Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christoph Hellwig | 1528 | 45.03% | 35 | 26.52% |
Darrick J. Wong | 1040 | 30.65% | 46 | 34.85% |
Brian Foster | 482 | 14.21% | 8 | 6.06% |
David Chinner | 268 | 7.90% | 34 | 25.76% |
Russell Cattelan | 27 | 0.80% | 1 | 0.76% |
Eric Sandeen | 23 | 0.68% | 3 | 2.27% |
Nathan Scott | 17 | 0.50% | 2 | 1.52% |
Glen Overby | 6 | 0.18% | 1 | 0.76% |
Marcin Ślusarz | 1 | 0.03% | 1 | 0.76% |
Malcolm Parsons | 1 | 0.03% | 1 | 0.76% |
Total | 3393 | 132 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_mount.h" #include "xfs_btree.h" #include "xfs_btree_staging.h" #include "xfs_ialloc.h" #include "xfs_ialloc_btree.h" #include "xfs_alloc.h" #include "xfs_error.h" #include "xfs_health.h" #include "xfs_trace.h" #include "xfs_trans.h" #include "xfs_rmap.h" #include "xfs_ag.h" static struct kmem_cache *xfs_inobt_cur_cache; STATIC int xfs_inobt_get_minrecs( struct xfs_btree_cur *cur, int level) { return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0]; } STATIC struct xfs_btree_cur * xfs_inobt_dup_cursor( struct xfs_btree_cur *cur) { return xfs_inobt_init_cursor(cur->bc_ag.pag, cur->bc_tp, cur->bc_ag.agbp); } STATIC struct xfs_btree_cur * xfs_finobt_dup_cursor( struct xfs_btree_cur *cur) { return xfs_finobt_init_cursor(cur->bc_ag.pag, cur->bc_tp, cur->bc_ag.agbp); } STATIC void xfs_inobt_set_root( struct xfs_btree_cur *cur, const union xfs_btree_ptr *nptr, int inc) /* level change */ { struct xfs_buf *agbp = cur->bc_ag.agbp; struct xfs_agi *agi = agbp->b_addr; agi->agi_root = nptr->s; be32_add_cpu(&agi->agi_level, inc); xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL); } STATIC void xfs_finobt_set_root( struct xfs_btree_cur *cur, const union xfs_btree_ptr *nptr, int inc) /* level change */ { struct xfs_buf *agbp = cur->bc_ag.agbp; struct xfs_agi *agi = agbp->b_addr; agi->agi_free_root = nptr->s; be32_add_cpu(&agi->agi_free_level, inc); xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL); } /* Update the inode btree block counter for this btree. */ static inline void xfs_inobt_mod_blockcount( struct xfs_btree_cur *cur, int howmuch) { struct xfs_buf *agbp = cur->bc_ag.agbp; struct xfs_agi *agi = agbp->b_addr; if (!xfs_has_inobtcounts(cur->bc_mp)) return; if (xfs_btree_is_fino(cur->bc_ops)) be32_add_cpu(&agi->agi_fblocks, howmuch); else be32_add_cpu(&agi->agi_iblocks, howmuch); xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS); } STATIC int __xfs_inobt_alloc_block( struct xfs_btree_cur *cur, const union xfs_btree_ptr *start, union xfs_btree_ptr *new, int *stat, enum xfs_ag_resv_type resv) { xfs_alloc_arg_t args; /* block allocation args */ int error; /* error return value */ xfs_agblock_t sbno = be32_to_cpu(start->s); memset(&args, 0, sizeof(args)); args.tp = cur->bc_tp; args.mp = cur->bc_mp; args.pag = cur->bc_ag.pag; args.oinfo = XFS_RMAP_OINFO_INOBT; args.minlen = 1; args.maxlen = 1; args.prod = 1; args.resv = resv; error = xfs_alloc_vextent_near_bno(&args, XFS_AGB_TO_FSB(args.mp, args.pag->pag_agno, sbno)); if (error) return error; if (args.fsbno == NULLFSBLOCK) { *stat = 0; return 0; } ASSERT(args.len == 1); new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno)); *stat = 1; xfs_inobt_mod_blockcount(cur, 1); return 0; } STATIC int xfs_inobt_alloc_block( struct xfs_btree_cur *cur, const union xfs_btree_ptr *start, union xfs_btree_ptr *new, int *stat) { return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE); } STATIC int xfs_finobt_alloc_block( struct xfs_btree_cur *cur, const union xfs_btree_ptr *start, union xfs_btree_ptr *new, int *stat) { if (cur->bc_mp->m_finobt_nores) return xfs_inobt_alloc_block(cur, start, new, stat); return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_METADATA); } STATIC int __xfs_inobt_free_block( struct xfs_btree_cur *cur, struct xfs_buf *bp, enum xfs_ag_resv_type resv) { xfs_fsblock_t fsbno; xfs_inobt_mod_blockcount(cur, -1); fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp)); return xfs_free_extent_later(cur->bc_tp, fsbno, 1, &XFS_RMAP_OINFO_INOBT, resv, 0); } STATIC int xfs_inobt_free_block( struct xfs_btree_cur *cur, struct xfs_buf *bp) { return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE); } STATIC int xfs_finobt_free_block( struct xfs_btree_cur *cur, struct xfs_buf *bp) { if (cur->bc_mp->m_finobt_nores) return xfs_inobt_free_block(cur, bp); return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA); } STATIC int xfs_inobt_get_maxrecs( struct xfs_btree_cur *cur, int level) { return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0]; } STATIC void xfs_inobt_init_key_from_rec( union xfs_btree_key *key, const union xfs_btree_rec *rec) { key->inobt.ir_startino = rec->inobt.ir_startino; } STATIC void xfs_inobt_init_high_key_from_rec( union xfs_btree_key *key, const union xfs_btree_rec *rec) { __u32 x; x = be32_to_cpu(rec->inobt.ir_startino); x += XFS_INODES_PER_CHUNK - 1; key->inobt.ir_startino = cpu_to_be32(x); } STATIC void xfs_inobt_init_rec_from_cur( struct xfs_btree_cur *cur, union xfs_btree_rec *rec) { rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino); if (xfs_has_sparseinodes(cur->bc_mp)) { rec->inobt.ir_u.sp.ir_holemask = cpu_to_be16(cur->bc_rec.i.ir_holemask); rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count; rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount; } else { /* ir_holemask/ir_count not supported on-disk */ rec->inobt.ir_u.f.ir_freecount = cpu_to_be32(cur->bc_rec.i.ir_freecount); } rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free); } /* * initial value of ptr for lookup */ STATIC void xfs_inobt_init_ptr_from_cur( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr) { struct xfs_agi *agi = cur->bc_ag.agbp->b_addr; ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno)); ptr->s = agi->agi_root; } STATIC void xfs_finobt_init_ptr_from_cur( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr) { struct xfs_agi *agi = cur->bc_ag.agbp->b_addr; ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno)); ptr->s = agi->agi_free_root; } STATIC int64_t xfs_inobt_key_diff( struct xfs_btree_cur *cur, const union xfs_btree_key *key) { return (int64_t)be32_to_cpu(key->inobt.ir_startino) - cur->bc_rec.i.ir_startino; } STATIC int64_t xfs_inobt_diff_two_keys( struct xfs_btree_cur *cur, const union xfs_btree_key *k1, const union xfs_btree_key *k2, const union xfs_btree_key *mask) { ASSERT(!mask || mask->inobt.ir_startino); return (int64_t)be32_to_cpu(k1->inobt.ir_startino) - be32_to_cpu(k2->inobt.ir_startino); } static xfs_failaddr_t xfs_inobt_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_mount; struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); xfs_failaddr_t fa; unsigned int level; if (!xfs_verify_magic(bp, block->bb_magic)) return __this_address; /* * During growfs operations, we can't verify the exact owner as the * perag is not fully initialised and hence not attached to the buffer. * * Similarly, during log recovery we will have a perag structure * attached, but the agi information will not yet have been initialised * from the on disk AGI. We don't currently use any of this information, * but beware of the landmine (i.e. need to check * xfs_perag_initialised_agi(pag)) if we ever do. */ if (xfs_has_crc(mp)) { fa = xfs_btree_agblock_v5hdr_verify(bp); if (fa) return fa; } /* level verification */ level = be16_to_cpu(block->bb_level); if (level >= M_IGEO(mp)->inobt_maxlevels) return __this_address; return xfs_btree_agblock_verify(bp, M_IGEO(mp)->inobt_mxr[level != 0]); } static void xfs_inobt_read_verify( struct xfs_buf *bp) { xfs_failaddr_t fa; if (!xfs_btree_agblock_verify_crc(bp)) xfs_verifier_error(bp, -EFSBADCRC, __this_address); else { fa = xfs_inobt_verify(bp); if (fa) xfs_verifier_error(bp, -EFSCORRUPTED, fa); } if (bp->b_error) trace_xfs_btree_corrupt(bp, _RET_IP_); } static void xfs_inobt_write_verify( struct xfs_buf *bp) { xfs_failaddr_t fa; fa = xfs_inobt_verify(bp); if (fa) { trace_xfs_btree_corrupt(bp, _RET_IP_); xfs_verifier_error(bp, -EFSCORRUPTED, fa); return; } xfs_btree_agblock_calc_crc(bp); } const struct xfs_buf_ops xfs_inobt_buf_ops = { .name = "xfs_inobt", .magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) }, .verify_read = xfs_inobt_read_verify, .verify_write = xfs_inobt_write_verify, .verify_struct = xfs_inobt_verify, }; const struct xfs_buf_ops xfs_finobt_buf_ops = { .name = "xfs_finobt", .magic = { cpu_to_be32(XFS_FIBT_MAGIC), cpu_to_be32(XFS_FIBT_CRC_MAGIC) }, .verify_read = xfs_inobt_read_verify, .verify_write = xfs_inobt_write_verify, .verify_struct = xfs_inobt_verify, }; STATIC int xfs_inobt_keys_inorder( struct xfs_btree_cur *cur, const union xfs_btree_key *k1, const union xfs_btree_key *k2) { return be32_to_cpu(k1->inobt.ir_startino) < be32_to_cpu(k2->inobt.ir_startino); } STATIC int xfs_inobt_recs_inorder( struct xfs_btree_cur *cur, const union xfs_btree_rec *r1, const union xfs_btree_rec *r2) { return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <= be32_to_cpu(r2->inobt.ir_startino); } STATIC enum xbtree_key_contig xfs_inobt_keys_contiguous( struct xfs_btree_cur *cur, const union xfs_btree_key *key1, const union xfs_btree_key *key2, const union xfs_btree_key *mask) { ASSERT(!mask || mask->inobt.ir_startino); return xbtree_key_contig(be32_to_cpu(key1->inobt.ir_startino), be32_to_cpu(key2->inobt.ir_startino)); } const struct xfs_btree_ops xfs_inobt_ops = { .name = "ino", .type = XFS_BTREE_TYPE_AG, .rec_len = sizeof(xfs_inobt_rec_t), .key_len = sizeof(xfs_inobt_key_t), .ptr_len = XFS_BTREE_SHORT_PTR_LEN, .lru_refs = XFS_INO_BTREE_REF, .statoff = XFS_STATS_CALC_INDEX(xs_ibt_2), .sick_mask = XFS_SICK_AG_INOBT, .dup_cursor = xfs_inobt_dup_cursor, .set_root = xfs_inobt_set_root, .alloc_block = xfs_inobt_alloc_block, .free_block = xfs_inobt_free_block, .get_minrecs = xfs_inobt_get_minrecs, .get_maxrecs = xfs_inobt_get_maxrecs, .init_key_from_rec = xfs_inobt_init_key_from_rec, .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec, .init_rec_from_cur = xfs_inobt_init_rec_from_cur, .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur, .key_diff = xfs_inobt_key_diff, .buf_ops = &xfs_inobt_buf_ops, .diff_two_keys = xfs_inobt_diff_two_keys, .keys_inorder = xfs_inobt_keys_inorder, .recs_inorder = xfs_inobt_recs_inorder, .keys_contiguous = xfs_inobt_keys_contiguous, }; const struct xfs_btree_ops xfs_finobt_ops = { .name = "fino", .type = XFS_BTREE_TYPE_AG, .rec_len = sizeof(xfs_inobt_rec_t), .key_len = sizeof(xfs_inobt_key_t), .ptr_len = XFS_BTREE_SHORT_PTR_LEN, .lru_refs = XFS_INO_BTREE_REF, .statoff = XFS_STATS_CALC_INDEX(xs_fibt_2), .sick_mask = XFS_SICK_AG_FINOBT, .dup_cursor = xfs_finobt_dup_cursor, .set_root = xfs_finobt_set_root, .alloc_block = xfs_finobt_alloc_block, .free_block = xfs_finobt_free_block, .get_minrecs = xfs_inobt_get_minrecs, .get_maxrecs = xfs_inobt_get_maxrecs, .init_key_from_rec = xfs_inobt_init_key_from_rec, .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec, .init_rec_from_cur = xfs_inobt_init_rec_from_cur, .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur, .key_diff = xfs_inobt_key_diff, .buf_ops = &xfs_finobt_buf_ops, .diff_two_keys = xfs_inobt_diff_two_keys, .keys_inorder = xfs_inobt_keys_inorder, .recs_inorder = xfs_inobt_recs_inorder, .keys_contiguous = xfs_inobt_keys_contiguous, }; /* * Create an inode btree cursor. * * For staging cursors tp and agbp are NULL. */ struct xfs_btree_cur * xfs_inobt_init_cursor( struct xfs_perag *pag, struct xfs_trans *tp, struct xfs_buf *agbp) { struct xfs_mount *mp = pag->pag_mount; struct xfs_btree_cur *cur; cur = xfs_btree_alloc_cursor(mp, tp, &xfs_inobt_ops, M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache); cur->bc_ag.pag = xfs_perag_hold(pag); cur->bc_ag.agbp = agbp; if (agbp) { struct xfs_agi *agi = agbp->b_addr; cur->bc_nlevels = be32_to_cpu(agi->agi_level); } return cur; } /* * Create a free inode btree cursor. * * For staging cursors tp and agbp are NULL. */ struct xfs_btree_cur * xfs_finobt_init_cursor( struct xfs_perag *pag, struct xfs_trans *tp, struct xfs_buf *agbp) { struct xfs_mount *mp = pag->pag_mount; struct xfs_btree_cur *cur; cur = xfs_btree_alloc_cursor(mp, tp, &xfs_finobt_ops, M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache); cur->bc_ag.pag = xfs_perag_hold(pag); cur->bc_ag.agbp = agbp; if (agbp) { struct xfs_agi *agi = agbp->b_addr; cur->bc_nlevels = be32_to_cpu(agi->agi_free_level); } return cur; } /* * Install a new inobt btree root. Caller is responsible for invalidating * and freeing the old btree blocks. */ void xfs_inobt_commit_staged_btree( struct xfs_btree_cur *cur, struct xfs_trans *tp, struct xfs_buf *agbp) { struct xfs_agi *agi = agbp->b_addr; struct xbtree_afakeroot *afake = cur->bc_ag.afake; int fields; ASSERT(cur->bc_flags & XFS_BTREE_STAGING); if (xfs_btree_is_ino(cur->bc_ops)) { fields = XFS_AGI_ROOT | XFS_AGI_LEVEL; agi->agi_root = cpu_to_be32(afake->af_root); agi->agi_level = cpu_to_be32(afake->af_levels); if (xfs_has_inobtcounts(cur->bc_mp)) { agi->agi_iblocks = cpu_to_be32(afake->af_blocks); fields |= XFS_AGI_IBLOCKS; } xfs_ialloc_log_agi(tp, agbp, fields); xfs_btree_commit_afakeroot(cur, tp, agbp); } else { fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL; agi->agi_free_root = cpu_to_be32(afake->af_root); agi->agi_free_level = cpu_to_be32(afake->af_levels); if (xfs_has_inobtcounts(cur->bc_mp)) { agi->agi_fblocks = cpu_to_be32(afake->af_blocks); fields |= XFS_AGI_IBLOCKS; } xfs_ialloc_log_agi(tp, agbp, fields); xfs_btree_commit_afakeroot(cur, tp, agbp); } } /* Calculate number of records in an inode btree block. */ static inline unsigned int xfs_inobt_block_maxrecs( unsigned int blocklen, bool leaf) { if (leaf) return blocklen / sizeof(xfs_inobt_rec_t); return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t)); } /* * Calculate number of records in an inobt btree block. */ int xfs_inobt_maxrecs( struct xfs_mount *mp, int blocklen, int leaf) { blocklen -= XFS_INOBT_BLOCK_LEN(mp); return xfs_inobt_block_maxrecs(blocklen, leaf); } /* * Maximum number of inode btree records per AG. Pretend that we can fill an * entire AG completely full of inodes except for the AG headers. */ #define XFS_MAX_INODE_RECORDS \ ((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \ XFS_INODES_PER_CHUNK /* Compute the max possible height for the inode btree. */ static inline unsigned int xfs_inobt_maxlevels_ondisk(void) { unsigned int minrecs[2]; unsigned int blocklen; blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN, XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN); minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2; minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2; return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS); } /* Compute the max possible height for the free inode btree. */ static inline unsigned int xfs_finobt_maxlevels_ondisk(void) { unsigned int minrecs[2]; unsigned int blocklen; blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN; minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2; minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2; return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS); } /* Compute the max possible height for either inode btree. */ unsigned int xfs_iallocbt_maxlevels_ondisk(void) { return max(xfs_inobt_maxlevels_ondisk(), xfs_finobt_maxlevels_ondisk()); } /* * Convert the inode record holemask to an inode allocation bitmap. The inode * allocation bitmap is inode granularity and specifies whether an inode is * physically allocated on disk (not whether the inode is considered allocated * or free by the fs). * * A bit value of 1 means the inode is allocated, a value of 0 means it is free. */ uint64_t xfs_inobt_irec_to_allocmask( const struct xfs_inobt_rec_incore *rec) { uint64_t bitmap = 0; uint64_t inodespbit; int nextbit; uint allocbitmap; /* * The holemask has 16-bits for a 64 inode record. Therefore each * holemask bit represents multiple inodes. Create a mask of bits to set * in the allocmask for each holemask bit. */ inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1; /* * Allocated inodes are represented by 0 bits in holemask. Invert the 0 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask * anything beyond the 16 holemask bits since this casts to a larger * type. */ allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1); /* * allocbitmap is the inverted holemask so every set bit represents * allocated inodes. To expand from 16-bit holemask granularity to * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target * bitmap for every holemask bit. */ nextbit = xfs_next_bit(&allocbitmap, 1, 0); while (nextbit != -1) { ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY)); bitmap |= (inodespbit << (nextbit * XFS_INODES_PER_HOLEMASK_BIT)); nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1); } return bitmap; } #if defined(DEBUG) || defined(XFS_WARN) /* * Verify that an in-core inode record has a valid inode count. */ int xfs_inobt_rec_check_count( struct xfs_mount *mp, struct xfs_inobt_rec_incore *rec) { int inocount = 0; int nextbit = 0; uint64_t allocbmap; int wordsz; wordsz = sizeof(allocbmap) / sizeof(unsigned int); allocbmap = xfs_inobt_irec_to_allocmask(rec); nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit); while (nextbit != -1) { inocount++; nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit + 1); } if (inocount != rec->ir_count) return -EFSCORRUPTED; return 0; } #endif /* DEBUG */ static xfs_extlen_t xfs_inobt_max_size( struct xfs_perag *pag) { struct xfs_mount *mp = pag->pag_mount; xfs_agblock_t agblocks = pag->block_count; /* Bail out if we're uninitialized, which can happen in mkfs. */ if (M_IGEO(mp)->inobt_mxr[0] == 0) return 0; /* * The log is permanently allocated, so the space it occupies will * never be available for the kinds of things that would require btree * expansion. We therefore can pretend the space isn't there. */ if (xfs_ag_contains_log(mp, pag->pag_agno)) agblocks -= mp->m_sb.sb_logblocks; return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, (uint64_t)agblocks * mp->m_sb.sb_inopblock / XFS_INODES_PER_CHUNK); } static int xfs_finobt_count_blocks( struct xfs_perag *pag, struct xfs_trans *tp, xfs_extlen_t *tree_blocks) { struct xfs_buf *agbp = NULL; struct xfs_btree_cur *cur; int error; error = xfs_ialloc_read_agi(pag, tp, 0, &agbp); if (error) return error; cur = xfs_finobt_init_cursor(pag, tp, agbp); error = xfs_btree_count_blocks(cur, tree_blocks); xfs_btree_del_cursor(cur, error); xfs_trans_brelse(tp, agbp); return error; } /* Read finobt block count from AGI header. */ static int xfs_finobt_read_blocks( struct xfs_perag *pag, struct xfs_trans *tp, xfs_extlen_t *tree_blocks) { struct xfs_buf *agbp; struct xfs_agi *agi; int error; error = xfs_ialloc_read_agi(pag, tp, 0, &agbp); if (error) return error; agi = agbp->b_addr; *tree_blocks = be32_to_cpu(agi->agi_fblocks); xfs_trans_brelse(tp, agbp); return 0; } /* * Figure out how many blocks to reserve and how many are used by this btree. */ int xfs_finobt_calc_reserves( struct xfs_perag *pag, struct xfs_trans *tp, xfs_extlen_t *ask, xfs_extlen_t *used) { xfs_extlen_t tree_len = 0; int error; if (!xfs_has_finobt(pag->pag_mount)) return 0; if (xfs_has_inobtcounts(pag->pag_mount)) error = xfs_finobt_read_blocks(pag, tp, &tree_len); else error = xfs_finobt_count_blocks(pag, tp, &tree_len); if (error) return error; *ask += xfs_inobt_max_size(pag); *used += tree_len; return 0; } /* Calculate the inobt btree size for some records. */ xfs_extlen_t xfs_iallocbt_calc_size( struct xfs_mount *mp, unsigned long long len) { return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len); } int __init xfs_inobt_init_cur_cache(void) { xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur", xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()), 0, 0, NULL); if (!xfs_inobt_cur_cache) return -ENOMEM; return 0; } void xfs_inobt_destroy_cur_cache(void) { kmem_cache_destroy(xfs_inobt_cur_cache); xfs_inobt_cur_cache = NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1