } /* * follow_up - Find the mountpoint of path's vfsmount * * Given a path, find the mountpoint of its source file system. * Replace @path with the path of the mountpoint in the parent mount. * Up is towards /. * * Return 1 if we went up a level and 0 if we were already at the * root. */ int follow_up(struct path *path) { struct mount *mnt = real_mount(path->mnt); struct mount *parent; struct dentry *mountpoint; read_seqlock_excl(&mount_lock); parent = mnt->mnt_parent; if (parent == mnt) { read_sequnlock_excl(&mount_lock); return 0; } mntget(&parent->mnt); mountpoint = dget(mnt->mnt_mountpoint); read_sequnlock_excl(&mount_lock); dput(path->dentry); path->dentry = mountpoint; mntput(path->mnt); path->mnt = &parent->mnt; return 1; } EXPORT_SYMBOL(follow_up); static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, struct path *path, unsigned *seqp) { while (mnt_has_parent(m)) { struct dentry *mountpoint = m->mnt_mountpoint; m = m->mnt_parent; if (unlikely(root->dentry == mountpoint && root->mnt == &m->mnt)) break; if (mountpoint != m->mnt.mnt_root) { path->mnt = &m->mnt; path->dentry = mountpoint; *seqp = read_seqcount_begin(&mountpoint->d_seq); return true; } } return false; } static bool choose_mountpoint(struct mount *m, const struct path *root, struct path *path) { bool found; rcu_read_lock(); while (1) { unsigned seq, mseq = read_seqbegin(&mount_lock); found = choose_mountpoint_rcu(m, root, path, &seq); if (unlikely(!found)) { if (!read_seqretry(&mount_lock, mseq)) break; } else { if (likely(__legitimize_path(path, seq, mseq))) break; rcu_read_unlock(); path_put(path); rcu_read_lock(); } } rcu_read_unlock(); return found; } /* * Perform an automount * - return -EISDIR to tell follow_managed() to stop and return the path we * were called with. */ static int follow_automount(struct path *path, int *count, unsigned lookup_flags) { struct dentry *dentry = path->dentry; /* We don't want to mount if someone's just doing a stat - * unless they're stat'ing a directory and appended a '/' to * the name. * * We do, however, want to mount if someone wants to open or * create a file of any type under the mountpoint, wants to * traverse through the mountpoint or wants to open the * mounted directory. Also, autofs may mark negative dentries * as being automount points. These will need the attentions * of the daemon to instantiate them before they can be used. */ if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && dentry->d_inode) return -EISDIR; if (count && (*count)++ >= MAXSYMLINKS) return -ELOOP; return finish_automount(dentry->d_op->d_automount(path), path); } /* * mount traversal - out-of-line part. One note on ->d_flags accesses - * dentries are pinned but not locked here, so negative dentry can go * positive right under us. Use of smp_load_acquire() provides a barrier * sufficient for ->d_inode and ->d_flags consistency. */ static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, int *count, unsigned lookup_flags) { struct vfsmount *mnt = path->mnt; bool need_mntput = false; int ret = 0; while (flags & DCACHE_MANAGED_DENTRY) { /* Allow the filesystem to manage the transit without i_mutex * being held. */ if (flags & DCACHE_MANAGE_TRANSIT) { ret = path->dentry->d_op->d_manage(path, false); flags = smp_load_acquire(&path->dentry->d_flags); if (ret < 0) break; } if (flags & DCACHE_MOUNTED) { // something's mounted on it.. struct vfsmount *mounted = lookup_mnt(path); if (mounted) { // ... in our namespace dput(path->dentry); if (need_mntput) mntput(path->mnt); path->mnt = mounted; path->dentry = dget(mounted->mnt_root); // here we know it's positive flags = path->dentry->d_flags; need_mntput = true; continue; } } if (!(flags & DCACHE_NEED_AUTOMOUNT)) break; // uncovered automount point ret = follow_automount(path, count, lookup_flags); flags = smp_load_acquire(&path->dentry->d_flags); if (ret < 0) break; } if (ret == -EISDIR) ret = 0; // possible if you race with several mount --move if (need_mntput && path->mnt == mnt) mntput(path->mnt); if (!ret && unlikely(d_flags_negative(flags))) ret = -ENOENT; *jumped = need_mntput; return ret; } static inline int traverse_mounts(struct path *path, bool *jumped, int *count, unsigned lookup_flags) { unsigned flags = smp_load_acquire(&path->dentry->d_flags); /* fastpath */ if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { *jumped = false; if (unlikely(d_flags_negative(flags))) return -ENOENT; return 0; } return __traverse_mounts(path, flags, jumped, count, lookup_flags); } int follow_down_one(struct path *path) { struct vfsmount *mounted; mounted = lookup_mnt(path); if (mounted) { dput(path->dentry); mntput(path->mnt); path->mnt = mounted; path->dentry = dget(mounted->mnt_root); return 1; } return 0; } EXPORT_SYMBOL(follow_down_one); /* * Follow down to the covering mount currently visible to userspace. At each * point, the filesystem owning that dentry may be queried as to whether the * caller is permitted to proceed or not. */ int follow_down(struct path *path, unsigned int flags) { struct vfsmount *mnt = path->mnt; bool jumped; int ret = traverse_mounts(path, &jumped, NULL, flags); if (path->mnt != mnt) mntput(mnt); return ret; } EXPORT_SYMBOL(follow_down); /* * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if * we meet a managed dentry that would need blocking. */ static bool __follow_mount_rcu(struct nameidata *nd, struct path *path) { struct dentry *dentry = path->dentry; unsigned int flags = dentry->d_flags; if (likely(!(flags & DCACHE_MANAGED_DENTRY))) return true; if (unlikely(nd->flags & LOOKUP_NO_XDEV)) return false; for (;;) { /* * Don't forget we might have a non-mountpoint managed dentry * that wants to block transit. */ if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { int res = dentry->d_op->d_manage(path, true); if (res) return res == -EISDIR; flags = dentry->d_flags; } if (flags & DCACHE_MOUNTED) { struct mount *mounted = __lookup_mnt(path->mnt, dentry); if (mounted) { path->mnt = &mounted->mnt; dentry = path->dentry = mounted->mnt.mnt_root; nd->state |= ND_JUMPED; nd->next_seq = read_seqcount_begin(&dentry->d_seq); flags = dentry->d_flags; // makes sure that non-RCU pathwalk could reach // this state. if (read_seqretry(&mount_lock, nd->m_seq)) return false; continue; } if (read_seqretry(&mount_lock, nd->m_seq)) return false; } return !(flags & DCACHE_NEED_AUTOMOUNT); } } static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, struct path *path) { bool jumped; int ret; path->mnt = nd->path.mnt; path->dentry = dentry; if (nd->flags & LOOKUP_RCU) { unsigned int seq = nd->next_seq; if (likely(__follow_mount_rcu(nd, path))) return 0; // *path and nd->next_seq might've been clobbered path->mnt = nd->path.mnt; path->dentry = dentry; nd->next_seq = seq; if (!try_to_unlazy_next(nd, dentry)) return -ECHILD; } ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); if (jumped) { if (unlikely(nd->flags & LOOKUP_NO_XDEV)) ret = -EXDEV; else nd->state |= ND_JUMPED; } if (unlikely(ret)) { dput(path->dentry); if (path->mnt != nd->path.mnt) mntput(path->mnt); } return ret; } /* * This looks up the name in dcache and possibly revalidates the found dentry. * NULL is returned if the dentry does not exist in the cache. */ static struct dentry *lookup_dcache(const struct qstr *name, struct dentry *dir, unsigned int flags) { struct dentry *dentry = d_lookup(dir, name); if (dentry) { int error = d_revalidate(dentry, flags); if (unlikely(error <= 0)) { if (!error) d_invalidate(dentry); dput(dentry); return ERR_PTR(error); } } return dentry; } /* * Parent directory has inode locked exclusive. This is one * and only case when ->lookup() gets called on non in-lookup * dentries - as the matter of fact, this only gets called * when directory is guaranteed to have no in-lookup children * at all. */ struct dentry *lookup_one_qstr_excl(const struct qstr *name, struct dentry *base, unsigned int flags) { struct dentry *dentry = lookup_dcache(name, base, flags); struct dentry *old; struct inode *dir = base->d_inode; if (dentry) return dentry; /* Don't create child dentry for a dead directory. */ if (unlikely(IS_DEADDIR(dir))) return ERR_PTR(-ENOENT); dentry = d_alloc(base, name); if (unlikely(!dentry)) return ERR_PTR(-ENOMEM); old = dir->i_op->lookup(dir, dentry, flags); if (unlikely(old)) { dput(dentry); dentry = old; } return dentry; } EXPORT_SYMBOL(lookup_one_qstr_excl); static struct dentry *lookup_fast(struct nameidata *nd) { struct dentry *dentry, *parent = nd->path.dentry; int status = 1; /* * Rename seqlock is not required here because in the off chance * of a false negative due to a concurrent rename, the caller is * going to fall back to non-racy lookup. */ if (nd->flags & LOOKUP_RCU) { dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq); if (unlikely(!dentry)) { if (!try_to_unlazy(nd)) return ERR_PTR(-ECHILD); return NULL; } /* * This sequence count validates that the parent had no * changes while we did the lookup of the dentry above. */ if (read_seqcount_retry(&parent->d_seq, nd->seq)) return ERR_PTR(-ECHILD); status = d_revalidate(dentry, nd->flags); if (likely(status > 0)) return dentry; if (!try_to_unlazy_next(nd, dentry)) return ERR_PTR(-ECHILD); if (status == -ECHILD) /* we'd been told to redo it in non-rcu mode */ status = d_revalidate(dentry, nd->flags); } else { dentry = __d_lookup(parent, &nd->last); if (unlikely(!dentry)) return NULL; status = d_revalidate(dentry, nd->flags); } if (unlikely(status <= 0)) { if (!status) d_invalidate(dentry); dput(dentry); return ERR_PTR(status); } return dentry; } /* Fast lookup failed, do it the slow way */ static struct dentry *__lookup_slow(const struct qstr *name, struct dentry *dir, unsigned int flags) { struct dentry *dentry, *old; struct inode *inode = dir->d_inode; DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); /* Don't go there if it's already dead */ if (unlikely(IS_DEADDIR(inode))) return ERR_PTR(-ENOENT); again: dentry = d_alloc_parallel(dir, name, &wq); if (IS_ERR(dentry)) return dentry; if (unlikely(!d_in_lookup(dentry))) { int error = d_revalidate(dentry, flags); if (unlikely(error <= 0)) { if (!error) { d_invalidate(dentry); dput(dentry); goto again; } dput(dentry); dentry = ERR_PTR(error); } } else { old = inode->i_op->lookup(inode, dentry, flags); d_lookup_done(dentry); if (unlikely(old)) { dput(dentry); dentry = old; } } return dentry; } static struct dentry *lookup_slow(const struct qstr *name, struct dentry *dir, unsigned int flags) { struct inode *inode = dir->d_inode; struct dentry *res; inode_lock_shared(inode); res = __lookup_slow(name, dir, flags); inode_unlock_shared(inode); return res; } static inline int may_lookup(struct mnt_idmap *idmap, struct nameidata *restrict nd) { int err, mask; mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0; err = inode_permission(idmap, nd->inode, mask | MAY_EXEC); if (likely(!err)) return 0; // If we failed, and we weren't in LOOKUP_RCU, it's final if (!(nd->flags & LOOKUP_RCU)) return err; // Drop out of RCU mode to make sure it wasn't transient if (!try_to_unlazy(nd)) return -ECHILD; // redo it all non-lazy if (err != -ECHILD) // hard error return err; return inode_permission(idmap, nd->inode, MAY_EXEC); } static int reserve_stack(struct nameidata *nd, struct path *link) { if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) return -ELOOP; if (likely(nd->depth != EMBEDDED_LEVELS)) return 0; if (likely(nd->stack != nd->internal)) return 0; if (likely(nd_alloc_stack(nd))) return 0; if (nd->flags & LOOKUP_RCU) { // we need to grab link before we do unlazy. And we can't skip // unlazy even if we fail to grab the link - cleanup needs it bool grabbed_link = legitimize_path(nd, link, nd->next_seq); if (!try_to_unlazy(nd) || !grabbed_link) return -ECHILD; if (nd_alloc_stack(nd)) return 0; } return -ENOMEM; } enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; static const char *pick_link(struct nameidata *nd, struct path *link, struct inode *inode, int flags) { struct saved *last; const char *res; int error = reserve_stack(nd, link); if (unlikely(error)) { if (!(nd->flags & LOOKUP_RCU)) path_put(link); return ERR_PTR(error); } last = nd->stack + nd->depth++; last->link = *link; clear_delayed_call(&last->done); last->seq = nd->next_seq; if (flags & WALK_TRAILING) { error = may_follow_link(nd, inode); if (unlikely(error)) return ERR_PTR(error); } if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) return ERR_PTR(-ELOOP); if (!(nd->flags & LOOKUP_RCU)) { touch_atime(&last->link); cond_resched(); } else if (atime_needs_update(&last->link, inode)) { if (!try_to_unlazy(nd)) return ERR_PTR(-ECHILD); touch_atime(&last->link); } error = security_inode_follow_link(link->dentry, inode, nd->flags & LOOKUP_RCU); if (unlikely(error)) return ERR_PTR(error); res = READ_ONCE(inode->i_link); if (!res) { const char * (*get)(struct dentry *, struct inode *, struct delayed_call *); get = inode->i_op->get_link; if (nd->flags & LOOKUP_RCU) { res = get(NULL, inode, &last->done); if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) res = get(link->dentry, inode, &last->done); } else { res = get(link->dentry, inode, &last->done); } if (!res) goto all_done; if (IS_ERR(res)) return res; } if (*res == '/') { error = nd_jump_root(nd); if (unlikely(error)) return ERR_PTR(error); while (unlikely(*++res == '/')) ; } if (*res) return res; all_done: // pure jump put_link(nd); return NULL; } /* * Do we need to follow links? We _really_ want to be able * to do this check without having to look at inode->i_op, * so we keep a cache of "no, this doesn't need follow_link" * for the common case. * * NOTE: dentry must be what nd->next_seq had been sampled from. */ static const char *step_into(struct nameidata *nd, int flags, struct dentry *dentry) { struct path path; struct inode *inode; int err = handle_mounts(nd, dentry, &path); if (err < 0) return ERR_PTR(err); inode = path.dentry->d_inode; if (likely(!d_is_symlink(path.dentry)) || ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || (flags & WALK_NOFOLLOW)) { /* not a symlink or should not follow */ if (nd->flags & LOOKUP_RCU) { if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) return ERR_PTR(-ECHILD); if (unlikely(!inode)) return ERR_PTR(-ENOENT); } else { dput(nd->path.dentry); if (nd->path.mnt != path.mnt) mntput(nd->path.mnt); } nd->path = path; nd->inode = inode; nd->seq = nd->next_seq; return NULL; } if (nd->flags & LOOKUP_RCU) { /* make sure that d_is_symlink above matches inode */ if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) return ERR_PTR(-ECHILD); } else { if (path.mnt == nd->path.mnt) mntget(path.mnt); } return pick_link(nd, &path, inode, flags); } static struct dentry *follow_dotdot_rcu(struct nameidata *nd) { struct dentry *parent, *old; if (path_equal(&nd->path, &nd->root)) goto in_root; if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { struct path path; unsigned seq; if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), &nd->root, &path, &seq)) goto in_root; if (unlikely(nd->flags & LOOKUP_NO_XDEV)) return ERR_PTR(-ECHILD); nd->path = path; nd->inode = path.dentry->d_inode; nd->seq = seq; // makes sure that non-RCU pathwalk could reach this state if (read_seqretry(&mount_lock, nd->m_seq)) return ERR_PTR(-ECHILD); /* we know that mountpoint was pinned */ } old = nd->path.dentry; parent = old->d_parent; nd->next_seq = read_seqcount_begin(&parent->d_seq); // makes sure that non-RCU pathwalk could reach this state if (read_seqcount_retry(&old->d_seq, nd->seq)) return ERR_PTR(-ECHILD); if (unlikely(!path_connected(nd->path.mnt, parent))) return ERR_PTR(-ECHILD); return parent; in_root: if (read_seqretry(&mount_lock, nd->m_seq)) return ERR_PTR(-ECHILD); if (unlikely(nd->flags & LOOKUP_BENEATH)) return ERR_PTR(-ECHILD); nd->next_seq = nd->seq; return nd->path.dentry; } static struct dentry *follow_dotdot(struct nameidata *nd) { struct dentry *parent; if (path_equal(&nd->path, &nd->root)) goto in_root; if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { struct path path; if (!choose_mountpoint(real_mount(nd->path.mnt), &nd->root, &path)) goto in_root; path_put(&nd->path); nd->path = path; nd->inode = path.dentry->d_inode; if (unlikely(nd->flags & LOOKUP_NO_XDEV)) return ERR_PTR(-EXDEV); } /* rare case of legitimate dget_parent()... */ parent = dget_parent(nd->path.dentry); if (unlikely(!path_connected(nd->path.mnt, parent))) { dput(parent); return ERR_PTR(-ENOENT); } return parent; in_root: if (unlikely(nd->flags & LOOKUP_BENEATH)) return ERR_PTR(-EXDEV); return dget(nd->path.dentry); } static const char *handle_dots(struct nameidata *nd, int type) { if (type == LAST_DOTDOT) { const char *error = NULL; struct dentry *parent; if (!nd->root.mnt) { error = ERR_PTR(set_root(nd)); if (error) return error; } if (nd->flags & LOOKUP_RCU) parent = follow_dotdot_rcu(nd); else parent = follow_dotdot(nd); if (IS_ERR(parent)) return ERR_CAST(parent); error = step_into(nd, WALK_NOFOLLOW, parent); if (unlikely(error)) return error; if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { /* * If there was a racing rename or mount along our * path, then we can't be sure that ".." hasn't jumped * above nd->root (and so userspace should retry or use * some fallback). */ smp_rmb(); if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)) return ERR_PTR(-EAGAIN); if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)) return ERR_PTR(-EAGAIN); } } return NULL; } static const char *walk_component(struct nameidata *nd, int flags) { struct dentry *dentry; /* * "." and ".." are special - ".." especially so because it has * to be able to know about the current root directory and * parent relationships. */ if (unlikely(nd->last_type != LAST_NORM)) { if (!(flags & WALK_MORE) && nd->depth) put_link(nd); return handle_dots(nd, nd->last_type); } dentry = lookup_fast(nd); if (IS_ERR(dentry)) return ERR_CAST(dentry); if (unlikely(!dentry)) { dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); if (IS_ERR(dentry)) return ERR_CAST(dentry); } if (!(flags & WALK_MORE) && nd->depth) put_link(nd); return step_into(nd, flags, dentry); } /* * We can do the critical dentry name comparison and hashing * operations one word at a time, but we are limited to: * * - Architectures with fast unaligned word accesses. We could * do a "get_unaligned()" if this helps and is sufficiently * fast. * * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we * do not trap on the (extremely unlikely) case of a page * crossing operation. * * - Furthermore, we need an efficient 64-bit compile for the * 64-bit case in order to generate the "number of bytes in * the final mask". Again, that could be replaced with a * efficient population count instruction or similar. */ #ifdef CONFIG_DCACHE_WORD_ACCESS #include <asm/word-at-a-time.h> #ifdef HASH_MIX /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ #elif defined(CONFIG_64BIT) /* * Register pressure in the mixing function is an issue, particularly * on 32-bit x86, but almost any function requires one state value and * one temporary. Instead, use a function designed for two state values * and no temporaries. * * This function cannot create a collision in only two iterations, so * we have two iterations to achieve avalanche. In those two iterations, * we have six layers of mixing, which is enough to spread one bit's * influence out to 2^6 = 64 state bits. * * Rotate constants are scored by considering either 64 one-bit input * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the * probability of that delta causing a change to each of the 128 output * bits, using a sample of random initial states. * * The Shannon entropy of the computed probabilities is then summed * to produce a score. Ideally, any input change has a 50% chance of * toggling any given output bit. * * Mixing scores (in bits) for (12,45): * Input delta: 1-bit 2-bit * 1 round: 713.3 42542.6 * 2 rounds: 2753.7 140389.8 * 3 rounds: 5954.1 233458.2 * 4 rounds: 7862.6 256672.2 * Perfect: 8192 258048 * (64*128) (64*63/2 * 128) */ #define HASH_MIX(x, y, a) \ ( x ^= (a), \ y ^= x, x = rol64(x,12),\ x += y, y = rol64(y,45),\ y *= 9 ) /* * Fold two longs into one 32-bit hash value. This must be fast, but * latency isn't quite as critical, as there is a fair bit of additional * work done before the hash value is used. */ static inline unsigned int fold_hash(unsigned long x, unsigned long y) { y ^= x * GOLDEN_RATIO_64; y *= GOLDEN_RATIO_64; return y >> 32; } #else /* 32-bit case */ /* * Mixing scores (in bits) for (7,20): * Input delta: 1-bit 2-bit * 1 round: 330.3 9201.6 * 2 rounds: 1246.4 25475.4 * 3 rounds: 1907.1 31295.1 * 4 rounds: 2042.3 31718.6 * Perfect: 2048 31744 * (32*64) (32*31/2 * 64) */ #define HASH_MIX(x, y, a) \ ( x ^= (a), \ y ^= x, x = rol32(x, 7),\ x += y, y = rol32(y,20),\ y *= 9 ) static inline unsigned int fold_hash(unsigned long x, unsigned long y) { /* Use arch-optimized multiply if one exists */ return __hash_32(y ^ __hash_32(x)); } #endif /* * Return the hash of a string of known length. This is carfully * designed to match hash_name(), which is the more critical function. * In particular, we must end by hashing a final word containing 0..7 * payload bytes, to match the way that hash_name() iterates until it * finds the delimiter after the name. */ unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) { unsigned long a, x = 0, y = (unsigned long)salt; for (;;) { if (!len) goto done; a = load_unaligned_zeropad(name); if (len < sizeof(unsigned long)) break; HASH_MIX(x, y, a); name += sizeof(unsigned long); len -= sizeof(unsigned long); } x ^= a & bytemask_from_count(len); done: return fold_hash(x, y); } EXPORT_SYMBOL(full_name_hash); /* Return the "hash_len" (hash and length) of a null-terminated string */ u64 hashlen_string(const void *salt, const char *name) { unsigned long a = 0, x = 0, y = (unsigned long)salt; unsigned long adata, mask, len; const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; len = 0; goto inside; do { HASH_MIX(x, y, a); len += sizeof(unsigned long); inside: a = load_unaligned_zeropad(name+len); } while (!has_zero(a, &adata, &constants)); adata = prep_zero_mask(a, adata, &constants); mask = create_zero_mask(adata); x ^= a & zero_bytemask(mask); return hashlen_create(fold_hash(x, y), len + find_zero(mask)); } EXPORT_SYMBOL(hashlen_string); /* * Calculate the length and hash of the path component, and * return the length as the result. */ static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword) { unsigned long a, b, x, y = (unsigned long)nd->path.dentry; unsigned long adata, bdata, mask, len; const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; /* * The first iteration is special, because it can result in * '.' and '..' and has no mixing other than the final fold. */ a = load_unaligned_zeropad(name); b = a ^ REPEAT_BYTE('/'); if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) { adata = prep_zero_mask(a, adata, &constants); bdata = prep_zero_mask(b, bdata, &constants); mask = create_zero_mask(adata | bdata); a &= zero_bytemask(mask); *lastword = a; len = find_zero(mask); nd->last.hash = fold_hash(a, y); nd->last.len = len; return name + len; } len = 0; x = 0; do { HASH_MIX(x, y, a); len += sizeof(unsigned long); a = load_unaligned_zeropad(name+len); b = a ^ REPEAT_BYTE('/'); } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); adata = prep_zero_mask(a, adata, &constants); bdata = prep_zero_mask(b, bdata, &constants); mask = create_zero_mask(adata | bdata); a &= zero_bytemask(mask); x ^= a; len += find_zero(mask); *lastword = 0; // Multi-word components cannot be DOT or DOTDOT nd->last.hash = fold_hash(x, y); nd->last.len = len; return name + len; } /* * Note that the 'last' word is always zero-masked, but * was loaded as a possibly big-endian word. */ #ifdef __BIG_ENDIAN #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8)) #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16)) #endif #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ /* Return the hash of a string of known length */ unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) { unsigned long hash = init_name_hash(salt); while (len--) hash = partial_name_hash((unsigned char)*name++, hash); return end_name_hash(hash); } EXPORT_SYMBOL(full_name_hash); /* Return the "hash_len" (hash and length) of a null-terminated string */ u64 hashlen_string(const void *salt, const char *name) { unsigned long hash = init_name_hash(salt); unsigned long len = 0, c; c = (unsigned char)*name; while (c) { len++; hash = partial_name_hash(c, hash); c = (unsigned char)name[len]; } return hashlen_create(end_name_hash(hash), len); } EXPORT_SYMBOL(hashlen_string); /* * We know there's a real path component here of at least * one character. */ static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword) { unsigned long hash = init_name_hash(nd->path.dentry); unsigned long len = 0, c, last = 0; c = (unsigned char)*name; do { last = (last << 8) + c; len++; hash = partial_name_hash(c, hash); c = (unsigned char)name[len]; } while (c && c != '/'); // This is reliable for DOT or DOTDOT, since the component // cannot contain NUL characters - top bits being zero means // we cannot have had any other pathnames. *lastword = last; nd->last.hash = end_name_hash(hash); nd->last.len = len; return name + len; } #endif #ifndef LAST_WORD_IS_DOT #define LAST_WORD_IS_DOT 0x2e #define LAST_WORD_IS_DOTDOT 0x2e2e #endif /* * Name resolution. * This is the basic name resolution function, turning a pathname into * the final dentry. We expect 'base' to be positive and a directory. * * Returns 0 and nd will have valid dentry and mnt on success. * Returns error and drops reference to input namei data on failure. */ static int link_path_walk(const char *name, struct nameidata *nd) { int depth = 0; // depth <= nd->depth int err; nd->last_type = LAST_ROOT; nd->flags |= LOOKUP_PARENT; if (IS_ERR(name)) return PTR_ERR(name); while (*name=='/') name++; if (!*name) { nd->dir_mode = 0; // short-circuit the 'hardening' idiocy return 0; } /* At this point we know we have a real path component. */ for(;;) { struct mnt_idmap *idmap; const char *link; unsigned long lastword; idmap = mnt_idmap(nd->path.mnt); err = may_lookup(idmap, nd); if (err) return err; nd->last.name = name; name = hash_name(nd, name, &lastword); switch(lastword) { case LAST_WORD_IS_DOTDOT: nd->last_type = LAST_DOTDOT; nd->state |= ND_JUMPED; break; case LAST_WORD_IS_DOT: nd->last_type = LAST_DOT; break; default: nd->last_type = LAST_NORM; nd->state &= ~ND_JUMPED; struct dentry *parent = nd->path.dentry; if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { err = parent->d_op->d_hash(parent, &nd->last); if (err < 0) return err; } } if (!*name) goto OK; /* * If it wasn't NUL, we know it was '/'. Skip that * slash, and continue until no more slashes. */ do { name++; } while (unlikely(*name == '/')); if (unlikely(!*name)) { OK: /* pathname or trailing symlink, done */ if (!depth) { nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode); nd->dir_mode = nd->inode->i_mode; nd->flags &= ~LOOKUP_PARENT; return 0; } /* last component of nested symlink */ name = nd->stack[--depth].name; link = walk_component(nd, 0); } else { /* not the last component */ link = walk_component(nd, WALK_MORE); } if (unlikely(link)) { if (IS_ERR(link)) return PTR_ERR(link); /* a symlink to follow */ nd->stack[depth++].name = name; name = link; continue; } if (unlikely(!d_can_lookup(nd->path.dentry))) { if (nd->flags & LOOKUP_RCU) { if (!try_to_unlazy(nd)) return -ECHILD; } return -ENOTDIR; } } } /* must be paired with terminate_walk() */ static const char *path_init(struct nameidata *nd, unsigned flags) { int error; const char *s = nd->name->name; /* LOOKUP_CACHED requires RCU, ask caller to retry */ if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) return ERR_PTR(-EAGAIN); if (!*s) flags &= ~LOOKUP_RCU; if (flags & LOOKUP_RCU) rcu_read_lock(); else nd->seq = nd->next_seq = 0; nd->flags = flags; nd->state |= ND_JUMPED; nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); smp_rmb(); if (nd->state & ND_ROOT_PRESET) { struct dentry *root = nd->root.dentry; struct inode *inode = root->d_inode; if (*s && unlikely(!d_can_lookup(root))) return ERR_PTR(-ENOTDIR); nd->path = nd->root; nd->inode = inode; if (flags & LOOKUP_RCU) { nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); nd->root_seq = nd->seq; } else { path_get(&nd->path); } return s; } nd->root.mnt = NULL; /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { error = nd_jump_root(nd); if (unlikely(error)) return ERR_PTR(error); return s; } /* Relative pathname -- get the starting-point it is relative to. */ if (nd->dfd == AT_FDCWD) { if (flags & LOOKUP_RCU) { struct fs_struct *fs = current->fs; unsigned seq; do { seq = read_seqcount_begin(&fs->seq); nd->path = fs->pwd; nd->inode = nd->path.dentry->d_inode; nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); } while (read_seqcount_retry(&fs->seq, seq)); } else { get_fs_pwd(current->fs, &nd->path); nd->inode = nd->path.dentry->d_inode; } } else { /* Caller must check execute permissions on the starting path component */ struct fd f = fdget_raw(nd->dfd); struct dentry *dentry; if (!f.file) return ERR_PTR(-EBADF); if (flags & LOOKUP_LINKAT_EMPTY) { if (f.file->f_cred != current_cred() && !ns_capable(f.file->f_cred->user_ns, CAP_DAC_READ_SEARCH)) { fdput(f); return ERR_PTR(-ENOENT); } } dentry = f.file->f_path.dentry; if (*s && unlikely(!d_can_lookup(dentry))) { fdput(f); return ERR_PTR(-ENOTDIR); } nd->path = f.file->f_path; if (flags & LOOKUP_RCU) { nd->inode = nd->path.dentry->d_inode; nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); } else { path_get(&nd->path); nd->inode = nd->path.dentry->d_inode; } fdput(f); } /* For scoped-lookups we need to set the root to the dirfd as well. */ if (flags & LOOKUP_IS_SCOPED) { nd->root = nd->path; if (flags & LOOKUP_RCU) { nd->root_seq = nd->seq; } else { path_get(&nd->root); nd->state |= ND_ROOT_GRABBED; } } return s; } static inline const char *lookup_last(struct nameidata *nd) { if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; return walk_component(nd, WALK_TRAILING); } static int handle_lookup_down(struct nameidata *nd) { if (!(nd->flags & LOOKUP_RCU)) dget(nd->path.dentry); nd->next_seq = nd->seq; return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry)); } /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) { const char *s = path_init(nd, flags); int err; if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { err = handle_lookup_down(nd); if (unlikely(err < 0)) s = ERR_PTR(err); } while (!(err = link_path_walk(s, nd)) && (s = lookup_last(nd)) != NULL) ; if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { err = handle_lookup_down(nd); nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... } if (!err) err = complete_walk(nd); if (!err && nd->flags & LOOKUP_DIRECTORY) if (!d_can_lookup(nd->path.dentry)) err = -ENOTDIR; if (!err) { *path = nd->path; nd->path.mnt = NULL; nd->path.dentry = NULL; } terminate_walk(nd); return err; } int filename_lookup(int dfd, struct filename *name, unsigned flags, struct path *path, struct path *root) { int retval; struct nameidata nd; if (IS_ERR(name)) return PTR_ERR(name); set_nameidata(&nd, dfd, name, root); retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); if (unlikely(retval == -ECHILD)) retval = path_lookupat(&nd, flags, path); if (unlikely(retval == -ESTALE)) retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); if (likely(!retval)) audit_inode(name, path->dentry, flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); restore_nameidata(); return retval; } /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ static int path_parentat(struct nameidata *nd, unsigned flags, struct path *parent) { const char *s = path_init(nd, flags); int err = link_path_walk(s, nd); if (!err) err = complete_walk(nd); if (!err) { *parent = nd->path; nd->path.mnt = NULL; nd->path.dentry = NULL; } terminate_walk(nd); return err; } /* Note: this does not consume "name" */ static int __filename_parentat(int dfd, struct filename *name, unsigned int flags, struct path *parent, struct qstr *last, int *type, const struct path *root) { int retval; struct nameidata nd; if (IS_ERR(name)) return PTR_ERR(name); set_nameidata(&nd, dfd, name, root); retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); if (unlikely(retval == -ECHILD)) retval = path_parentat(&nd, flags, parent); if (unlikely(retval == -ESTALE)) retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); if (likely(!retval)) { *last = nd.last; *type = nd.last_type; audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); } restore_nameidata(); return retval; } static int filename_parentat(int dfd, struct filename *name, unsigned int flags, struct path *parent, struct qstr *last, int *type) { return __filename_parentat(dfd, name, flags, parent, last, type, NULL); } /* does lookup, returns the object with parent locked */ static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path) { struct dentry *d; struct qstr last; int type, error; error = filename_parentat(dfd, name, 0, path, &last, &type); if (error) return ERR_PTR(error); if (unlikely(type != LAST_NORM)) { path_put(path); return ERR_PTR(-EINVAL); } inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); d = lookup_one_qstr_excl(&last, path->dentry, 0); if (IS_ERR(d)) { inode_unlock(path->dentry->d_inode); path_put(path); } return d; } struct dentry *kern_path_locked(const char *name, struct path *path) { struct filename *filename = getname_kernel(name); struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path); putname(filename); return res; } struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path) { struct filename *filename = getname(name); struct dentry *res = __kern_path_locked(dfd, filename, path); putname(filename); return res; } EXPORT_SYMBOL(user_path_locked_at); int kern_path(const char *name, unsigned int flags, struct path *path) { struct filename *filename = getname_kernel(name); int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); putname(filename); return ret; } EXPORT_SYMBOL(kern_path); /** * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair * @filename: filename structure * @flags: lookup flags * @parent: pointer to struct path to fill * @last: last component * @type: type of the last component * @root: pointer to struct path of the base directory */ int vfs_path_parent_lookup(struct filename *filename, unsigned int flags, struct path *parent, struct qstr *last, int *type, const struct path *root) { return __filename_parentat(AT_FDCWD, filename, flags, parent, last, type, root); } EXPORT_SYMBOL(vfs_path_parent_lookup); /** * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair * @dentry: pointer to dentry of the base directory * @mnt: pointer to vfs mount of the base directory * @name: pointer to file name * @flags: lookup flags * @path: pointer to struct path to fill */ int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, const char *name, unsigned int flags, struct path *path) { struct filename *filename; struct path root = {.mnt = mnt, .dentry = dentry}; int ret; filename = getname_kernel(name); /* the first argument of filename_lookup() is ignored with root */ ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); putname(filename); return ret; } EXPORT_SYMBOL(vfs_path_lookup); static int lookup_one_common(struct mnt_idmap *idmap, const char *name, struct dentry *base, int len, struct qstr *this) { this->name = name; this->len = len; this->hash = full_name_hash(base, name, len); if (!len) return -EACCES; if (is_dot_dotdot(name, len)) return -EACCES; while (len--) { unsigned int c = *(const unsigned char *)name++; if (c == '/' || c == '\0') return -EACCES; } /* * See if the low-level filesystem might want * to use its own hash.. */ if (base->d_flags & DCACHE_OP_HASH) { int err = base->d_op->d_hash(base, this); if (err < 0) return err; } return inode_permission(idmap, base->d_inode, MAY_EXEC); } /** * try_lookup_one_len - filesystem helper to lookup single pathname component * @name: pathname component to lookup * @base: base directory to lookup from * @len: maximum length @len should be interpreted to * * Look up a dentry by name in the dcache, returning NULL if it does not * currently exist. The function does not try to create a dentry. * * Note that this routine is purely a helper for filesystem usage and should * not be called by generic code. * * The caller must hold base->i_mutex. */ struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) { struct qstr this; int err; WARN_ON_ONCE(!inode_is_locked(base->d_inode)); err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); if (err) return ERR_PTR(err); return lookup_dcache(&this, base, 0); } EXPORT_SYMBOL(try_lookup_one_len); /** * lookup_one_len - filesystem helper to lookup single pathname component * @name: pathname component to lookup * @base: base directory to lookup from * @len: maximum length @len should be interpreted to * * Note that this routine is purely a helper for filesystem usage and should * not be called by generic code. * * The caller must hold base->i_mutex. */ struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) { struct dentry *dentry; struct qstr this; int err; WARN_ON_ONCE(!inode_is_locked(base->d_inode)); err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); if (err) return ERR_PTR(err); dentry = lookup_dcache(&this, base, 0); return dentry ? dentry : __lookup_slow(&this, base, 0); } EXPORT_SYMBOL(lookup_one_len); /** * lookup_one - filesystem helper to lookup single pathname component * @idmap: idmap of the mount the lookup is performed from * @name: pathname component to lookup * @base: base directory to lookup from * @len: maximum length @len should be interpreted to * * Note that this routine is purely a helper for filesystem usage and should * not be called by generic code. * * The caller must hold base->i_mutex. */ struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name, struct dentry *base, int len) { struct dentry *dentry; struct qstr this; int err; WARN_ON_ONCE(!inode_is_locked(base->d_inode)); err = lookup_one_common(idmap, name, base, len, &this); if (err) return ERR_PTR(err); dentry = lookup_dcache(&this, base, 0); return dentry ? dentry : __lookup_slow(&this, base, 0); } EXPORT_SYMBOL(lookup_one); /** * lookup_one_unlocked - filesystem helper to lookup single pathname component * @idmap: idmap of the mount the lookup is performed from * @name: pathname component to lookup * @base: base directory to lookup from * @len: maximum length @len should be interpreted to * * Note that this routine is purely a helper for filesystem usage and should * not be called by generic code. * * Unlike lookup_one_len, it should be called without the parent * i_mutex held, and will take the i_mutex itself if necessary. */ struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, const char *name, struct dentry *base, int len) { struct qstr this; int err; struct dentry *ret; err = lookup_one_common(idmap, name, base, len, &this); if (err) return ERR_PTR(err); ret = lookup_dcache(&this, base, 0); if (!ret) ret = lookup_slow(&this, base, 0); return ret; } EXPORT_SYMBOL(lookup_one_unlocked); /** * lookup_one_positive_unlocked - filesystem helper to lookup single * pathname component * @idmap: idmap of the mount the lookup is performed from * @name: pathname component to lookup * @base: base directory to lookup from * @len: maximum length @len should be interpreted to * * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns * known positive or ERR_PTR(). This is what most of the users want. * * Note that pinned negative with unlocked parent _can_ become positive at any * time, so callers of lookup_one_unlocked() need to be very careful; pinned * positives have >d_inode stable, so this one avoids such problems. * * Note that this routine is purely a helper for filesystem usage and should * not be called by generic code. * * The helper should be called without i_mutex held. */ struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap, const char *name, struct dentry *base, int len) { struct dentry *ret = lookup_one_unlocked(idmap, name, base, len); if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { dput(ret); ret = ERR_PTR(-ENOENT); } return ret; } EXPORT_SYMBOL(lookup_one_positive_unlocked); /** * lookup_one_len_unlocked - filesystem helper to lookup single pathname component * @name: pathname component to lookup * @base: base directory to lookup from * @len: maximum length @len should be interpreted to * * Note that this routine is purely a helper for filesystem usage and should * not be called by generic code. * * Unlike lookup_one_len, it should be called without the parent * i_mutex held, and will take the i_mutex itself if necessary. */ struct dentry *lookup_one_len_unlocked(const char *name, struct dentry *base, int len) { return lookup_one_unlocked(&nop_mnt_idmap, name, base, len); } EXPORT_SYMBOL(lookup_one_len_unlocked); /* * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) * on negatives. Returns known positive or ERR_PTR(); that's what * most of the users want. Note that pinned negative with unlocked parent * _can_ become positive at any time, so callers of lookup_one_len_unlocked() * need to be very careful; pinned positives have ->d_inode stable, so * this one avoids such problems. */ struct dentry *lookup_positive_unlocked(const char *name, struct dentry *base, int len) { return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len); } EXPORT_SYMBOL(lookup_positive_unlocked); #ifdef CONFIG_UNIX98_PTYS int path_pts(struct path *path) { /* Find something mounted on "pts" in the same directory as * the input path. */ struct dentry *parent = dget_parent(path->dentry); struct dentry *child; struct qstr this = QSTR_INIT("pts", 3); if (unlikely(!path_connected(path->mnt, parent))) { dput(parent); return -ENOENT; } dput(path->dentry); path->dentry = parent; child = d_hash_and_lookup(parent, &this); if (IS_ERR_OR_NULL(child)) return -ENOENT; path->dentry = child; dput(parent); follow_down(path, 0); return 0; } #endif int user_path_at(int dfd, const char __user *name, unsigned flags, struct path *path) { struct filename *filename = getname_flags(name, flags); int ret = filename_lookup(dfd, filename, flags, path, NULL); putname(filename); return ret; } EXPORT_SYMBOL(user_path_at); int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, struct inode *inode) { kuid_t fsuid = current_fsuid(); if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid)) return 0; if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid)) return 0; return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER); } EXPORT_SYMBOL(__check_sticky); /* * Check whether we can remove a link victim from directory dir, check * whether the type of victim is right. * 1. We can't do it if dir is read-only (done in permission()) * 2. We should have write and exec permissions on dir * 3. We can't remove anything from append-only dir * 4. We can't do anything with immutable dir (done in permission()) * 5. If the sticky bit on dir is set we should either * a. be owner of dir, or * b. be owner of victim, or * c. have CAP_FOWNER capability * 6. If the victim is append-only or immutable we can't do antyhing with * links pointing to it. * 7. If the victim has an unknown uid or gid we can't change the inode. * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. * 10. We can't remove a root or mountpoint. * 11. We don't allow removal of NFS sillyrenamed files; it's handled by * nfs_async_unlink(). */ static int may_delete(struct mnt_idmap *idmap, struct inode *dir, struct dentry *victim, bool isdir) { struct inode *inode = d_backing_inode(victim); int error; if (d_is_negative(victim)) return -ENOENT; BUG_ON(!inode); BUG_ON(victim->d_parent->d_inode != dir); /* Inode writeback is not safe when the uid or gid are invalid. */ if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) return -EOVERFLOW; audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); if (error) return error; if (IS_APPEND(dir)) return -EPERM; if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) || IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(idmap, inode)) return -EPERM; if (isdir) { if (!d_is_dir(victim)) return -ENOTDIR; if (IS_ROOT(victim)) return -EBUSY; } else if (d_is_dir(victim)) return -EISDIR; if (IS_DEADDIR(dir)) return -ENOENT; if (victim->d_flags & DCACHE_NFSFS_RENAMED) return -EBUSY; return 0; } /* Check whether we can create an object with dentry child in directory * dir. * 1. We can't do it if child already exists (open has special treatment for * this case, but since we are inlined it's OK) * 2. We can't do it if dir is read-only (done in permission()) * 3. We can't do it if the fs can't represent the fsuid or fsgid. * 4. We should have write and exec permissions on dir * 5. We can't do it if dir is immutable (done in permission()) */ static inline int may_create(struct mnt_idmap *idmap, struct inode *dir, struct dentry *child) { audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); if (child->d_inode) return -EEXIST; if (IS_DEADDIR(dir)) return -ENOENT; if (!fsuidgid_has_mapping(dir->i_sb, idmap)) return -EOVERFLOW; return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); } // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2) { struct dentry *p = p1, *q = p2, *r; while ((r = p->d_parent) != p2 && r != p) p = r; if (r == p2) { // p is a child of p2 and an ancestor of p1 or p1 itself inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2); return p; } // p is the root of connected component that contains p1 // p2 does not occur on the path from p to p1 while ((r = q->d_parent) != p1 && r != p && r != q) q = r; if (r == p1) { // q is a child of p1 and an ancestor of p2 or p2 itself inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); return q; } else if (likely(r == p)) { // both p2 and p1 are descendents of p inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); return NULL; } else { // no common ancestor at the time we'd been called mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); return ERR_PTR(-EXDEV); } } /* * p1 and p2 should be directories on the same fs. */ struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) { if (p1 == p2) { inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); return NULL; } mutex_lock(&p1->d_sb->s_vfs_rename_mutex); return lock_two_directories(p1, p2); } EXPORT_SYMBOL(lock_rename); /* * c1 and p2 should be on the same fs. */ struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2) { if (READ_ONCE(c1->d_parent) == p2) { /* * hopefully won't need to touch ->s_vfs_rename_mutex at all. */ inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); /* * now that p2 is locked, nobody can move in or out of it, * so the test below is safe. */ if (likely(c1->d_parent == p2)) return NULL; /* * c1 got moved out of p2 while we'd been taking locks; * unlock and fall back to slow case. */ inode_unlock(p2->d_inode); } mutex_lock(&c1->d_sb->s_vfs_rename_mutex); /* * nobody can move out of any directories on this fs. */ if (likely(c1->d_parent != p2)) return lock_two_directories(c1->d_parent, p2); /* * c1 got moved into p2 while we were taking locks; * we need p2 locked and ->s_vfs_rename_mutex unlocked, * for consistency with lock_rename(). */ inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); mutex_unlock(&c1->d_sb->s_vfs_rename_mutex); return NULL; } EXPORT_SYMBOL(lock_rename_child); void unlock_rename(struct dentry *p1, struct dentry *p2) { inode_unlock(p1->d_inode); if (p1 != p2) { inode_unlock(p2->d_inode); mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); } } EXPORT_SYMBOL(unlock_rename); /** * vfs_prepare_mode - prepare the mode to be used for a new inode * @idmap: idmap of the mount the inode was found from * @dir: parent directory of the new inode * @mode: mode of the new inode * @mask_perms: allowed permission by the vfs * @type: type of file to be created * * This helper consolidates and enforces vfs restrictions on the @mode of a new * object to be created. * * Umask stripping depends on whether the filesystem supports POSIX ACLs (see * the kernel documentation for mode_strip_umask()). Moving umask stripping * after setgid stripping allows the same ordering for both non-POSIX ACL and * POSIX ACL supporting filesystems. * * Note that it's currently valid for @type to be 0 if a directory is created. * Filesystems raise that flag individually and we need to check whether each * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a * non-zero type. * * Returns: mode to be passed to the filesystem */ static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap, const struct inode *dir, umode_t mode, umode_t mask_perms, umode_t type) { mode = mode_strip_sgid(idmap, dir, mode); mode = mode_strip_umask(dir, mode); /* * Apply the vfs mandated allowed permission mask and set the type of * file to be created before we call into the filesystem. */ mode &= (mask_perms & ~S_IFMT); mode |= (type & S_IFMT); return mode; } /** * vfs_create - create new file * @idmap: idmap of the mount the inode was found from * @dir: inode of the parent directory * @dentry: dentry of the child file * @mode: mode of the child file * @want_excl: whether the file must not yet exist * * Create a new file. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ int vfs_create(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode, bool want_excl) { int error; error = may_create(idmap, dir, dentry); if (error) return error; if (!dir->i_op->create) return -EACCES; /* shouldn't it be ENOSYS? */ mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG); error = security_inode_create(dir, dentry, mode); if (error) return error; error = dir->i_op->create(idmap, dir, dentry, mode, want_excl); if (!error) fsnotify_create(dir, dentry); return error; } EXPORT_SYMBOL(vfs_create); int vfs_mkobj(struct dentry *dentry, umode_t mode, int (*f)(struct dentry *, umode_t, void *), void *arg) { struct inode *dir = dentry->d_parent->d_inode; int error = may_create(&nop_mnt_idmap, dir, dentry); if (error) return error; mode &= S_IALLUGO; mode |= S_IFREG; error = security_inode_create(dir, dentry, mode); if (error) return error; error = f(dentry, mode, arg); if (!error) fsnotify_create(dir, dentry); return error; } EXPORT_SYMBOL(vfs_mkobj); bool may_open_dev(const struct path *path) { return !(path->mnt->mnt_flags & MNT_NODEV) && !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); } static int may_open(struct mnt_idmap *idmap, const struct path *path, int acc_mode, int flag) { struct dentry *dentry = path->dentry; struct inode *inode = dentry->d_inode; int error; if (!inode) return -ENOENT; switch (inode->i_mode & S_IFMT) { case S_IFLNK: return -ELOOP; case S_IFDIR: if (acc_mode & MAY_WRITE) return -EISDIR; if (acc_mode & MAY_EXEC) return -EACCES; break; case S_IFBLK: case S_IFCHR: if (!may_open_dev(path)) return -EACCES; fallthrough; case S_IFIFO: case S_IFSOCK: if (acc_mode & MAY_EXEC) return -EACCES; flag &= ~O_TRUNC; break; case S_IFREG: if ((acc_mode & MAY_EXEC) && path_noexec(path)) return -EACCES; break; } error = inode_permission(idmap, inode, MAY_OPEN | acc_mode); if (error) return error; /* * An append-only file must be opened in append mode for writing. */ if (IS_APPEND(inode)) { if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) return -EPERM; if (flag & O_TRUNC) return -EPERM; } /* O_NOATIME can only be set by the owner or superuser */ if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode)) return -EPERM; return 0; } static int handle_truncate(struct mnt_idmap *idmap, struct file *filp) { const struct path *path = &filp->f_path; struct inode *inode = path->dentry->d_inode; int error = get_write_access(inode); if (error) return error; error = security_file_truncate(filp); if (!error) { error = do_truncate(idmap, path->dentry, 0, ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, filp); } put_write_access(inode); return error; } static inline int open_to_namei_flags(int flag) { if ((flag & O_ACCMODE) == 3) flag--; return flag; } static int may_o_create(struct mnt_idmap *idmap, const struct path *dir, struct dentry *dentry, umode_t mode) { int error = security_path_mknod(dir, dentry, mode, 0); if (error) return error; if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap)) return -EOVERFLOW; error = inode_permission(idmap, dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); if (error) return error; return security_inode_create(dir->dentry->d_inode, dentry, mode); } /* * Attempt to atomically look up, create and open a file from a negative * dentry. * * Returns 0 if successful. The file will have been created and attached to * @file by the filesystem calling finish_open(). * * If the file was looked up only or didn't need creating, FMODE_OPENED won't * be set. The caller will need to perform the open themselves. @path will * have been updated to point to the new dentry. This may be negative. * * Returns an error code otherwise. */ static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, struct file *file, int open_flag, umode_t mode) { struct dentry *const DENTRY_NOT_SET = (void *) -1UL; struct inode *dir = nd->path.dentry->d_inode; int error; if (nd->flags & LOOKUP_DIRECTORY) open_flag |= O_DIRECTORY; file->f_path.dentry = DENTRY_NOT_SET; file->f_path.mnt = nd->path.mnt; error = dir->i_op->atomic_open(dir, dentry, file, open_to_namei_flags(open_flag), mode); d_lookup_done(dentry); if (!error) { if (file->f_mode & FMODE_OPENED) { if (unlikely(dentry != file->f_path.dentry)) { dput(dentry); dentry = dget(file->f_path.dentry); } } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { error = -EIO; } else { if (file->f_path.dentry) { dput(dentry); dentry = file->f_path.dentry; } if (unlikely(d_is_negative(dentry))) error = -ENOENT; } } if (error) { dput(dentry); dentry = ERR_PTR(error); } return dentry; } /* * Look up and maybe create and open the last component. * * Must be called with parent locked (exclusive in O_CREAT case). * * Returns 0 on success, that is, if * the file was successfully atomically created (if necessary) and opened, or * the file was not completely opened at this time, though lookups and * creations were performed. * These case are distinguished by presence of FMODE_OPENED on file->f_mode. * In the latter case dentry returned in @path might be negative if O_CREAT * hadn't been specified. * * An error code is returned on failure. */ static struct dentry *lookup_open(struct nameidata *nd, struct file *file, const struct open_flags *op, bool got_write) { struct mnt_idmap *idmap; struct dentry *dir = nd->path.dentry; struct inode *dir_inode = dir->d_inode; int open_flag = op->open_flag; struct dentry *dentry; int error, create_error = 0; umode_t mode = op->mode; DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); if (unlikely(IS_DEADDIR(dir_inode))) return ERR_PTR(-ENOENT); file->f_mode &= ~FMODE_CREATED; dentry = d_lookup(dir, &nd->last); for (;;) { if (!dentry) { dentry = d_alloc_parallel(dir, &nd->last, &wq); if (IS_ERR(dentry)) return dentry; } if (d_in_lookup(dentry)) break; error = d_revalidate(dentry, nd->flags); if (likely(error > 0)) break; if (error) goto out_dput; d_invalidate(dentry); dput(dentry); dentry = NULL; } if (dentry->d_inode) { /* Cached positive dentry: will open in f_op->open */ return dentry; } /* * Checking write permission is tricky, bacuse we don't know if we are * going to actually need it: O_CREAT opens should work as long as the * file exists. But checking existence breaks atomicity. The trick is * to check access and if not granted clear O_CREAT from the flags. * * Another problem is returing the "right" error value (e.g. for an * O_EXCL open we want to return EEXIST not EROFS). */ if (unlikely(!got_write)) open_flag &= ~O_TRUNC; idmap = mnt_idmap(nd->path.mnt); if (open_flag & O_CREAT) { if (open_flag & O_EXCL) open_flag &= ~O_TRUNC; mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode); if (likely(got_write)) create_error = may_o_create(idmap, &nd->path, dentry, mode); else create_error = -EROFS; } if (create_error) open_flag &= ~O_CREAT; if (dir_inode->i_op->atomic_open) { dentry = atomic_open(nd, dentry, file, open_flag, mode); if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) dentry = ERR_PTR(create_error); return dentry; } if (d_in_lookup(dentry)) { struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, nd->flags); d_lookup_done(dentry); if (unlikely(res)) { if (IS_ERR(res)) { error = PTR_ERR(res); goto out_dput; } dput(dentry); dentry = res; } } /* Negative dentry, just create the file */ if (!dentry->d_inode && (open_flag & O_CREAT)) { file->f_mode |= FMODE_CREATED; audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); if (!dir_inode->i_op->create) { error = -EACCES; goto out_dput; } error = dir_inode->i_op->create(idmap, dir_inode, dentry, mode, open_flag & O_EXCL); if (error) goto out_dput; } if (unlikely(create_error) && !dentry->d_inode) { error = create_error; goto out_dput; } return dentry; out_dput: dput(dentry); return ERR_PTR(error); } static const char *open_last_lookups(struct nameidata *nd, struct file *file, const struct open_flags *op) { struct dentry *dir = nd->path.dentry; int open_flag = op->open_flag; bool got_write = false; struct dentry *dentry; const char *res; nd->flags |= op->intent; if (nd->last_type != LAST_NORM) { if (nd->depth) put_link(nd); return handle_dots(nd, nd->last_type); } if (!(open_flag & O_CREAT)) { if (nd->last.name[nd->last.len]) nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; /* we _can_ be in RCU mode here */ dentry = lookup_fast(nd); if (IS_ERR(dentry)) return ERR_CAST(dentry); if (likely(dentry)) goto finish_lookup; if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU)) return ERR_PTR(-ECHILD); } else { /* create side of things */ if (nd->flags & LOOKUP_RCU) { if (!try_to_unlazy(nd)) return ERR_PTR(-ECHILD); } audit_inode(nd->name, dir, AUDIT_INODE_PARENT); /* trailing slashes? */ if (unlikely(nd->last.name[nd->last.len])) return ERR_PTR(-EISDIR); } if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { got_write = !mnt_want_write(nd->path.mnt); /* * do _not_ fail yet - we might not need that or fail with * a different error; let lookup_open() decide; we'll be * dropping this one anyway. */ } if (open_flag & O_CREAT) inode_lock(dir->d_inode); else inode_lock_shared(dir->d_inode); dentry = lookup_open(nd, file, op, got_write); if (!IS_ERR(dentry)) { if (file->f_mode & FMODE_CREATED) fsnotify_create(dir->d_inode, dentry); if (file->f_mode & FMODE_OPENED) fsnotify_open(file); } if (open_flag & O_CREAT) inode_unlock(dir->d_inode); else inode_unlock_shared(dir->d_inode); if (got_write) mnt_drop_write(nd->path.mnt); if (IS_ERR(dentry)) return ERR_CAST(dentry); if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { dput(nd->path.dentry); nd->path.dentry = dentry; return NULL; } finish_lookup: if (nd->depth) put_link(nd); res = step_into(nd, WALK_TRAILING, dentry); if (unlikely(res)) nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); return res; } /* * Handle the last step of open() */ static int do_open(struct nameidata *nd, struct file *file, const struct open_flags *op) { struct mnt_idmap *idmap; int open_flag = op->open_flag; bool do_truncate; int acc_mode; int error; if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { error = complete_walk(nd); if (error) return error; } if (!(file->f_mode & FMODE_CREATED)) audit_inode(nd->name, nd->path.dentry, 0); idmap = mnt_idmap(nd->path.mnt); if (open_flag & O_CREAT) { if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) return -EEXIST; if (d_is_dir(nd->path.dentry)) return -EISDIR; error = may_create_in_sticky(idmap, nd, d_backing_inode(nd->path.dentry)); if (unlikely(error)) return error; } if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) return -ENOTDIR; do_truncate = false; acc_mode = op->acc_mode; if (file->f_mode & FMODE_CREATED) { /* Don't check for write permission, don't truncate */ open_flag &= ~O_TRUNC; acc_mode = 0; } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { error = mnt_want_write(nd->path.mnt); if (error) return error; do_truncate = true; } error = may_open(idmap, &nd->path, acc_mode, open_flag); if (!error && !(file->f_mode & FMODE_OPENED)) error = vfs_open(&nd->path, file); if (!error) error = security_file_post_open(file, op->acc_mode); if (!error && do_truncate) error = handle_truncate(idmap, file); if (unlikely(error > 0)) { WARN_ON(1); error = -EINVAL; } if (do_truncate) mnt_drop_write(nd->path.mnt); return error; } /** * vfs_tmpfile - create tmpfile * @idmap: idmap of the mount the inode was found from * @parentpath: pointer to the path of the base directory * @file: file descriptor of the new tmpfile * @mode: mode of the new tmpfile * * Create a temporary file. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ int vfs_tmpfile(struct mnt_idmap *idmap, const struct path *parentpath, struct file *file, umode_t mode) { struct dentry *child; struct inode *dir = d_inode(parentpath->dentry); struct inode *inode; int error; int open_flag = file->f_flags; /* we want directory to be writable */ error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); if (error) return error; if (!dir->i_op->tmpfile) return -EOPNOTSUPP; child = d_alloc(parentpath->dentry, &slash_name); if (unlikely(!child)) return -ENOMEM; file->f_path.mnt = parentpath->mnt; file->f_path.dentry = child; mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); error = dir->i_op->tmpfile(idmap, dir, file, mode); dput(child); if (file->f_mode & FMODE_OPENED) fsnotify_open(file); if (error) return error; /* Don't check for other permissions, the inode was just created */ error = may_open(idmap, &file->f_path, 0, file->f_flags); if (error) return error; inode = file_inode(file); if (!(open_flag & O_EXCL)) { spin_lock(&inode->i_lock); inode->i_state |= I_LINKABLE; spin_unlock(&inode->i_lock); } security_inode_post_create_tmpfile(idmap, inode); return 0; } /** * kernel_tmpfile_open - open a tmpfile for kernel internal use * @idmap: idmap of the mount the inode was found from * @parentpath: path of the base directory * @mode: mode of the new tmpfile * @open_flag: flags * @cred: credentials for open * * Create and open a temporary file. The file is not accounted in nr_files, * hence this is only for kernel internal use, and must not be installed into * file tables or such. */ struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, const struct path *parentpath, umode_t mode, int open_flag, const struct cred *cred) { struct file *file; int error; file = alloc_empty_file_noaccount(open_flag, cred); if (IS_ERR(file)) return file; error = vfs_tmpfile(idmap, parentpath, file, mode); if (error) { fput(file); file = ERR_PTR(error); } return file; } EXPORT_SYMBOL(kernel_tmpfile_open); static int do_tmpfile(struct nameidata *nd, unsigned flags, const struct open_flags *op, struct file *file) { struct path path; int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); if (unlikely(error)) return error; error = mnt_want_write(path.mnt); if (unlikely(error)) goto out; error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode); if (error) goto out2; audit_inode(nd->name, file->f_path.dentry, 0); out2: mnt_drop_write(path.mnt); out: path_put(&path); return error; } static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) { struct path path; int error = path_lookupat(nd, flags, &path); if (!error) { audit_inode(nd->name, path.dentry, 0); error = vfs_open(&path, file); path_put(&path); } return error; } static struct file *path_openat(struct nameidata *nd, const struct open_flags *op, unsigned flags) { struct file *file; int error; file = alloc_empty_file(op->open_flag, current_cred()); if (IS_ERR(file)) return file; if (unlikely(file->f_flags & __O_TMPFILE)) { error = do_tmpfile(nd, flags, op, file); } else if (unlikely(file->f_flags & O_PATH)) { error = do_o_path(nd, flags, file); } else { const char *s = path_init(nd, flags); while (!(error = link_path_walk(s, nd)) && (s = open_last_lookups(nd, file, op)) != NULL) ; if (!error) error = do_open(nd, file, op); terminate_walk(nd); } if (likely(!error)) { if (likely(file->f_mode & FMODE_OPENED)) return file; WARN_ON(1); error = -EINVAL; } fput(file); if (error == -EOPENSTALE) { if (flags & LOOKUP_RCU) error = -ECHILD; else error = -ESTALE; } return ERR_PTR(error); } struct file *do_filp_open(int dfd, struct filename *pathname, const struct open_flags *op) { struct nameidata nd; int flags = op->lookup_flags; struct file *filp; set_nameidata(&nd, dfd, pathname, NULL); filp = path_openat(&nd, op, flags | LOOKUP_RCU); if (unlikely(filp == ERR_PTR(-ECHILD))) filp = path_openat(&nd, op, flags); if (unlikely(filp == ERR_PTR(-ESTALE))) filp = path_openat(&nd, op, flags | LOOKUP_REVAL); restore_nameidata(); return filp; } struct file *do_file_open_root(const struct path *root, const char *name, const struct open_flags *op) { struct nameidata nd; struct file *file; struct filename *filename; int flags = op->lookup_flags; if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) return ERR_PTR(-ELOOP); filename = getname_kernel(name); if (IS_ERR(filename)) return ERR_CAST(filename); set_nameidata(&nd, -1, filename, root); file = path_openat(&nd, op, flags | LOOKUP_RCU); if (unlikely(file == ERR_PTR(-ECHILD))) file = path_openat(&nd, op, flags); if (unlikely(file == ERR_PTR(-ESTALE))) file = path_openat(&nd, op, flags | LOOKUP_REVAL); restore_nameidata(); putname(filename); return file; } static struct dentry *filename_create(int dfd, struct filename *name, struct path *path, unsigned int lookup_flags) { struct dentry *dentry = ERR_PTR(-EEXIST); struct qstr last; bool want_dir = lookup_flags & LOOKUP_DIRECTORY; unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; int type; int err2; int error; error = filename_parentat(dfd, name, reval_flag, path, &last, &type); if (error) return ERR_PTR(error); /* * Yucky last component or no last component at all? * (foo/., foo/.., /////) */ if (unlikely(type != LAST_NORM)) goto out; /* don't fail immediately if it's r/o, at least try to report other errors */ err2 = mnt_want_write(path->mnt); /* * Do the final lookup. Suppress 'create' if there is a trailing * '/', and a directory wasn't requested. */ if (last.name[last.len] && !want_dir) create_flags = 0; inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); dentry = lookup_one_qstr_excl(&last, path->dentry, reval_flag | create_flags); if (IS_ERR(dentry)) goto unlock; error = -EEXIST; if (d_is_positive(dentry)) goto fail; /* * Special case - lookup gave negative, but... we had foo/bar/ * From the vfs_mknod() POV we just have a negative dentry - * all is fine. Let's be bastards - you had / on the end, you've * been asking for (non-existent) directory. -ENOENT for you. */ if (unlikely(!create_flags)) { error = -ENOENT; goto fail; } if (unlikely(err2)) { error = err2; goto fail; } return dentry; fail: dput(dentry); dentry = ERR_PTR(error); unlock: inode_unlock(path->dentry->d_inode); if (!err2) mnt_drop_write(path->mnt); out: path_put(path); return dentry; } struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, unsigned int lookup_flags) { struct filename *filename = getname_kernel(pathname); struct dentry *res = filename_create(dfd, filename, path, lookup_flags); putname(filename); return res; } EXPORT_SYMBOL(kern_path_create); void done_path_create(struct path *path, struct dentry *dentry) { dput(dentry); inode_unlock(path->dentry->d_inode); mnt_drop_write(path->mnt); path_put(path); } EXPORT_SYMBOL(done_path_create); inline struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, unsigned int lookup_flags) { struct filename *filename = getname(pathname); struct dentry *res = filename_create(dfd, filename, path, lookup_flags); putname(filename); return res; } EXPORT_SYMBOL(user_path_create); /** * vfs_mknod - create device node or file * @idmap: idmap of the mount the inode was found from * @dir: inode of the parent directory * @dentry: dentry of the child device node * @mode: mode of the child device node * @dev: device number of device to create * * Create a device node or file. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) { bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; int error = may_create(idmap, dir, dentry); if (error) return error; if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && !capable(CAP_MKNOD)) return -EPERM; if (!dir->i_op->mknod) return -EPERM; mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); error = devcgroup_inode_mknod(mode, dev); if (error) return error; error = security_inode_mknod(dir, dentry, mode, dev); if (error) return error; error = dir->i_op->mknod(idmap, dir, dentry, mode, dev); if (!error) fsnotify_create(dir, dentry); return error; } EXPORT_SYMBOL(vfs_mknod); static int may_mknod(umode_t mode) { switch (mode & S_IFMT) { case S_IFREG: case S_IFCHR: case S_IFBLK: case S_IFIFO: case S_IFSOCK: case 0: /* zero mode translates to S_IFREG */ return 0; case S_IFDIR: return -EPERM; default: return -EINVAL; } } static int do_mknodat(int dfd, struct filename *name, umode_t mode, unsigned int dev) { struct mnt_idmap *idmap; struct dentry *dentry; struct path path; int error; unsigned int lookup_flags = 0; error = may_mknod(mode); if (error) goto out1; retry: dentry = filename_create(dfd, name, &path, lookup_flags); error = PTR_ERR(dentry); if (IS_ERR(dentry)) goto out1; error = security_path_mknod(&path, dentry, mode_strip_umask(path.dentry->d_inode, mode), dev); if (error) goto out2; idmap = mnt_idmap(path.mnt); switch (mode & S_IFMT) { case 0: case S_IFREG: error = vfs_create(idmap, path.dentry->d_inode, dentry, mode, true); if (!error) security_path_post_mknod(idmap, dentry); break; case S_IFCHR: case S_IFBLK: error = vfs_mknod(idmap, path.dentry->d_inode, dentry, mode, new_decode_dev(dev)); break; case S_IFIFO: case S_IFSOCK: error = vfs_mknod(idmap, path.dentry->d_inode, dentry, mode, 0); break; } out2: done_path_create(&path, dentry); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out1: putname(name); return error; } SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, unsigned int, dev) { return do_mknodat(dfd, getname(filename), mode, dev); } SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) { return do_mknodat(AT_FDCWD, getname(filename), mode, dev); } /** * vfs_mkdir - create directory * @idmap: idmap of the mount the inode was found from * @dir: inode of the parent directory * @dentry: dentry of the child directory * @mode: mode of the child directory * * Create a directory. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode) { int error; unsigned max_links = dir->i_sb->s_max_links; error = may_create(idmap, dir, dentry); if (error) return error; if (!dir->i_op->mkdir) return -EPERM; mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0); error = security_inode_mkdir(dir, dentry, mode); if (error) return error; if (max_links && dir->i_nlink >= max_links) return -EMLINK; error = dir->i_op->mkdir(idmap, dir, dentry, mode); if (!error) fsnotify_mkdir(dir, dentry); return error; } EXPORT_SYMBOL(vfs_mkdir); int do_mkdirat(int dfd, struct filename *name, umode_t mode) { struct dentry *dentry; struct path path; int error; unsigned int lookup_flags = LOOKUP_DIRECTORY; retry: dentry = filename_create(dfd, name, &path, lookup_flags); error = PTR_ERR(dentry); if (IS_ERR(dentry)) goto out_putname; error = security_path_mkdir(&path, dentry, mode_strip_umask(path.dentry->d_inode, mode)); if (!error) { error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry, mode); } done_path_create(&path, dentry); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out_putname: putname(name); return error; } SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) { return do_mkdirat(dfd, getname(pathname), mode); } SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) { return do_mkdirat(AT_FDCWD, getname(pathname), mode); } /** * vfs_rmdir - remove directory * @idmap: idmap of the mount the inode was found from * @dir: inode of the parent directory * @dentry: dentry of the child directory * * Remove a directory. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry) { int error = may_delete(idmap, dir, dentry, 1); if (error) return error; if (!dir->i_op->rmdir) return -EPERM; dget(dentry); inode_lock(dentry->d_inode); error = -EBUSY; if (is_local_mountpoint(dentry) || (dentry->d_inode->i_flags & S_KERNEL_FILE)) goto out; error = security_inode_rmdir(dir, dentry); if (error) goto out; error = dir->i_op->rmdir(dir, dentry); if (error) goto out; shrink_dcache_parent(dentry); dentry->d_inode->i_flags |= S_DEAD; dont_mount(dentry); detach_mounts(dentry); out: inode_unlock(dentry->d_inode); dput(dentry); if (!error) d_delete_notify(dir, dentry); return error; } EXPORT_SYMBOL(vfs_rmdir); int do_rmdir(int dfd, struct filename *name) { int error; struct dentry *dentry; struct path path; struct qstr last; int type; unsigned int lookup_flags = 0; retry: error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); if (error) goto exit1; switch (type) { case LAST_DOTDOT: error = -ENOTEMPTY; goto exit2; case LAST_DOT: error = -EINVAL; goto exit2; case LAST_ROOT: error = -EBUSY; goto exit2; } error = mnt_want_write(path.mnt); if (error) goto exit2; inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); error = PTR_ERR(dentry); if (IS_ERR(dentry)) goto exit3; if (!dentry->d_inode) { error = -ENOENT; goto exit4; } error = security_path_rmdir(&path, dentry); if (error) goto exit4; error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry); exit4: dput(dentry); exit3: inode_unlock(path.dentry->d_inode); mnt_drop_write(path.mnt); exit2: path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } exit1: putname(name); return error; } SYSCALL_DEFINE1(rmdir, const char __user *, pathname) { return do_rmdir(AT_FDCWD, getname(pathname)); } /** * vfs_unlink - unlink a filesystem object * @idmap: idmap of the mount the inode was found from * @dir: parent directory * @dentry: victim * @delegated_inode: returns victim inode, if the inode is delegated. * * The caller must hold dir->i_mutex. * * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and * return a reference to the inode in delegated_inode. The caller * should then break the delegation on that inode and retry. Because * breaking a delegation may take a long time, the caller should drop * dir->i_mutex before doing so. * * Alternatively, a caller may pass NULL for delegated_inode. This may * be appropriate for callers that expect the underlying filesystem not * to be NFS exported. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) { struct inode *target = dentry->d_inode; int error = may_delete(idmap, dir, dentry, 0); if (error) return error; if (!dir->i_op->unlink) return -EPERM; inode_lock(target); if (IS_SWAPFILE(target)) error = -EPERM; else if (is_local_mountpoint(dentry)) error = -EBUSY; else { error = security_inode_unlink(dir, dentry); if (!error) { error = try_break_deleg(target, delegated_inode); if (error) goto out; error = dir->i_op->unlink(dir, dentry); if (!error) { dont_mount(dentry); detach_mounts(dentry); } } } out: inode_unlock(target); /* We don't d_delete() NFS sillyrenamed files--they still exist. */ if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { fsnotify_unlink(dir, dentry); } else if (!error) { fsnotify_link_count(target); d_delete_notify(dir, dentry); } return error; } EXPORT_SYMBOL(vfs_unlink); /* * Make sure that the actual truncation of the file will occur outside its * directory's i_mutex. Truncate can take a long time if there is a lot of * writeout happening, and we don't want to prevent access to the directory * while waiting on the I/O. */ int do_unlinkat(int dfd, struct filename *name) { int error; struct dentry *dentry; struct path path; struct qstr last; int type; struct inode *inode = NULL; struct inode *delegated_inode = NULL; unsigned int lookup_flags = 0; retry: error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); if (error) goto exit1; error = -EISDIR; if (type != LAST_NORM) goto exit2; error = mnt_want_write(path.mnt); if (error) goto exit2; retry_deleg: inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); error = PTR_ERR(dentry); if (!IS_ERR(dentry)) { /* Why not before? Because we want correct error value */ if (last.name[last.len] || d_is_negative(dentry)) goto slashes; inode = dentry->d_inode; ihold(inode); error = security_path_unlink(&path, dentry); if (error) goto exit3; error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode, dentry, &delegated_inode); exit3: dput(dentry); } inode_unlock(path.dentry->d_inode); if (inode) iput(inode); /* truncate the inode here */ inode = NULL; if (delegated_inode) { error = break_deleg_wait(&delegated_inode); if (!error) goto retry_deleg; } mnt_drop_write(path.mnt); exit2: path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; inode = NULL; goto retry; } exit1: putname(name); return error; slashes: if (d_is_negative(dentry)) error = -ENOENT; else if (d_is_dir(dentry)) error = -EISDIR; else error = -ENOTDIR; goto exit3; } SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) { if ((flag & ~AT_REMOVEDIR) != 0) return -EINVAL; if (flag & AT_REMOVEDIR) return do_rmdir(dfd, getname(pathname)); return do_unlinkat(dfd, getname(pathname)); } SYSCALL_DEFINE1(unlink, const char __user *, pathname) { return do_unlinkat(AT_FDCWD, getname(pathname)); } /** * vfs_symlink - create symlink * @idmap: idmap of the mount the inode was found from * @dir: inode of the parent directory * @dentry: dentry of the child symlink file * @oldname: name of the file to link to * * Create a symlink. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, const char *oldname) { int error; error = may_create(idmap, dir, dentry); if (error) return error; if (!dir->i_op->symlink) return -EPERM; error = security_inode_symlink(dir, dentry, oldname); if (error) return error; error = dir->i_op->symlink(idmap, dir, dentry, oldname); if (!error) fsnotify_create(dir, dentry); return error; } EXPORT_SYMBOL(vfs_symlink); int do_symlinkat(struct filename *from, int newdfd, struct filename *to) { int error; struct dentry *dentry; struct path path; unsigned int lookup_flags = 0; if (IS_ERR(from)) { error = PTR_ERR(from); goto out_putnames; } retry: dentry = filename_create(newdfd, to, &path, lookup_flags); error = PTR_ERR(dentry); if (IS_ERR(dentry)) goto out_putnames; error = security_path_symlink(&path, dentry, from->name); if (!error) error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode, dentry, from->name); done_path_create(&path, dentry); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out_putnames: putname(to); putname(from); return error; } SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, int, newdfd, const char __user *, newname) { return do_symlinkat(getname(oldname), newdfd, getname(newname)); } SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) { return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); } /** * vfs_link - create a new link * @old_dentry: object to be linked * @idmap: idmap of the mount * @dir: new parent * @new_dentry: where to create the new link * @delegated_inode: returns inode needing a delegation break * * The caller must hold dir->i_mutex * * If vfs_link discovers a delegation on the to-be-linked file in need * of breaking, it will return -EWOULDBLOCK and return a reference to the * inode in delegated_inode. The caller should then break the delegation * and retry. Because breaking a delegation may take a long time, the * caller should drop the i_mutex before doing so. * * Alternatively, a caller may pass NULL for delegated_inode. This may * be appropriate for callers that expect the underlying filesystem not * to be NFS exported. * * If the inode has been found through an idmapped mount the idmap of * the vfsmount must be passed through @idmap. This function will then take * care to map the inode according to @idmap before checking permissions. * On non-idmapped mounts or if permission checking is to be performed on the * raw inode simply pass @nop_mnt_idmap. */ int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) { struct inode *inode = old_dentry->d_inode; unsigned max_links = dir->i_sb->s_max_links; int error; if (!inode) return -ENOENT; error = may_create(idmap, dir, new_dentry); if (error) return error; if (dir->i_sb != inode->i_sb) return -EXDEV; /* * A link to an append-only or immutable file cannot be created. */ if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) return -EPERM; /* * Updating the link count will likely cause i_uid and i_gid to * be writen back improperly if their true value is unknown to * the vfs. */ if (HAS_UNMAPPED_ID(idmap, inode)) return -EPERM; if (!dir->i_op->link) return -EPERM; if (S_ISDIR(inode->i_mode)) return -EPERM; error = security_inode_link(old_dentry, dir, new_dentry); if (error) return error; inode_lock(inode); /* Make sure we don't allow creating hardlink to an unlinked file */ if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) error = -ENOENT; else if (max_links && inode->i_nlink >= max_links) error = -EMLINK; else { error = try_break_deleg(inode, delegated_inode); if (!error) error = dir->i_op->link(old_dentry, dir, new_dentry); } if (!error && (inode->i_state & I_LINKABLE)) { spin_lock(&inode->i_lock); inode->i_state &= ~I_LINKABLE; spin_unlock(&inode->i_lock); } inode_unlock(inode); if (!error) fsnotify_link(dir, inode, new_dentry); return error; } EXPORT_SYMBOL(vfs_link); /* * Hardlinks are often used in delicate situations. We avoid * security-related surprises by not following symlinks on the * newname. --KAB * * We don't follow them on the oldname either to be compatible * with linux 2.0, and to avoid hard-linking to directories * and other special files. --ADM */ int do_linkat(int olddfd, struct filename *old, int newdfd, struct filename *new, int flags) { struct mnt_idmap *idmap; struct dentry *new_dentry; struct path old_path, new_path; struct inode *delegated_inode = NULL; int how = 0; int error; if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { error = -EINVAL; goto out_putnames; } /* * To use null names we require CAP_DAC_READ_SEARCH or * that the open-time creds of the dfd matches current. * This ensures that not everyone will be able to create * a hardlink using the passed file descriptor. */ if (flags & AT_EMPTY_PATH) how |= LOOKUP_LINKAT_EMPTY; if (flags & AT_SYMLINK_FOLLOW) how |= LOOKUP_FOLLOW; retry: error = filename_lookup(olddfd, old, how, &old_path, NULL); if (error) goto out_putnames; new_dentry = filename_create(newdfd, new, &new_path, (how & LOOKUP_REVAL)); error = PTR_ERR(new_dentry); if (IS_ERR(new_dentry)) goto out_putpath; error = -EXDEV; if (old_path.mnt != new_path.mnt) goto out_dput; idmap = mnt_idmap(new_path.mnt); error = may_linkat(idmap, &old_path); if (unlikely(error)) goto out_dput; error = security_path_link(old_path.dentry, &new_path, new_dentry); if (error) goto out_dput; error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode, new_dentry, &delegated_inode); out_dput: done_path_create(&new_path, new_dentry); if (delegated_inode) { error = break_deleg_wait(&delegated_inode); if (!error) { path_put(&old_path); goto retry; } } if (retry_estale(error, how)) { path_put(&old_path); how |= LOOKUP_REVAL; goto retry; } out_putpath: path_put(&old_path); out_putnames: putname(old); putname(new); return error; } SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, int, newdfd, const char __user *, newname, int, flags) { return do_linkat(olddfd, getname_uflags(oldname, flags), newdfd, getname(newname), flags); } SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) { return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); } /** * vfs_rename - rename a filesystem object * @rd: pointer to &struct renamedata info * * The caller must hold multiple mutexes--see lock_rename()). * * If vfs_rename discovers a delegation in need of breaking at either * the source or destination, it will return -EWOULDBLOCK and return a * reference to the inode in delegated_inode. The caller should then * break the delegation and retry. Because breaking a delegation may * take a long time, the caller should drop all locks before doing * so. * * Alternatively, a caller may pass NULL for delegated_inode. This may * be appropriate for callers that expect the underlying filesystem not * to be NFS exported. * * The worst of all namespace operations - renaming directory. "Perverted" * doesn't even start to describe it. Somebody in UCB had a heck of a trip... * Problems: * * a) we can get into loop creation. * b) race potential - two innocent renames can create a loop together. * That's where 4.4BSD screws up. Current fix: serialization on * sb->s_vfs_rename_mutex. We might be more accurate, but that's another * story. * c) we may have to lock up to _four_ objects - parents and victim (if it exists), * and source (if it's a non-directory or a subdirectory that moves to * different parent). * And that - after we got ->i_mutex on parents (until then we don't know * whether the target exists). Solution: try to be smart with locking * order for inodes. We rely on the fact that tree topology may change * only under ->s_vfs_rename_mutex _and_ that parent of the object we * move will be locked. Thus we can rank directories by the tree * (ancestors first) and rank all non-directories after them. * That works since everybody except rename does "lock parent, lookup, * lock child" and rename is under ->s_vfs_rename_mutex. * HOWEVER, it relies on the assumption that any object with ->lookup() * has no more than 1 dentry. If "hybrid" objects will ever appear, * we'd better make sure that there's no link(2) for them. * d) conversion from fhandle to dentry may come in the wrong moment - when * we are removing the target. Solution: we will have to grab ->i_mutex * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on * ->i_mutex on parents, which works but leads to some truly excessive * locking]. */ int vfs_rename(struct renamedata *rd) { int error; struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; struct dentry *old_dentry = rd->old_dentry; struct dentry *new_dentry = rd->new_dentry; struct inode **delegated_inode = rd->delegated_inode; unsigned int flags = rd->flags; bool is_dir = d_is_dir(old_dentry); struct inode *source = old_dentry->d_inode; struct inode *target = new_dentry->d_inode; bool new_is_dir = false; unsigned max_links = new_dir->i_sb->s_max_links; struct name_snapshot old_name; bool lock_old_subdir, lock_new_subdir; if (source == target) return 0; error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir); if (error) return error; if (!target) { error = may_create(rd->new_mnt_idmap, new_dir, new_dentry); } else { new_is_dir = d_is_dir(new_dentry); if (!(flags & RENAME_EXCHANGE)) error = may_delete(rd->new_mnt_idmap, new_dir, new_dentry, is_dir); else error = may_delete(rd->new_mnt_idmap, new_dir, new_dentry, new_is_dir); } if (error) return error; if (!old_dir->i_op->rename) return -EPERM; /* * If we are going to change the parent - check write permissions, * we'll need to flip '..'. */ if (new_dir != old_dir) { if (is_dir) { error = inode_permission(rd->old_mnt_idmap, source, MAY_WRITE); if (error) return error; } if ((flags & RENAME_EXCHANGE) && new_is_dir) { error = inode_permission(rd->new_mnt_idmap, target, MAY_WRITE); if (error) return error; } } error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, flags); if (error) return error; take_dentry_name_snapshot(&old_name, old_dentry); dget(new_dentry); /* * Lock children. * The source subdirectory needs to be locked on cross-directory * rename or cross-directory exchange since its parent changes. * The target subdirectory needs to be locked on cross-directory * exchange due to parent change and on any rename due to becoming * a victim. * Non-directories need locking in all cases (for NFS reasons); * they get locked after any subdirectories (in inode address order). * * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE. * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex. */ lock_old_subdir = new_dir != old_dir; lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE); if (is_dir) { if (lock_old_subdir) inode_lock_nested(source, I_MUTEX_CHILD); if (target && (!new_is_dir || lock_new_subdir)) inode_lock(target); } else if (new_is_dir) { if (lock_new_subdir) inode_lock_nested(target, I_MUTEX_CHILD); inode_lock(source); } else { lock_two_nondirectories(source, target); } error = -EPERM; if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) goto out; error = -EBUSY; if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) goto out; if (max_links && new_dir != old_dir) { error = -EMLINK; if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) goto out; if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && old_dir->i_nlink >= max_links) goto out; } if (!is_dir) { error = try_break_deleg(source, delegated_inode); if (error) goto out; } if (target && !new_is_dir) { error = try_break_deleg(target, delegated_inode); if (error) goto out; } error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry, new_dir, new_dentry, flags); if (error) goto out; if (!(flags & RENAME_EXCHANGE) && target) { if (is_dir) { shrink_dcache_parent(new_dentry); target->i_flags |= S_DEAD; } dont_mount(new_dentry); detach_mounts(new_dentry); } if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { if (!(flags & RENAME_EXCHANGE)) d_move(old_dentry, new_dentry); else d_exchange(old_dentry, new_dentry); } out: if (!is_dir || lock_old_subdir) inode_unlock(source); if (target && (!new_is_dir || lock_new_subdir)) inode_unlock(target); dput(new_dentry); if (!error) { fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); if (flags & RENAME_EXCHANGE) { fsnotify_move(new_dir, old_dir, &old_dentry->d_name, new_is_dir, NULL, new_dentry); } } release_dentry_name_snapshot(&old_name); return error; } EXPORT_SYMBOL(vfs_rename); int do_renameat2(int olddfd, struct filename *from, int newdfd, struct filename *to, unsigned int flags) { struct renamedata rd; struct dentry *old_dentry, *new_dentry; struct dentry *trap; struct path old_path, new_path; struct qstr old_last, new_last; int old_type, new_type; struct inode *delegated_inode = NULL; unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; bool should_retry = false; int error = -EINVAL; if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) goto put_names; if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && (flags & RENAME_EXCHANGE)) goto put_names; if (flags & RENAME_EXCHANGE) target_flags = 0; retry: error = filename_parentat(olddfd, from, lookup_flags, &old_path, &old_last, &old_type); if (error) goto put_names; error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, &new_type); if (error) goto exit1; error = -EXDEV; if (old_path.mnt != new_path.mnt) goto exit2; error = -EBUSY; if (old_type != LAST_NORM) goto exit2; if (flags & RENAME_NOREPLACE) error = -EEXIST; if (new_type != LAST_NORM) goto exit2; error = mnt_want_write(old_path.mnt); if (error) goto exit2; retry_deleg: trap = lock_rename(new_path.dentry, old_path.dentry); if (IS_ERR(trap)) { error = PTR_ERR(trap); goto exit_lock_rename; } old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry, lookup_flags); error = PTR_ERR(old_dentry); if (IS_ERR(old_dentry)) goto exit3; /* source must exist */ error = -ENOENT; if (d_is_negative(old_dentry)) goto exit4; new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry, lookup_flags | target_flags); error = PTR_ERR(new_dentry); if (IS_ERR(new_dentry)) goto exit4; error = -EEXIST; if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) goto exit5; if (flags & RENAME_EXCHANGE) { error = -ENOENT; if (d_is_negative(new_dentry)) goto exit5; if (!d_is_dir(new_dentry)) { error = -ENOTDIR; if (new_last.name[new_last.len]) goto exit5; } } /* unless the source is a directory trailing slashes give -ENOTDIR */ if (!d_is_dir(old_dentry)) { error = -ENOTDIR; if (old_last.name[old_last.len]) goto exit5; if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) goto exit5; } /* source should not be ancestor of target */ error = -EINVAL; if (old_dentry == trap) goto exit5; /* target should not be an ancestor of source */ if (!(flags & RENAME_EXCHANGE)) error = -ENOTEMPTY; if (new_dentry == trap) goto exit5; error = security_path_rename(&old_path, old_dentry, &new_path, new_dentry, flags); if (error) goto exit5; rd.old_dir = old_path.dentry->d_inode; rd.old_dentry = old_dentry; rd.old_mnt_idmap = mnt_idmap(old_path.mnt); rd.new_dir = new_path.dentry->d_inode; rd.new_dentry = new_dentry; rd.new_mnt_idmap = mnt_idmap(new_path.mnt); rd.delegated_inode = &delegated_inode; rd.flags = flags; error = vfs_rename(&rd); exit5: dput(new_dentry); exit4: dput(old_dentry); exit3: unlock_rename(new_path.dentry, old_path.dentry); exit_lock_rename: if (delegated_inode) { error = break_deleg_wait(&delegated_inode); if (!error) goto retry_deleg; } mnt_drop_write(old_path.mnt); exit2: if (retry_estale(error, lookup_flags)) should_retry = true; path_put(&new_path); exit1: path_put(&old_path); if (should_retry) { should_retry = false; lookup_flags |= LOOKUP_REVAL; goto retry; } put_names: putname(from); putname(to); return error; } SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, int, newdfd, const char __user *, newname, unsigned int, flags) { return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), flags); } SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, int, newdfd, const char __user *, newname) { return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 0); } SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) { return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); } int readlink_copy(char __user *buffer, int buflen, const char *link) { int len = PTR_ERR(link); if (IS_ERR(link)) goto out; len = strlen(link); if (len > (unsigned) buflen) len = buflen; if (copy_to_user(buffer, link, len)) len = -EFAULT; out: return len; } /** * vfs_readlink - copy symlink body into userspace buffer * @dentry: dentry on which to get symbolic link * @buffer: user memory pointer * @buflen: size of buffer * * Does not touch atime. That's up to the caller if necessary * * Does not call security hook. */ int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) { struct inode *inode = d_inode(dentry); DEFINE_DELAYED_CALL(done); const char *link; int res; if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { if (unlikely(inode->i_op->readlink)) return inode->i_op->readlink(dentry, buffer, buflen); if (!d_is_symlink(dentry)) return -EINVAL; spin_lock(&inode->i_lock); inode->i_opflags |= IOP_DEFAULT_READLINK; spin_unlock(&inode->i_lock); } link = READ_ONCE(inode->i_link); if (!link) { link = inode->i_op->get_link(dentry, inode, &done); if (IS_ERR(link)) return PTR_ERR(link); } res = readlink_copy(buffer, buflen, link); do_delayed_call(&done); return res; } EXPORT_SYMBOL(vfs_readlink); /** * vfs_get_link - get symlink body * @dentry: dentry on which to get symbolic link * @done: caller needs to free returned data with this * * Calls security hook and i_op->get_link() on the supplied inode. * * It does not touch atime. That's up to the caller if necessary. * * Does not work on "special" symlinks like /proc/$$/fd/N */ const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) { const char *res = ERR_PTR(-EINVAL); struct inode *inode = d_inode(dentry); if (d_is_symlink(dentry)) { res = ERR_PTR(security_inode_readlink(dentry)); if (!res) res = inode->i_op->get_link(dentry, inode, done); } return res; } EXPORT_SYMBOL(vfs_get_link); /* get the link contents into pagecache */ const char *page_get_link(struct dentry *dentry, struct inode *inode, struct delayed_call *callback) { char *kaddr; struct page *page; struct address_space *mapping = inode->i_mapping; if (!dentry) { page = find_get_page(mapping, 0); if (!page) return ERR_PTR(-ECHILD); if (!PageUptodate(page)) { put_page(page); return ERR_PTR(-ECHILD); } } else { page = read_mapping_page(mapping, 0, NULL); if (IS_ERR(page)) return (char*)page; } set_delayed_call(callback, page_put_link, page); BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); kaddr = page_address(page); nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); return kaddr; } EXPORT_SYMBOL(page_get_link); void page_put_link(void *arg) { put_page(arg); } EXPORT_SYMBOL(page_put_link); int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) { DEFINE_DELAYED_CALL(done); int res = readlink_copy(buffer, buflen, page_get_link(dentry, d_inode(dentry), &done)); do_delayed_call(&done); return res; } EXPORT_SYMBOL(page_readlink); int page_symlink(struct inode *inode, const char *symname, int len) { struct address_space *mapping = inode->i_mapping; const struct address_space_operations *aops = mapping->a_ops; bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); struct page *page; void *fsdata = NULL; int err; unsigned int flags; retry: if (nofs) flags = memalloc_nofs_save(); err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata); if (nofs) memalloc_nofs_restore(flags); if (err) goto fail; memcpy(page_address(page), symname, len-1); err = aops->write_end(NULL, mapping, 0, len-1, len-1, page, fsdata); if (err < 0) goto fail; if (err < len-1) goto retry; mark_inode_dirty(inode); return 0; fail: return err; } EXPORT_SYMBOL(page_symlink); const struct inode_operations page_symlink_inode_operations = { .get_link = page_get_link, }; EXPORT_SYMBOL(page_symlink_inode_operations);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1