Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
van der Linden, Frank | 3470 | 89.62% | 3 | 5.66% |
Qi Zheng | 224 | 5.79% | 2 | 3.77% |
Trond Myklebust | 40 | 1.03% | 13 | 24.53% |
Linus Torvalds (pre-git) | 32 | 0.83% | 9 | 16.98% |
Anna Schumaker | 18 | 0.46% | 6 | 11.32% |
Linus Torvalds | 14 | 0.36% | 2 | 3.77% |
David P. Quigley | 13 | 0.34% | 1 | 1.89% |
Andreas Gruenbacher | 12 | 0.31% | 2 | 3.77% |
David Howells | 11 | 0.28% | 2 | 3.77% |
Yang Shi | 6 | 0.15% | 1 | 1.89% |
Chuck Lever | 6 | 0.15% | 1 | 1.89% |
Roman Gushchin | 5 | 0.13% | 1 | 1.89% |
J. Bruce Fields | 5 | 0.13% | 1 | 1.89% |
Nhat Pham | 4 | 0.10% | 1 | 1.89% |
Elena Reshetova | 3 | 0.08% | 1 | 1.89% |
David Woodhouse | 2 | 0.05% | 1 | 1.89% |
Andrey V. Savochkin | 2 | 0.05% | 1 | 1.89% |
Andrew Morton | 1 | 0.03% | 1 | 1.89% |
Fred Isaman | 1 | 0.03% | 1 | 1.89% |
Paul Jackson | 1 | 0.03% | 1 | 1.89% |
Greg Kroah-Hartman | 1 | 0.03% | 1 | 1.89% |
Bhaskar Chowdhury | 1 | 0.03% | 1 | 1.89% |
Total | 3872 | 53 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2019, 2020 Amazon.com, Inc. or its affiliates. All rights reserved. * * User extended attribute client side cache functions. * * Author: Frank van der Linden <fllinden@amazon.com> */ #include <linux/errno.h> #include <linux/nfs_fs.h> #include <linux/hashtable.h> #include <linux/refcount.h> #include <uapi/linux/xattr.h> #include "nfs4_fs.h" #include "internal.h" /* * User extended attributes client side caching is implemented by having * a cache structure attached to NFS inodes. This structure is allocated * when needed, and freed when the cache is zapped. * * The cache structure contains as hash table of entries, and a pointer * to a special-cased entry for the listxattr cache. * * Accessing and allocating / freeing the caches is done via reference * counting. The cache entries use a similar refcounting scheme. * * This makes freeing a cache, both from the shrinker and from the * zap cache path, easy. It also means that, in current use cases, * the large majority of inodes will not waste any memory, as they * will never have any user extended attributes assigned to them. * * Attribute entries are hashed in to a simple hash table. They are * also part of an LRU. * * There are three shrinkers. * * Two shrinkers deal with the cache entries themselves: one for * large entries (> PAGE_SIZE), and one for smaller entries. The * shrinker for the larger entries works more aggressively than * those for the smaller entries. * * The other shrinker frees the cache structures themselves. */ /* * 64 buckets is a good default. There is likely no reasonable * workload that uses more than even 64 user extended attributes. * You can certainly add a lot more - but you get what you ask for * in those circumstances. */ #define NFS4_XATTR_HASH_SIZE 64 #define NFSDBG_FACILITY NFSDBG_XATTRCACHE struct nfs4_xattr_cache; struct nfs4_xattr_entry; struct nfs4_xattr_bucket { spinlock_t lock; struct hlist_head hlist; struct nfs4_xattr_cache *cache; bool draining; }; struct nfs4_xattr_cache { struct kref ref; struct nfs4_xattr_bucket buckets[NFS4_XATTR_HASH_SIZE]; struct list_head lru; struct list_head dispose; atomic_long_t nent; spinlock_t listxattr_lock; struct inode *inode; struct nfs4_xattr_entry *listxattr; }; struct nfs4_xattr_entry { struct kref ref; struct hlist_node hnode; struct list_head lru; struct list_head dispose; char *xattr_name; void *xattr_value; size_t xattr_size; struct nfs4_xattr_bucket *bucket; uint32_t flags; }; #define NFS4_XATTR_ENTRY_EXTVAL 0x0001 /* * LRU list of NFS inodes that have xattr caches. */ static struct list_lru nfs4_xattr_cache_lru; static struct list_lru nfs4_xattr_entry_lru; static struct list_lru nfs4_xattr_large_entry_lru; static struct kmem_cache *nfs4_xattr_cache_cachep; /* * Hashing helper functions. */ static void nfs4_xattr_hash_init(struct nfs4_xattr_cache *cache) { unsigned int i; for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) { INIT_HLIST_HEAD(&cache->buckets[i].hlist); spin_lock_init(&cache->buckets[i].lock); cache->buckets[i].cache = cache; cache->buckets[i].draining = false; } } /* * Locking order: * 1. inode i_lock or bucket lock * 2. list_lru lock (taken by list_lru_* functions) */ /* * Wrapper functions to add a cache entry to the right LRU. */ static bool nfs4_xattr_entry_lru_add(struct nfs4_xattr_entry *entry) { struct list_lru *lru; lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ? &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru; return list_lru_add_obj(lru, &entry->lru); } static bool nfs4_xattr_entry_lru_del(struct nfs4_xattr_entry *entry) { struct list_lru *lru; lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ? &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru; return list_lru_del_obj(lru, &entry->lru); } /* * This function allocates cache entries. They are the normal * extended attribute name/value pairs, but may also be a listxattr * cache. Those allocations use the same entry so that they can be * treated as one by the memory shrinker. * * xattr cache entries are allocated together with names. If the * value fits in to one page with the entry structure and the name, * it will also be part of the same allocation (kmalloc). This is * expected to be the vast majority of cases. Larger allocations * have a value pointer that is allocated separately by kvmalloc. * * Parameters: * * @name: Name of the extended attribute. NULL for listxattr cache * entry. * @value: Value of attribute, or listxattr cache. NULL if the * value is to be copied from pages instead. * @pages: Pages to copy the value from, if not NULL. Passed in to * make it easier to copy the value after an RPC, even if * the value will not be passed up to application (e.g. * for a 'query' getxattr with NULL buffer). * @len: Length of the value. Can be 0 for zero-length attributes. * @value and @pages will be NULL if @len is 0. */ static struct nfs4_xattr_entry * nfs4_xattr_alloc_entry(const char *name, const void *value, struct page **pages, size_t len) { struct nfs4_xattr_entry *entry; void *valp; char *namep; size_t alloclen, slen; char *buf; uint32_t flags; BUILD_BUG_ON(sizeof(struct nfs4_xattr_entry) + XATTR_NAME_MAX + 1 > PAGE_SIZE); alloclen = sizeof(struct nfs4_xattr_entry); if (name != NULL) { slen = strlen(name) + 1; alloclen += slen; } else slen = 0; if (alloclen + len <= PAGE_SIZE) { alloclen += len; flags = 0; } else { flags = NFS4_XATTR_ENTRY_EXTVAL; } buf = kmalloc(alloclen, GFP_KERNEL); if (buf == NULL) return NULL; entry = (struct nfs4_xattr_entry *)buf; if (name != NULL) { namep = buf + sizeof(struct nfs4_xattr_entry); memcpy(namep, name, slen); } else { namep = NULL; } if (flags & NFS4_XATTR_ENTRY_EXTVAL) { valp = kvmalloc(len, GFP_KERNEL); if (valp == NULL) { kfree(buf); return NULL; } } else if (len != 0) { valp = buf + sizeof(struct nfs4_xattr_entry) + slen; } else valp = NULL; if (valp != NULL) { if (value != NULL) memcpy(valp, value, len); else _copy_from_pages(valp, pages, 0, len); } entry->flags = flags; entry->xattr_value = valp; kref_init(&entry->ref); entry->xattr_name = namep; entry->xattr_size = len; entry->bucket = NULL; INIT_LIST_HEAD(&entry->lru); INIT_LIST_HEAD(&entry->dispose); INIT_HLIST_NODE(&entry->hnode); return entry; } static void nfs4_xattr_free_entry(struct nfs4_xattr_entry *entry) { if (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) kvfree(entry->xattr_value); kfree(entry); } static void nfs4_xattr_free_entry_cb(struct kref *kref) { struct nfs4_xattr_entry *entry; entry = container_of(kref, struct nfs4_xattr_entry, ref); if (WARN_ON(!list_empty(&entry->lru))) return; nfs4_xattr_free_entry(entry); } static void nfs4_xattr_free_cache_cb(struct kref *kref) { struct nfs4_xattr_cache *cache; int i; cache = container_of(kref, struct nfs4_xattr_cache, ref); for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) { if (WARN_ON(!hlist_empty(&cache->buckets[i].hlist))) return; cache->buckets[i].draining = false; } cache->listxattr = NULL; kmem_cache_free(nfs4_xattr_cache_cachep, cache); } static struct nfs4_xattr_cache * nfs4_xattr_alloc_cache(void) { struct nfs4_xattr_cache *cache; cache = kmem_cache_alloc(nfs4_xattr_cache_cachep, GFP_KERNEL); if (cache == NULL) return NULL; kref_init(&cache->ref); atomic_long_set(&cache->nent, 0); return cache; } /* * Set the listxattr cache, which is a special-cased cache entry. * The special value ERR_PTR(-ESTALE) is used to indicate that * the cache is being drained - this prevents a new listxattr * cache from being added to what is now a stale cache. */ static int nfs4_xattr_set_listcache(struct nfs4_xattr_cache *cache, struct nfs4_xattr_entry *new) { struct nfs4_xattr_entry *old; int ret = 1; spin_lock(&cache->listxattr_lock); old = cache->listxattr; if (old == ERR_PTR(-ESTALE)) { ret = 0; goto out; } cache->listxattr = new; if (new != NULL && new != ERR_PTR(-ESTALE)) nfs4_xattr_entry_lru_add(new); if (old != NULL) { nfs4_xattr_entry_lru_del(old); kref_put(&old->ref, nfs4_xattr_free_entry_cb); } out: spin_unlock(&cache->listxattr_lock); return ret; } /* * Unlink a cache from its parent inode, clearing out an invalid * cache. Must be called with i_lock held. */ static struct nfs4_xattr_cache * nfs4_xattr_cache_unlink(struct inode *inode) { struct nfs_inode *nfsi; struct nfs4_xattr_cache *oldcache; nfsi = NFS_I(inode); oldcache = nfsi->xattr_cache; if (oldcache != NULL) { list_lru_del_obj(&nfs4_xattr_cache_lru, &oldcache->lru); oldcache->inode = NULL; } nfsi->xattr_cache = NULL; nfsi->cache_validity &= ~NFS_INO_INVALID_XATTR; return oldcache; } /* * Discard a cache. Called by get_cache() if there was an old, * invalid cache. Can also be called from a shrinker callback. * * The cache is dead, it has already been unlinked from its inode, * and no longer appears on the cache LRU list. * * Mark all buckets as draining, so that no new entries are added. This * could still happen in the unlikely, but possible case that another * thread had grabbed a reference before it was unlinked from the inode, * and is still holding it for an add operation. * * Remove all entries from the LRU lists, so that there is no longer * any way to 'find' this cache. Then, remove the entries from the hash * table. * * At that point, the cache will remain empty and can be freed when the final * reference drops, which is very likely the kref_put at the end of * this function, or the one called immediately afterwards in the * shrinker callback. */ static void nfs4_xattr_discard_cache(struct nfs4_xattr_cache *cache) { unsigned int i; struct nfs4_xattr_entry *entry; struct nfs4_xattr_bucket *bucket; struct hlist_node *n; nfs4_xattr_set_listcache(cache, ERR_PTR(-ESTALE)); for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) { bucket = &cache->buckets[i]; spin_lock(&bucket->lock); bucket->draining = true; hlist_for_each_entry_safe(entry, n, &bucket->hlist, hnode) { nfs4_xattr_entry_lru_del(entry); hlist_del_init(&entry->hnode); kref_put(&entry->ref, nfs4_xattr_free_entry_cb); } spin_unlock(&bucket->lock); } atomic_long_set(&cache->nent, 0); kref_put(&cache->ref, nfs4_xattr_free_cache_cb); } /* * Get a referenced copy of the cache structure. Avoid doing allocs * while holding i_lock. Which means that we do some optimistic allocation, * and might have to free the result in rare cases. * * This function only checks the NFS_INO_INVALID_XATTR cache validity bit * and acts accordingly, replacing the cache when needed. For the read case * (!add), this means that the caller must make sure that the cache * is valid before caling this function. getxattr and listxattr call * revalidate_inode to do this. The attribute cache timeout (for the * non-delegated case) is expected to be dealt with in the revalidate * call. */ static struct nfs4_xattr_cache * nfs4_xattr_get_cache(struct inode *inode, int add) { struct nfs_inode *nfsi; struct nfs4_xattr_cache *cache, *oldcache, *newcache; nfsi = NFS_I(inode); cache = oldcache = NULL; spin_lock(&inode->i_lock); if (nfsi->cache_validity & NFS_INO_INVALID_XATTR) oldcache = nfs4_xattr_cache_unlink(inode); else cache = nfsi->xattr_cache; if (cache != NULL) kref_get(&cache->ref); spin_unlock(&inode->i_lock); if (add && cache == NULL) { newcache = NULL; cache = nfs4_xattr_alloc_cache(); if (cache == NULL) goto out; spin_lock(&inode->i_lock); if (nfsi->cache_validity & NFS_INO_INVALID_XATTR) { /* * The cache was invalidated again. Give up, * since what we want to enter is now likely * outdated anyway. */ spin_unlock(&inode->i_lock); kref_put(&cache->ref, nfs4_xattr_free_cache_cb); cache = NULL; goto out; } /* * Check if someone beat us to it. */ if (nfsi->xattr_cache != NULL) { newcache = nfsi->xattr_cache; kref_get(&newcache->ref); } else { kref_get(&cache->ref); nfsi->xattr_cache = cache; cache->inode = inode; list_lru_add_obj(&nfs4_xattr_cache_lru, &cache->lru); } spin_unlock(&inode->i_lock); /* * If there was a race, throw away the cache we just * allocated, and use the new one allocated by someone * else. */ if (newcache != NULL) { kref_put(&cache->ref, nfs4_xattr_free_cache_cb); cache = newcache; } } out: /* * Discard the now orphaned old cache. */ if (oldcache != NULL) nfs4_xattr_discard_cache(oldcache); return cache; } static inline struct nfs4_xattr_bucket * nfs4_xattr_hash_bucket(struct nfs4_xattr_cache *cache, const char *name) { return &cache->buckets[jhash(name, strlen(name), 0) & (ARRAY_SIZE(cache->buckets) - 1)]; } static struct nfs4_xattr_entry * nfs4_xattr_get_entry(struct nfs4_xattr_bucket *bucket, const char *name) { struct nfs4_xattr_entry *entry; entry = NULL; hlist_for_each_entry(entry, &bucket->hlist, hnode) { if (!strcmp(entry->xattr_name, name)) break; } return entry; } static int nfs4_xattr_hash_add(struct nfs4_xattr_cache *cache, struct nfs4_xattr_entry *entry) { struct nfs4_xattr_bucket *bucket; struct nfs4_xattr_entry *oldentry = NULL; int ret = 1; bucket = nfs4_xattr_hash_bucket(cache, entry->xattr_name); entry->bucket = bucket; spin_lock(&bucket->lock); if (bucket->draining) { ret = 0; goto out; } oldentry = nfs4_xattr_get_entry(bucket, entry->xattr_name); if (oldentry != NULL) { hlist_del_init(&oldentry->hnode); nfs4_xattr_entry_lru_del(oldentry); } else { atomic_long_inc(&cache->nent); } hlist_add_head(&entry->hnode, &bucket->hlist); nfs4_xattr_entry_lru_add(entry); out: spin_unlock(&bucket->lock); if (oldentry != NULL) kref_put(&oldentry->ref, nfs4_xattr_free_entry_cb); return ret; } static void nfs4_xattr_hash_remove(struct nfs4_xattr_cache *cache, const char *name) { struct nfs4_xattr_bucket *bucket; struct nfs4_xattr_entry *entry; bucket = nfs4_xattr_hash_bucket(cache, name); spin_lock(&bucket->lock); entry = nfs4_xattr_get_entry(bucket, name); if (entry != NULL) { hlist_del_init(&entry->hnode); nfs4_xattr_entry_lru_del(entry); atomic_long_dec(&cache->nent); } spin_unlock(&bucket->lock); if (entry != NULL) kref_put(&entry->ref, nfs4_xattr_free_entry_cb); } static struct nfs4_xattr_entry * nfs4_xattr_hash_find(struct nfs4_xattr_cache *cache, const char *name) { struct nfs4_xattr_bucket *bucket; struct nfs4_xattr_entry *entry; bucket = nfs4_xattr_hash_bucket(cache, name); spin_lock(&bucket->lock); entry = nfs4_xattr_get_entry(bucket, name); if (entry != NULL) kref_get(&entry->ref); spin_unlock(&bucket->lock); return entry; } /* * Entry point to retrieve an entry from the cache. */ ssize_t nfs4_xattr_cache_get(struct inode *inode, const char *name, char *buf, ssize_t buflen) { struct nfs4_xattr_cache *cache; struct nfs4_xattr_entry *entry; ssize_t ret; cache = nfs4_xattr_get_cache(inode, 0); if (cache == NULL) return -ENOENT; ret = 0; entry = nfs4_xattr_hash_find(cache, name); if (entry != NULL) { dprintk("%s: cache hit '%s', len %lu\n", __func__, entry->xattr_name, (unsigned long)entry->xattr_size); if (buflen == 0) { /* Length probe only */ ret = entry->xattr_size; } else if (buflen < entry->xattr_size) ret = -ERANGE; else { memcpy(buf, entry->xattr_value, entry->xattr_size); ret = entry->xattr_size; } kref_put(&entry->ref, nfs4_xattr_free_entry_cb); } else { dprintk("%s: cache miss '%s'\n", __func__, name); ret = -ENOENT; } kref_put(&cache->ref, nfs4_xattr_free_cache_cb); return ret; } /* * Retrieve a cached list of xattrs from the cache. */ ssize_t nfs4_xattr_cache_list(struct inode *inode, char *buf, ssize_t buflen) { struct nfs4_xattr_cache *cache; struct nfs4_xattr_entry *entry; ssize_t ret; cache = nfs4_xattr_get_cache(inode, 0); if (cache == NULL) return -ENOENT; spin_lock(&cache->listxattr_lock); entry = cache->listxattr; if (entry != NULL && entry != ERR_PTR(-ESTALE)) { if (buflen == 0) { /* Length probe only */ ret = entry->xattr_size; } else if (entry->xattr_size > buflen) ret = -ERANGE; else { memcpy(buf, entry->xattr_value, entry->xattr_size); ret = entry->xattr_size; } } else { ret = -ENOENT; } spin_unlock(&cache->listxattr_lock); kref_put(&cache->ref, nfs4_xattr_free_cache_cb); return ret; } /* * Add an xattr to the cache. * * This also invalidates the xattr list cache. */ void nfs4_xattr_cache_add(struct inode *inode, const char *name, const char *buf, struct page **pages, ssize_t buflen) { struct nfs4_xattr_cache *cache; struct nfs4_xattr_entry *entry; dprintk("%s: add '%s' len %lu\n", __func__, name, (unsigned long)buflen); cache = nfs4_xattr_get_cache(inode, 1); if (cache == NULL) return; entry = nfs4_xattr_alloc_entry(name, buf, pages, buflen); if (entry == NULL) goto out; (void)nfs4_xattr_set_listcache(cache, NULL); if (!nfs4_xattr_hash_add(cache, entry)) kref_put(&entry->ref, nfs4_xattr_free_entry_cb); out: kref_put(&cache->ref, nfs4_xattr_free_cache_cb); } /* * Remove an xattr from the cache. * * This also invalidates the xattr list cache. */ void nfs4_xattr_cache_remove(struct inode *inode, const char *name) { struct nfs4_xattr_cache *cache; dprintk("%s: remove '%s'\n", __func__, name); cache = nfs4_xattr_get_cache(inode, 0); if (cache == NULL) return; (void)nfs4_xattr_set_listcache(cache, NULL); nfs4_xattr_hash_remove(cache, name); kref_put(&cache->ref, nfs4_xattr_free_cache_cb); } /* * Cache listxattr output, replacing any possible old one. */ void nfs4_xattr_cache_set_list(struct inode *inode, const char *buf, ssize_t buflen) { struct nfs4_xattr_cache *cache; struct nfs4_xattr_entry *entry; cache = nfs4_xattr_get_cache(inode, 1); if (cache == NULL) return; entry = nfs4_xattr_alloc_entry(NULL, buf, NULL, buflen); if (entry == NULL) goto out; /* * This is just there to be able to get to bucket->cache, * which is obviously the same for all buckets, so just * use bucket 0. */ entry->bucket = &cache->buckets[0]; if (!nfs4_xattr_set_listcache(cache, entry)) kref_put(&entry->ref, nfs4_xattr_free_entry_cb); out: kref_put(&cache->ref, nfs4_xattr_free_cache_cb); } /* * Zap the entire cache. Called when an inode is evicted. */ void nfs4_xattr_cache_zap(struct inode *inode) { struct nfs4_xattr_cache *oldcache; spin_lock(&inode->i_lock); oldcache = nfs4_xattr_cache_unlink(inode); spin_unlock(&inode->i_lock); if (oldcache) nfs4_xattr_discard_cache(oldcache); } /* * The entry LRU is shrunk more aggressively than the cache LRU, * by settings @seeks to 1. * * Cache structures are freed only when they've become empty, after * pruning all but one entry. */ static unsigned long nfs4_xattr_cache_count(struct shrinker *shrink, struct shrink_control *sc); static unsigned long nfs4_xattr_entry_count(struct shrinker *shrink, struct shrink_control *sc); static unsigned long nfs4_xattr_cache_scan(struct shrinker *shrink, struct shrink_control *sc); static unsigned long nfs4_xattr_entry_scan(struct shrinker *shrink, struct shrink_control *sc); static struct shrinker *nfs4_xattr_cache_shrinker; static struct shrinker *nfs4_xattr_entry_shrinker; static struct shrinker *nfs4_xattr_large_entry_shrinker; static enum lru_status cache_lru_isolate(struct list_head *item, struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) { struct list_head *dispose = arg; struct inode *inode; struct nfs4_xattr_cache *cache = container_of(item, struct nfs4_xattr_cache, lru); if (atomic_long_read(&cache->nent) > 1) return LRU_SKIP; /* * If a cache structure is on the LRU list, we know that * its inode is valid. Try to lock it to break the link. * Since we're inverting the lock order here, only try. */ inode = cache->inode; if (!spin_trylock(&inode->i_lock)) return LRU_SKIP; kref_get(&cache->ref); cache->inode = NULL; NFS_I(inode)->xattr_cache = NULL; NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_XATTR; list_lru_isolate(lru, &cache->lru); spin_unlock(&inode->i_lock); list_add_tail(&cache->dispose, dispose); return LRU_REMOVED; } static unsigned long nfs4_xattr_cache_scan(struct shrinker *shrink, struct shrink_control *sc) { LIST_HEAD(dispose); unsigned long freed; struct nfs4_xattr_cache *cache; freed = list_lru_shrink_walk(&nfs4_xattr_cache_lru, sc, cache_lru_isolate, &dispose); while (!list_empty(&dispose)) { cache = list_first_entry(&dispose, struct nfs4_xattr_cache, dispose); list_del_init(&cache->dispose); nfs4_xattr_discard_cache(cache); kref_put(&cache->ref, nfs4_xattr_free_cache_cb); } return freed; } static unsigned long nfs4_xattr_cache_count(struct shrinker *shrink, struct shrink_control *sc) { unsigned long count; count = list_lru_shrink_count(&nfs4_xattr_cache_lru, sc); return vfs_pressure_ratio(count); } static enum lru_status entry_lru_isolate(struct list_head *item, struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) { struct list_head *dispose = arg; struct nfs4_xattr_bucket *bucket; struct nfs4_xattr_cache *cache; struct nfs4_xattr_entry *entry = container_of(item, struct nfs4_xattr_entry, lru); bucket = entry->bucket; cache = bucket->cache; /* * Unhook the entry from its parent (either a cache bucket * or a cache structure if it's a listxattr buf), so that * it's no longer found. Then add it to the isolate list, * to be freed later. * * In both cases, we're reverting lock order, so use * trylock and skip the entry if we can't get the lock. */ if (entry->xattr_name != NULL) { /* Regular cache entry */ if (!spin_trylock(&bucket->lock)) return LRU_SKIP; kref_get(&entry->ref); hlist_del_init(&entry->hnode); atomic_long_dec(&cache->nent); list_lru_isolate(lru, &entry->lru); spin_unlock(&bucket->lock); } else { /* Listxattr cache entry */ if (!spin_trylock(&cache->listxattr_lock)) return LRU_SKIP; kref_get(&entry->ref); cache->listxattr = NULL; list_lru_isolate(lru, &entry->lru); spin_unlock(&cache->listxattr_lock); } list_add_tail(&entry->dispose, dispose); return LRU_REMOVED; } static unsigned long nfs4_xattr_entry_scan(struct shrinker *shrink, struct shrink_control *sc) { LIST_HEAD(dispose); unsigned long freed; struct nfs4_xattr_entry *entry; struct list_lru *lru; lru = (shrink == nfs4_xattr_large_entry_shrinker) ? &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru; freed = list_lru_shrink_walk(lru, sc, entry_lru_isolate, &dispose); while (!list_empty(&dispose)) { entry = list_first_entry(&dispose, struct nfs4_xattr_entry, dispose); list_del_init(&entry->dispose); /* * Drop two references: the one that we just grabbed * in entry_lru_isolate, and the one that was set * when the entry was first allocated. */ kref_put(&entry->ref, nfs4_xattr_free_entry_cb); kref_put(&entry->ref, nfs4_xattr_free_entry_cb); } return freed; } static unsigned long nfs4_xattr_entry_count(struct shrinker *shrink, struct shrink_control *sc) { unsigned long count; struct list_lru *lru; lru = (shrink == nfs4_xattr_large_entry_shrinker) ? &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru; count = list_lru_shrink_count(lru, sc); return vfs_pressure_ratio(count); } static void nfs4_xattr_cache_init_once(void *p) { struct nfs4_xattr_cache *cache = p; spin_lock_init(&cache->listxattr_lock); atomic_long_set(&cache->nent, 0); nfs4_xattr_hash_init(cache); cache->listxattr = NULL; INIT_LIST_HEAD(&cache->lru); INIT_LIST_HEAD(&cache->dispose); } typedef unsigned long (*count_objects_cb)(struct shrinker *s, struct shrink_control *sc); typedef unsigned long (*scan_objects_cb)(struct shrinker *s, struct shrink_control *sc); static int __init nfs4_xattr_shrinker_init(struct shrinker **shrinker, struct list_lru *lru, const char *name, count_objects_cb count, scan_objects_cb scan, long batch, int seeks) { int ret; *shrinker = shrinker_alloc(SHRINKER_MEMCG_AWARE, name); if (!*shrinker) return -ENOMEM; ret = list_lru_init_memcg(lru, *shrinker); if (ret) { shrinker_free(*shrinker); return ret; } (*shrinker)->count_objects = count; (*shrinker)->scan_objects = scan; (*shrinker)->batch = batch; (*shrinker)->seeks = seeks; shrinker_register(*shrinker); return ret; } static void nfs4_xattr_shrinker_destroy(struct shrinker *shrinker, struct list_lru *lru) { shrinker_free(shrinker); list_lru_destroy(lru); } int __init nfs4_xattr_cache_init(void) { int ret = 0; nfs4_xattr_cache_cachep = kmem_cache_create("nfs4_xattr_cache_cache", sizeof(struct nfs4_xattr_cache), 0, (SLAB_RECLAIM_ACCOUNT), nfs4_xattr_cache_init_once); if (nfs4_xattr_cache_cachep == NULL) return -ENOMEM; ret = nfs4_xattr_shrinker_init(&nfs4_xattr_cache_shrinker, &nfs4_xattr_cache_lru, "nfs-xattr_cache", nfs4_xattr_cache_count, nfs4_xattr_cache_scan, 0, DEFAULT_SEEKS); if (ret) goto out1; ret = nfs4_xattr_shrinker_init(&nfs4_xattr_entry_shrinker, &nfs4_xattr_entry_lru, "nfs-xattr_entry", nfs4_xattr_entry_count, nfs4_xattr_entry_scan, 512, DEFAULT_SEEKS); if (ret) goto out2; ret = nfs4_xattr_shrinker_init(&nfs4_xattr_large_entry_shrinker, &nfs4_xattr_large_entry_lru, "nfs-xattr_large_entry", nfs4_xattr_entry_count, nfs4_xattr_entry_scan, 512, 1); if (!ret) return 0; nfs4_xattr_shrinker_destroy(nfs4_xattr_entry_shrinker, &nfs4_xattr_entry_lru); out2: nfs4_xattr_shrinker_destroy(nfs4_xattr_cache_shrinker, &nfs4_xattr_cache_lru); out1: kmem_cache_destroy(nfs4_xattr_cache_cachep); return ret; } void nfs4_xattr_cache_exit(void) { nfs4_xattr_shrinker_destroy(nfs4_xattr_large_entry_shrinker, &nfs4_xattr_large_entry_lru); nfs4_xattr_shrinker_destroy(nfs4_xattr_entry_shrinker, &nfs4_xattr_entry_lru); nfs4_xattr_shrinker_destroy(nfs4_xattr_cache_shrinker, &nfs4_xattr_cache_lru); kmem_cache_destroy(nfs4_xattr_cache_cachep); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1