Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Darrick J. Wong | 4091 | 94.15% | 84 | 67.74% |
David Chinner | 110 | 2.53% | 21 | 16.94% |
Christoph Hellwig | 106 | 2.44% | 12 | 9.68% |
Russell Cattelan | 11 | 0.25% | 1 | 0.81% |
Michal Marek | 8 | 0.18% | 1 | 0.81% |
Gustavo A. R. Silva | 5 | 0.12% | 1 | 0.81% |
Namjae Jeon | 5 | 0.12% | 1 | 0.81% |
Eric Sandeen | 5 | 0.12% | 1 | 0.81% |
Nathan Scott | 2 | 0.05% | 1 | 0.81% |
Brian Foster | 2 | 0.05% | 1 | 0.81% |
Total | 4345 | 124 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2017-2023 Oracle. All Rights Reserved. * Author: Darrick J. Wong <djwong@kernel.org> */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_btree.h" #include "xfs_log_format.h" #include "xfs_trans.h" #include "xfs_inode.h" #include "xfs_icache.h" #include "xfs_alloc.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc.h" #include "xfs_ialloc_btree.h" #include "xfs_refcount_btree.h" #include "xfs_rmap.h" #include "xfs_rmap_btree.h" #include "xfs_log.h" #include "xfs_trans_priv.h" #include "xfs_da_format.h" #include "xfs_da_btree.h" #include "xfs_dir2_priv.h" #include "xfs_dir2.h" #include "xfs_attr.h" #include "xfs_reflink.h" #include "xfs_ag.h" #include "xfs_error.h" #include "xfs_quota.h" #include "xfs_exchmaps.h" #include "xfs_rtbitmap.h" #include "scrub/scrub.h" #include "scrub/common.h" #include "scrub/trace.h" #include "scrub/repair.h" #include "scrub/health.h" /* Common code for the metadata scrubbers. */ /* * Handling operational errors. * * The *_process_error() family of functions are used to process error return * codes from functions called as part of a scrub operation. * * If there's no error, we return true to tell the caller that it's ok * to move on to the next check in its list. * * For non-verifier errors (e.g. ENOMEM) we return false to tell the * caller that something bad happened, and we preserve *error so that * the caller can return the *error up the stack to userspace. * * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting * OFLAG_CORRUPT in sm_flags and the *error is cleared. In other words, * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT, * not via return codes. We return false to tell the caller that * something bad happened. Since the error has been cleared, the caller * will (presumably) return that zero and scrubbing will move on to * whatever's next. * * ftrace can be used to record the precise metadata location and the * approximate code location of the failed operation. */ /* Check for operational errors. */ static bool __xchk_process_error( struct xfs_scrub *sc, xfs_agnumber_t agno, xfs_agblock_t bno, int *error, __u32 errflag, void *ret_ip) { switch (*error) { case 0: return true; case -EDEADLOCK: case -ECHRNG: /* Used to restart an op with deadlock avoidance. */ trace_xchk_deadlock_retry( sc->ip ? sc->ip : XFS_I(file_inode(sc->file)), sc->sm, *error); break; case -ECANCELED: /* * ECANCELED here means that the caller set one of the scrub * outcome flags (corrupt, xfail, xcorrupt) and wants to exit * quickly. Set error to zero and do not continue. */ trace_xchk_op_error(sc, agno, bno, *error, ret_ip); *error = 0; break; case -EFSBADCRC: case -EFSCORRUPTED: /* Note the badness but don't abort. */ sc->sm->sm_flags |= errflag; *error = 0; fallthrough; default: trace_xchk_op_error(sc, agno, bno, *error, ret_ip); break; } return false; } bool xchk_process_error( struct xfs_scrub *sc, xfs_agnumber_t agno, xfs_agblock_t bno, int *error) { return __xchk_process_error(sc, agno, bno, error, XFS_SCRUB_OFLAG_CORRUPT, __return_address); } bool xchk_xref_process_error( struct xfs_scrub *sc, xfs_agnumber_t agno, xfs_agblock_t bno, int *error) { return __xchk_process_error(sc, agno, bno, error, XFS_SCRUB_OFLAG_XFAIL, __return_address); } /* Check for operational errors for a file offset. */ static bool __xchk_fblock_process_error( struct xfs_scrub *sc, int whichfork, xfs_fileoff_t offset, int *error, __u32 errflag, void *ret_ip) { switch (*error) { case 0: return true; case -EDEADLOCK: case -ECHRNG: /* Used to restart an op with deadlock avoidance. */ trace_xchk_deadlock_retry(sc->ip, sc->sm, *error); break; case -ECANCELED: /* * ECANCELED here means that the caller set one of the scrub * outcome flags (corrupt, xfail, xcorrupt) and wants to exit * quickly. Set error to zero and do not continue. */ trace_xchk_file_op_error(sc, whichfork, offset, *error, ret_ip); *error = 0; break; case -EFSBADCRC: case -EFSCORRUPTED: /* Note the badness but don't abort. */ sc->sm->sm_flags |= errflag; *error = 0; fallthrough; default: trace_xchk_file_op_error(sc, whichfork, offset, *error, ret_ip); break; } return false; } bool xchk_fblock_process_error( struct xfs_scrub *sc, int whichfork, xfs_fileoff_t offset, int *error) { return __xchk_fblock_process_error(sc, whichfork, offset, error, XFS_SCRUB_OFLAG_CORRUPT, __return_address); } bool xchk_fblock_xref_process_error( struct xfs_scrub *sc, int whichfork, xfs_fileoff_t offset, int *error) { return __xchk_fblock_process_error(sc, whichfork, offset, error, XFS_SCRUB_OFLAG_XFAIL, __return_address); } /* * Handling scrub corruption/optimization/warning checks. * * The *_set_{corrupt,preen,warning}() family of functions are used to * record the presence of metadata that is incorrect (corrupt), could be * optimized somehow (preen), or should be flagged for administrative * review but is not incorrect (warn). * * ftrace can be used to record the precise metadata location and * approximate code location of the failed check. */ /* Record a block which could be optimized. */ void xchk_block_set_preen( struct xfs_scrub *sc, struct xfs_buf *bp) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address); } /* * Record an inode which could be optimized. The trace data will * include the block given by bp if bp is given; otherwise it will use * the block location of the inode record itself. */ void xchk_ino_set_preen( struct xfs_scrub *sc, xfs_ino_t ino) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; trace_xchk_ino_preen(sc, ino, __return_address); } /* Record something being wrong with the filesystem primary superblock. */ void xchk_set_corrupt( struct xfs_scrub *sc) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; trace_xchk_fs_error(sc, 0, __return_address); } /* Record a corrupt block. */ void xchk_block_set_corrupt( struct xfs_scrub *sc, struct xfs_buf *bp) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address); } #ifdef CONFIG_XFS_QUOTA /* Record a corrupt quota counter. */ void xchk_qcheck_set_corrupt( struct xfs_scrub *sc, unsigned int dqtype, xfs_dqid_t id) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; trace_xchk_qcheck_error(sc, dqtype, id, __return_address); } #endif /* Record a corruption while cross-referencing. */ void xchk_block_xref_set_corrupt( struct xfs_scrub *sc, struct xfs_buf *bp) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address); } /* * Record a corrupt inode. The trace data will include the block given * by bp if bp is given; otherwise it will use the block location of the * inode record itself. */ void xchk_ino_set_corrupt( struct xfs_scrub *sc, xfs_ino_t ino) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; trace_xchk_ino_error(sc, ino, __return_address); } /* Record a corruption while cross-referencing with an inode. */ void xchk_ino_xref_set_corrupt( struct xfs_scrub *sc, xfs_ino_t ino) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; trace_xchk_ino_error(sc, ino, __return_address); } /* Record corruption in a block indexed by a file fork. */ void xchk_fblock_set_corrupt( struct xfs_scrub *sc, int whichfork, xfs_fileoff_t offset) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; trace_xchk_fblock_error(sc, whichfork, offset, __return_address); } /* Record a corruption while cross-referencing a fork block. */ void xchk_fblock_xref_set_corrupt( struct xfs_scrub *sc, int whichfork, xfs_fileoff_t offset) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; trace_xchk_fblock_error(sc, whichfork, offset, __return_address); } /* * Warn about inodes that need administrative review but is not * incorrect. */ void xchk_ino_set_warning( struct xfs_scrub *sc, xfs_ino_t ino) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; trace_xchk_ino_warning(sc, ino, __return_address); } /* Warn about a block indexed by a file fork that needs review. */ void xchk_fblock_set_warning( struct xfs_scrub *sc, int whichfork, xfs_fileoff_t offset) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; trace_xchk_fblock_warning(sc, whichfork, offset, __return_address); } /* Signal an incomplete scrub. */ void xchk_set_incomplete( struct xfs_scrub *sc) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE; trace_xchk_incomplete(sc, __return_address); } /* * rmap scrubbing -- compute the number of blocks with a given owner, * at least according to the reverse mapping data. */ struct xchk_rmap_ownedby_info { const struct xfs_owner_info *oinfo; xfs_filblks_t *blocks; }; STATIC int xchk_count_rmap_ownedby_irec( struct xfs_btree_cur *cur, const struct xfs_rmap_irec *rec, void *priv) { struct xchk_rmap_ownedby_info *sroi = priv; bool irec_attr; bool oinfo_attr; irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK; oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK; if (rec->rm_owner != sroi->oinfo->oi_owner) return 0; if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr) (*sroi->blocks) += rec->rm_blockcount; return 0; } /* * Calculate the number of blocks the rmap thinks are owned by something. * The caller should pass us an rmapbt cursor. */ int xchk_count_rmap_ownedby_ag( struct xfs_scrub *sc, struct xfs_btree_cur *cur, const struct xfs_owner_info *oinfo, xfs_filblks_t *blocks) { struct xchk_rmap_ownedby_info sroi = { .oinfo = oinfo, .blocks = blocks, }; *blocks = 0; return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec, &sroi); } /* * AG scrubbing * * These helpers facilitate locking an allocation group's header * buffers, setting up cursors for all btrees that are present, and * cleaning everything up once we're through. */ /* Decide if we want to return an AG header read failure. */ static inline bool want_ag_read_header_failure( struct xfs_scrub *sc, unsigned int type) { /* Return all AG header read failures when scanning btrees. */ if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF && sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL && sc->sm->sm_type != XFS_SCRUB_TYPE_AGI) return true; /* * If we're scanning a given type of AG header, we only want to * see read failures from that specific header. We'd like the * other headers to cross-check them, but this isn't required. */ if (sc->sm->sm_type == type) return true; return false; } /* * Grab the AG header buffers for the attached perag structure. * * The headers should be released by xchk_ag_free, but as a fail safe we attach * all the buffers we grab to the scrub transaction so they'll all be freed * when we cancel it. */ static inline int xchk_perag_read_headers( struct xfs_scrub *sc, struct xchk_ag *sa) { int error; error = xfs_ialloc_read_agi(sa->pag, sc->tp, 0, &sa->agi_bp); if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI)) return error; error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp); if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF)) return error; return 0; } /* * Grab the AG headers for the attached perag structure and wait for pending * intents to drain. */ int xchk_perag_drain_and_lock( struct xfs_scrub *sc) { struct xchk_ag *sa = &sc->sa; int error = 0; ASSERT(sa->pag != NULL); ASSERT(sa->agi_bp == NULL); ASSERT(sa->agf_bp == NULL); do { if (xchk_should_terminate(sc, &error)) return error; error = xchk_perag_read_headers(sc, sa); if (error) return error; /* * If we've grabbed an inode for scrubbing then we assume that * holding its ILOCK will suffice to coordinate with any intent * chains involving this inode. */ if (sc->ip) return 0; /* * Decide if this AG is quiet enough for all metadata to be * consistent with each other. XFS allows the AG header buffer * locks to cycle across transaction rolls while processing * chains of deferred ops, which means that there could be * other threads in the middle of processing a chain of * deferred ops. For regular operations we are careful about * ordering operations to prevent collisions between threads * (which is why we don't need a per-AG lock), but scrub and * repair have to serialize against chained operations. * * We just locked all the AG headers buffers; now take a look * to see if there are any intents in progress. If there are, * drop the AG headers and wait for the intents to drain. * Since we hold all the AG header locks for the duration of * the scrub, this is the only time we have to sample the * intents counter; any threads increasing it after this point * can't possibly be in the middle of a chain of AG metadata * updates. * * Obviously, this should be slanted against scrub and in favor * of runtime threads. */ if (!xfs_perag_intent_busy(sa->pag)) return 0; if (sa->agf_bp) { xfs_trans_brelse(sc->tp, sa->agf_bp); sa->agf_bp = NULL; } if (sa->agi_bp) { xfs_trans_brelse(sc->tp, sa->agi_bp); sa->agi_bp = NULL; } if (!(sc->flags & XCHK_FSGATES_DRAIN)) return -ECHRNG; error = xfs_perag_intent_drain(sa->pag); if (error == -ERESTARTSYS) error = -EINTR; } while (!error); return error; } /* * Grab the per-AG structure, grab all AG header buffers, and wait until there * aren't any pending intents. Returns -ENOENT if we can't grab the perag * structure. */ int xchk_ag_read_headers( struct xfs_scrub *sc, xfs_agnumber_t agno, struct xchk_ag *sa) { struct xfs_mount *mp = sc->mp; ASSERT(!sa->pag); sa->pag = xfs_perag_get(mp, agno); if (!sa->pag) return -ENOENT; return xchk_perag_drain_and_lock(sc); } /* Release all the AG btree cursors. */ void xchk_ag_btcur_free( struct xchk_ag *sa) { if (sa->refc_cur) xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR); if (sa->rmap_cur) xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR); if (sa->fino_cur) xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR); if (sa->ino_cur) xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR); if (sa->cnt_cur) xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR); if (sa->bno_cur) xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR); sa->refc_cur = NULL; sa->rmap_cur = NULL; sa->fino_cur = NULL; sa->ino_cur = NULL; sa->bno_cur = NULL; sa->cnt_cur = NULL; } /* Initialize all the btree cursors for an AG. */ void xchk_ag_btcur_init( struct xfs_scrub *sc, struct xchk_ag *sa) { struct xfs_mount *mp = sc->mp; if (sa->agf_bp) { /* Set up a bnobt cursor for cross-referencing. */ sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp, sa->pag); xchk_ag_btree_del_cursor_if_sick(sc, &sa->bno_cur, XFS_SCRUB_TYPE_BNOBT); /* Set up a cntbt cursor for cross-referencing. */ sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp, sa->pag); xchk_ag_btree_del_cursor_if_sick(sc, &sa->cnt_cur, XFS_SCRUB_TYPE_CNTBT); /* Set up a rmapbt cursor for cross-referencing. */ if (xfs_has_rmapbt(mp)) { sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp, sa->pag); xchk_ag_btree_del_cursor_if_sick(sc, &sa->rmap_cur, XFS_SCRUB_TYPE_RMAPBT); } /* Set up a refcountbt cursor for cross-referencing. */ if (xfs_has_reflink(mp)) { sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp, sa->agf_bp, sa->pag); xchk_ag_btree_del_cursor_if_sick(sc, &sa->refc_cur, XFS_SCRUB_TYPE_REFCNTBT); } } if (sa->agi_bp) { /* Set up a inobt cursor for cross-referencing. */ sa->ino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp, sa->agi_bp); xchk_ag_btree_del_cursor_if_sick(sc, &sa->ino_cur, XFS_SCRUB_TYPE_INOBT); /* Set up a finobt cursor for cross-referencing. */ if (xfs_has_finobt(mp)) { sa->fino_cur = xfs_finobt_init_cursor(sa->pag, sc->tp, sa->agi_bp); xchk_ag_btree_del_cursor_if_sick(sc, &sa->fino_cur, XFS_SCRUB_TYPE_FINOBT); } } } /* Release the AG header context and btree cursors. */ void xchk_ag_free( struct xfs_scrub *sc, struct xchk_ag *sa) { xchk_ag_btcur_free(sa); xrep_reset_perag_resv(sc); if (sa->agf_bp) { xfs_trans_brelse(sc->tp, sa->agf_bp); sa->agf_bp = NULL; } if (sa->agi_bp) { xfs_trans_brelse(sc->tp, sa->agi_bp); sa->agi_bp = NULL; } if (sa->pag) { xfs_perag_put(sa->pag); sa->pag = NULL; } } /* * For scrub, grab the perag structure, the AGI, and the AGF headers, in that * order. Locking order requires us to get the AGI before the AGF. We use the * transaction to avoid deadlocking on crosslinked metadata buffers; either the * caller passes one in (bmap scrub) or we have to create a transaction * ourselves. Returns ENOENT if the perag struct cannot be grabbed. */ int xchk_ag_init( struct xfs_scrub *sc, xfs_agnumber_t agno, struct xchk_ag *sa) { int error; error = xchk_ag_read_headers(sc, agno, sa); if (error) return error; xchk_ag_btcur_init(sc, sa); return 0; } /* Per-scrubber setup functions */ void xchk_trans_cancel( struct xfs_scrub *sc) { xfs_trans_cancel(sc->tp); sc->tp = NULL; } int xchk_trans_alloc_empty( struct xfs_scrub *sc) { return xfs_trans_alloc_empty(sc->mp, &sc->tp); } /* * Grab an empty transaction so that we can re-grab locked buffers if * one of our btrees turns out to be cyclic. * * If we're going to repair something, we need to ask for the largest possible * log reservation so that we can handle the worst case scenario for metadata * updates while rebuilding a metadata item. We also need to reserve as many * blocks in the head transaction as we think we're going to need to rebuild * the metadata object. */ int xchk_trans_alloc( struct xfs_scrub *sc, uint resblks) { if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate, resblks, 0, 0, &sc->tp); return xchk_trans_alloc_empty(sc); } /* Set us up with a transaction and an empty context. */ int xchk_setup_fs( struct xfs_scrub *sc) { uint resblks; resblks = xrep_calc_ag_resblks(sc); return xchk_trans_alloc(sc, resblks); } /* Set us up with AG headers and btree cursors. */ int xchk_setup_ag_btree( struct xfs_scrub *sc, bool force_log) { struct xfs_mount *mp = sc->mp; int error; /* * If the caller asks us to checkpont the log, do so. This * expensive operation should be performed infrequently and only * as a last resort. Any caller that sets force_log should * document why they need to do so. */ if (force_log) { error = xchk_checkpoint_log(mp); if (error) return error; } error = xchk_setup_fs(sc); if (error) return error; return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa); } /* Push everything out of the log onto disk. */ int xchk_checkpoint_log( struct xfs_mount *mp) { int error; error = xfs_log_force(mp, XFS_LOG_SYNC); if (error) return error; xfs_ail_push_all_sync(mp->m_ail); return 0; } /* Verify that an inode is allocated ondisk, then return its cached inode. */ int xchk_iget( struct xfs_scrub *sc, xfs_ino_t inum, struct xfs_inode **ipp) { ASSERT(sc->tp != NULL); return xfs_iget(sc->mp, sc->tp, inum, XCHK_IGET_FLAGS, 0, ipp); } /* * Try to grab an inode in a manner that avoids races with physical inode * allocation. If we can't, return the locked AGI buffer so that the caller * can single-step the loading process to see where things went wrong. * Callers must have a valid scrub transaction. * * If the iget succeeds, return 0, a NULL AGI, and the inode. * * If the iget fails, return the error, the locked AGI, and a NULL inode. This * can include -EINVAL and -ENOENT for invalid inode numbers or inodes that are * no longer allocated; or any other corruption or runtime error. * * If the AGI read fails, return the error, a NULL AGI, and NULL inode. * * If a fatal signal is pending, return -EINTR, a NULL AGI, and a NULL inode. */ int xchk_iget_agi( struct xfs_scrub *sc, xfs_ino_t inum, struct xfs_buf **agi_bpp, struct xfs_inode **ipp) { struct xfs_mount *mp = sc->mp; struct xfs_trans *tp = sc->tp; struct xfs_perag *pag; int error; ASSERT(sc->tp != NULL); again: *agi_bpp = NULL; *ipp = NULL; error = 0; if (xchk_should_terminate(sc, &error)) return error; /* * Attach the AGI buffer to the scrub transaction to avoid deadlocks * in the iget cache miss path. */ pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); error = xfs_ialloc_read_agi(pag, tp, 0, agi_bpp); xfs_perag_put(pag); if (error) return error; error = xfs_iget(mp, tp, inum, XFS_IGET_NORETRY | XCHK_IGET_FLAGS, 0, ipp); if (error == -EAGAIN) { /* * The inode may be in core but temporarily unavailable and may * require the AGI buffer before it can be returned. Drop the * AGI buffer and retry the lookup. * * Incore lookup will fail with EAGAIN on a cache hit if the * inode is queued to the inactivation list. The inactivation * worker may remove the inode from the unlinked list and hence * needs the AGI. * * Hence xchk_iget_agi() needs to drop the AGI lock on EAGAIN * to allow inodegc to make progress and move the inode to * IRECLAIMABLE state where xfs_iget will be able to return it * again if it can lock the inode. */ xfs_trans_brelse(tp, *agi_bpp); delay(1); goto again; } if (error) return error; /* We got the inode, so we can release the AGI. */ ASSERT(*ipp != NULL); xfs_trans_brelse(tp, *agi_bpp); *agi_bpp = NULL; return 0; } #ifdef CONFIG_XFS_QUOTA /* * Try to attach dquots to this inode if we think we might want to repair it. * Callers must not hold any ILOCKs. If the dquots are broken and cannot be * attached, a quotacheck will be scheduled. */ int xchk_ino_dqattach( struct xfs_scrub *sc) { ASSERT(sc->tp != NULL); ASSERT(sc->ip != NULL); if (!xchk_could_repair(sc)) return 0; return xrep_ino_dqattach(sc); } #endif /* Install an inode that we opened by handle for scrubbing. */ int xchk_install_handle_inode( struct xfs_scrub *sc, struct xfs_inode *ip) { if (VFS_I(ip)->i_generation != sc->sm->sm_gen) { xchk_irele(sc, ip); return -ENOENT; } sc->ip = ip; return 0; } /* * Install an already-referenced inode for scrubbing. Get our own reference to * the inode to make disposal simpler. The inode must not be in I_FREEING or * I_WILL_FREE state! */ int xchk_install_live_inode( struct xfs_scrub *sc, struct xfs_inode *ip) { if (!igrab(VFS_I(ip))) { xchk_ino_set_corrupt(sc, ip->i_ino); return -EFSCORRUPTED; } sc->ip = ip; return 0; } /* * In preparation to scrub metadata structures that hang off of an inode, * grab either the inode referenced in the scrub control structure or the * inode passed in. If the inumber does not reference an allocated inode * record, the function returns ENOENT to end the scrub early. The inode * is not locked. */ int xchk_iget_for_scrubbing( struct xfs_scrub *sc) { struct xfs_imap imap; struct xfs_mount *mp = sc->mp; struct xfs_perag *pag; struct xfs_buf *agi_bp; struct xfs_inode *ip_in = XFS_I(file_inode(sc->file)); struct xfs_inode *ip = NULL; xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, sc->sm->sm_ino); int error; ASSERT(sc->tp == NULL); /* We want to scan the inode we already had opened. */ if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino) return xchk_install_live_inode(sc, ip_in); /* Reject internal metadata files and obviously bad inode numbers. */ if (xfs_internal_inum(mp, sc->sm->sm_ino)) return -ENOENT; if (!xfs_verify_ino(sc->mp, sc->sm->sm_ino)) return -ENOENT; /* Try a safe untrusted iget. */ error = xchk_iget_safe(sc, sc->sm->sm_ino, &ip); if (!error) return xchk_install_handle_inode(sc, ip); if (error == -ENOENT) return error; if (error != -EINVAL) goto out_error; /* * EINVAL with IGET_UNTRUSTED probably means one of several things: * userspace gave us an inode number that doesn't correspond to fs * space; the inode btree lacks a record for this inode; or there is a * record, and it says this inode is free. * * We want to look up this inode in the inobt to distinguish two * scenarios: (1) the inobt says the inode is free, in which case * there's nothing to do; and (2) the inobt says the inode is * allocated, but loading it failed due to corruption. * * Allocate a transaction and grab the AGI to prevent inobt activity * in this AG. Retry the iget in case someone allocated a new inode * after the first iget failed. */ error = xchk_trans_alloc(sc, 0); if (error) goto out_error; error = xchk_iget_agi(sc, sc->sm->sm_ino, &agi_bp, &ip); if (error == 0) { /* Actually got the inode, so install it. */ xchk_trans_cancel(sc); return xchk_install_handle_inode(sc, ip); } if (error == -ENOENT) goto out_gone; if (error != -EINVAL) goto out_cancel; /* Ensure that we have protected against inode allocation/freeing. */ if (agi_bp == NULL) { ASSERT(agi_bp != NULL); error = -ECANCELED; goto out_cancel; } /* * Untrusted iget failed a second time. Let's try an inobt lookup. * If the inobt thinks this the inode neither can exist inside the * filesystem nor is allocated, return ENOENT to signal that the check * can be skipped. * * If the lookup returns corruption, we'll mark this inode corrupt and * exit to userspace. There's little chance of fixing anything until * the inobt is straightened out, but there's nothing we can do here. * * If the lookup encounters any other error, exit to userspace. * * If the lookup succeeds, something else must be very wrong in the fs * such that setting up the incore inode failed in some strange way. * Treat those as corruptions. */ pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sc->sm->sm_ino)); if (!pag) { error = -EFSCORRUPTED; goto out_cancel; } error = xfs_imap(pag, sc->tp, sc->sm->sm_ino, &imap, XFS_IGET_UNTRUSTED); xfs_perag_put(pag); if (error == -EINVAL || error == -ENOENT) goto out_gone; if (!error) error = -EFSCORRUPTED; out_cancel: xchk_trans_cancel(sc); out_error: trace_xchk_op_error(sc, agno, XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino), error, __return_address); return error; out_gone: /* The file is gone, so there's nothing to check. */ xchk_trans_cancel(sc); return -ENOENT; } /* Release an inode, possibly dropping it in the process. */ void xchk_irele( struct xfs_scrub *sc, struct xfs_inode *ip) { if (sc->tp) { /* * If we are in a transaction, we /cannot/ drop the inode * ourselves, because the VFS will trigger writeback, which * can require a transaction. Clear DONTCACHE to force the * inode to the LRU, where someone else can take care of * dropping it. * * Note that when we grabbed our reference to the inode, it * could have had an active ref and DONTCACHE set if a sysadmin * is trying to coerce a change in file access mode. icache * hits do not clear DONTCACHE, so we must do it here. */ spin_lock(&VFS_I(ip)->i_lock); VFS_I(ip)->i_state &= ~I_DONTCACHE; spin_unlock(&VFS_I(ip)->i_lock); } xfs_irele(ip); } /* * Set us up to scrub metadata mapped by a file's fork. Callers must not use * this to operate on user-accessible regular file data because the MMAPLOCK is * not taken. */ int xchk_setup_inode_contents( struct xfs_scrub *sc, unsigned int resblks) { int error; error = xchk_iget_for_scrubbing(sc); if (error) return error; /* Lock the inode so the VFS cannot touch this file. */ xchk_ilock(sc, XFS_IOLOCK_EXCL); error = xchk_trans_alloc(sc, resblks); if (error) goto out; error = xchk_ino_dqattach(sc); if (error) goto out; xchk_ilock(sc, XFS_ILOCK_EXCL); out: /* scrub teardown will unlock and release the inode for us */ return error; } void xchk_ilock( struct xfs_scrub *sc, unsigned int ilock_flags) { xfs_ilock(sc->ip, ilock_flags); sc->ilock_flags |= ilock_flags; } bool xchk_ilock_nowait( struct xfs_scrub *sc, unsigned int ilock_flags) { if (xfs_ilock_nowait(sc->ip, ilock_flags)) { sc->ilock_flags |= ilock_flags; return true; } return false; } void xchk_iunlock( struct xfs_scrub *sc, unsigned int ilock_flags) { sc->ilock_flags &= ~ilock_flags; xfs_iunlock(sc->ip, ilock_flags); } /* * Predicate that decides if we need to evaluate the cross-reference check. * If there was an error accessing the cross-reference btree, just delete * the cursor and skip the check. */ bool xchk_should_check_xref( struct xfs_scrub *sc, int *error, struct xfs_btree_cur **curpp) { /* No point in xref if we already know we're corrupt. */ if (xchk_skip_xref(sc->sm)) return false; if (*error == 0) return true; if (curpp) { /* If we've already given up on xref, just bail out. */ if (!*curpp) return false; /* xref error, delete cursor and bail out. */ xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR); *curpp = NULL; } sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL; trace_xchk_xref_error(sc, *error, __return_address); /* * Errors encountered during cross-referencing with another * data structure should not cause this scrubber to abort. */ *error = 0; return false; } /* Run the structure verifiers on in-memory buffers to detect bad memory. */ void xchk_buffer_recheck( struct xfs_scrub *sc, struct xfs_buf *bp) { xfs_failaddr_t fa; if (bp->b_ops == NULL) { xchk_block_set_corrupt(sc, bp); return; } if (bp->b_ops->verify_struct == NULL) { xchk_set_incomplete(sc); return; } fa = bp->b_ops->verify_struct(bp); if (!fa) return; sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa); } static inline int xchk_metadata_inode_subtype( struct xfs_scrub *sc, unsigned int scrub_type) { struct xfs_scrub_subord *sub; int error; sub = xchk_scrub_create_subord(sc, scrub_type); error = sub->sc.ops->scrub(&sub->sc); xchk_scrub_free_subord(sub); return error; } /* * Scrub the attr/data forks of a metadata inode. The metadata inode must be * pointed to by sc->ip and the ILOCK must be held. */ int xchk_metadata_inode_forks( struct xfs_scrub *sc) { bool shared; int error; if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT) return 0; /* Check the inode record. */ error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE); if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)) return error; /* Metadata inodes don't live on the rt device. */ if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) { xchk_ino_set_corrupt(sc, sc->ip->i_ino); return 0; } /* They should never participate in reflink. */ if (xfs_is_reflink_inode(sc->ip)) { xchk_ino_set_corrupt(sc, sc->ip->i_ino); return 0; } /* They also should never have extended attributes. */ if (xfs_inode_hasattr(sc->ip)) { xchk_ino_set_corrupt(sc, sc->ip->i_ino); return 0; } /* Invoke the data fork scrubber. */ error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD); if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)) return error; /* Look for incorrect shared blocks. */ if (xfs_has_reflink(sc->mp)) { error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip, &shared); if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0, &error)) return error; if (shared) xchk_ino_set_corrupt(sc, sc->ip->i_ino); } return 0; } /* * Enable filesystem hooks (i.e. runtime code patching) before starting a scrub * operation. Callers must not hold any locks that intersect with the CPU * hotplug lock (e.g. writeback locks) because code patching must halt the CPUs * to change kernel code. */ void xchk_fsgates_enable( struct xfs_scrub *sc, unsigned int scrub_fsgates) { ASSERT(!(scrub_fsgates & ~XCHK_FSGATES_ALL)); ASSERT(!(sc->flags & scrub_fsgates)); trace_xchk_fsgates_enable(sc, scrub_fsgates); if (scrub_fsgates & XCHK_FSGATES_DRAIN) xfs_drain_wait_enable(); if (scrub_fsgates & XCHK_FSGATES_QUOTA) xfs_dqtrx_hook_enable(); if (scrub_fsgates & XCHK_FSGATES_DIRENTS) xfs_dir_hook_enable(); if (scrub_fsgates & XCHK_FSGATES_RMAP) xfs_rmap_hook_enable(); sc->flags |= scrub_fsgates; } /* * Decide if this is this a cached inode that's also allocated. The caller * must hold a reference to an AG and the AGI buffer lock to prevent inodes * from being allocated or freed. * * Look up an inode by number in the given file system. If the inode number * is invalid, return -EINVAL. If the inode is not in cache, return -ENODATA. * If the inode is being reclaimed, return -ENODATA because we know the inode * cache cannot be updating the ondisk metadata. * * Otherwise, the incore inode is the one we want, and it is either live, * somewhere in the inactivation machinery, or reclaimable. The inode is * allocated if i_mode is nonzero. In all three cases, the cached inode will * be more up to date than the ondisk inode buffer, so we must use the incore * i_mode. */ int xchk_inode_is_allocated( struct xfs_scrub *sc, xfs_agino_t agino, bool *inuse) { struct xfs_mount *mp = sc->mp; struct xfs_perag *pag = sc->sa.pag; xfs_ino_t ino; struct xfs_inode *ip; int error; /* caller must hold perag reference */ if (pag == NULL) { ASSERT(pag != NULL); return -EINVAL; } /* caller must have AGI buffer */ if (sc->sa.agi_bp == NULL) { ASSERT(sc->sa.agi_bp != NULL); return -EINVAL; } /* reject inode numbers outside existing AGs */ ino = XFS_AGINO_TO_INO(sc->mp, pag->pag_agno, agino); if (!xfs_verify_ino(mp, ino)) return -EINVAL; error = -ENODATA; rcu_read_lock(); ip = radix_tree_lookup(&pag->pag_ici_root, agino); if (!ip) { /* cache miss */ goto out_rcu; } /* * If the inode number doesn't match, the incore inode got reused * during an RCU grace period and the radix tree hasn't been updated. * This isn't the inode we want. */ spin_lock(&ip->i_flags_lock); if (ip->i_ino != ino) goto out_skip; trace_xchk_inode_is_allocated(ip); /* * We have an incore inode that matches the inode we want, and the * caller holds the perag structure and the AGI buffer. Let's check * our assumptions below: */ #ifdef DEBUG /* * (1) If the incore inode is live (i.e. referenced from the dcache), * it will not be INEW, nor will it be in the inactivation or reclaim * machinery. The ondisk inode had better be allocated. This is the * most trivial case. */ if (!(ip->i_flags & (XFS_NEED_INACTIVE | XFS_INEW | XFS_IRECLAIMABLE | XFS_INACTIVATING))) { /* live inode */ ASSERT(VFS_I(ip)->i_mode != 0); } /* * If the incore inode is INEW, there are several possibilities: * * (2) For a file that is being created, note that we allocate the * ondisk inode before allocating, initializing, and adding the incore * inode to the radix tree. * * (3) If the incore inode is being recycled, the inode has to be * allocated because we don't allow freed inodes to be recycled. * Recycling doesn't touch i_mode. */ if (ip->i_flags & XFS_INEW) { /* created on disk already or recycling */ ASSERT(VFS_I(ip)->i_mode != 0); } /* * (4) If the inode is queued for inactivation (NEED_INACTIVE) but * inactivation has not started (!INACTIVATING), it is still allocated. */ if ((ip->i_flags & XFS_NEED_INACTIVE) && !(ip->i_flags & XFS_INACTIVATING)) { /* definitely before difree */ ASSERT(VFS_I(ip)->i_mode != 0); } #endif /* * If the incore inode is undergoing inactivation (INACTIVATING), there * are two possibilities: * * (5) It is before the point where it would get freed ondisk, in which * case i_mode is still nonzero. * * (6) It has already been freed, in which case i_mode is zero. * * We don't take the ILOCK here, but difree and dialloc update the AGI, * and we've taken the AGI buffer lock, which prevents that from * happening. */ /* * (7) Inodes undergoing inactivation (INACTIVATING) or queued for * reclaim (IRECLAIMABLE) could be allocated or free. i_mode still * reflects the ondisk state. */ /* * (8) If the inode is in IFLUSHING, it's safe to query i_mode because * the flush code uses i_mode to format the ondisk inode. */ /* * (9) If the inode is in IRECLAIM and was reachable via the radix * tree, it still has the same i_mode as it did before it entered * reclaim. The inode object is still alive because we hold the RCU * read lock. */ *inuse = VFS_I(ip)->i_mode != 0; error = 0; out_skip: spin_unlock(&ip->i_flags_lock); out_rcu: rcu_read_unlock(); return error; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1