Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Darrick J. Wong | 5625 | 97.37% | 76 | 73.79% |
David Chinner | 74 | 1.28% | 12 | 11.65% |
Christoph Hellwig | 51 | 0.88% | 9 | 8.74% |
Michal Marek | 8 | 0.14% | 1 | 0.97% |
Namjae Jeon | 6 | 0.10% | 1 | 0.97% |
Eric Sandeen | 5 | 0.09% | 1 | 0.97% |
Hsiang Kao | 4 | 0.07% | 1 | 0.97% |
Brian Foster | 2 | 0.03% | 1 | 0.97% |
Russell Cattelan | 2 | 0.03% | 1 | 0.97% |
Total | 5777 | 103 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2018-2024 Oracle. All Rights Reserved. * Author: Darrick J. Wong <djwong@kernel.org> */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_btree.h" #include "xfs_btree_staging.h" #include "xfs_buf_mem.h" #include "xfs_btree_mem.h" #include "xfs_bit.h" #include "xfs_log_format.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_alloc.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc.h" #include "xfs_ialloc_btree.h" #include "xfs_rmap.h" #include "xfs_rmap_btree.h" #include "xfs_inode.h" #include "xfs_icache.h" #include "xfs_bmap.h" #include "xfs_bmap_btree.h" #include "xfs_refcount.h" #include "xfs_refcount_btree.h" #include "xfs_ag.h" #include "scrub/xfs_scrub.h" #include "scrub/scrub.h" #include "scrub/common.h" #include "scrub/btree.h" #include "scrub/trace.h" #include "scrub/repair.h" #include "scrub/bitmap.h" #include "scrub/agb_bitmap.h" #include "scrub/xfile.h" #include "scrub/xfarray.h" #include "scrub/iscan.h" #include "scrub/newbt.h" #include "scrub/reap.h" /* * Reverse Mapping Btree Repair * ============================ * * This is the most involved of all the AG space btree rebuilds. Everywhere * else in XFS we lock inodes and then AG data structures, but generating the * list of rmap records requires that we be able to scan both block mapping * btrees of every inode in the filesystem to see if it owns any extents in * this AG. We can't tolerate any inode updates while we do this, so we * freeze the filesystem to lock everyone else out, and grant ourselves * special privileges to run transactions with regular background reclamation * turned off. * * We also have to be very careful not to allow inode reclaim to start a * transaction because all transactions (other than our own) will block. * Deferred inode inactivation helps us out there. * * I) Reverse mappings for all non-space metadata and file data are collected * according to the following algorithm: * * 1. For each fork of each inode: * 1.1. Create a bitmap BMBIT to track bmbt blocks if necessary. * 1.2. If the incore extent map isn't loaded, walk the bmbt to accumulate * bmaps into rmap records (see 1.1.4). Set bits in BMBIT for each btree * block. * 1.3. If the incore extent map is loaded but the fork is in btree format, * just visit the bmbt blocks to set the corresponding BMBIT areas. * 1.4. From the incore extent map, accumulate each bmap that falls into our * target AG. Remember, multiple bmap records can map to a single rmap * record, so we cannot simply emit rmap records 1:1. * 1.5. Emit rmap records for each extent in BMBIT and free it. * 2. Create bitmaps INOBIT and ICHUNKBIT. * 3. For each record in the inobt, set the corresponding areas in ICHUNKBIT, * and set bits in INOBIT for each btree block. If the inobt has no records * at all, we must be careful to record its root in INOBIT. * 4. For each block in the finobt, set the corresponding INOBIT area. * 5. Emit rmap records for each extent in INOBIT and ICHUNKBIT and free them. * 6. Create bitmaps REFCBIT and COWBIT. * 7. For each CoW staging extent in the refcountbt, set the corresponding * areas in COWBIT. * 8. For each block in the refcountbt, set the corresponding REFCBIT area. * 9. Emit rmap records for each extent in REFCBIT and COWBIT and free them. * A. Emit rmap for the AG headers. * B. Emit rmap for the log, if there is one. * * II) The rmapbt shape and space metadata rmaps are computed as follows: * * 1. Count the rmaps collected in the previous step. (= NR) * 2. Estimate the number of rmapbt blocks needed to store NR records. (= RMB) * 3. Reserve RMB blocks through the newbt using the allocator in normap mode. * 4. Create bitmap AGBIT. * 5. For each reservation in the newbt, set the corresponding areas in AGBIT. * 6. For each block in the AGFL, bnobt, and cntbt, set the bits in AGBIT. * 7. Count the extents in AGBIT. (= AGNR) * 8. Estimate the number of rmapbt blocks needed for NR + AGNR rmaps. (= RMB') * 9. If RMB' >= RMB, reserve RMB' - RMB more newbt blocks, set RMB = RMB', * and clear AGBIT. Go to step 5. * A. Emit rmaps for each extent in AGBIT. * * III) The rmapbt is constructed and set in place as follows: * * 1. Sort the rmap records. * 2. Bulk load the rmaps. * * IV) Reap the old btree blocks. * * 1. Create a bitmap OLDRMBIT. * 2. For each gap in the new rmapbt, set the corresponding areas of OLDRMBIT. * 3. For each extent in the bnobt, clear the corresponding parts of OLDRMBIT. * 4. Reap the extents corresponding to the set areas in OLDRMBIT. These are * the parts of the AG that the rmap didn't find during its scan of the * primary metadata and aren't known to be in the free space, which implies * that they were the old rmapbt blocks. * 5. Commit. * * We use the 'xrep_rmap' prefix for all the rmap functions. */ /* Context for collecting rmaps */ struct xrep_rmap { /* new rmapbt information */ struct xrep_newbt new_btree; /* lock for the xfbtree and xfile */ struct mutex lock; /* rmap records generated from primary metadata */ struct xfbtree rmap_btree; struct xfs_scrub *sc; /* in-memory btree cursor for the xfs_btree_bload iteration */ struct xfs_btree_cur *mcur; /* Hooks into rmap update code. */ struct xfs_rmap_hook rhook; /* inode scan cursor */ struct xchk_iscan iscan; /* Number of non-freespace records found. */ unsigned long long nr_records; /* bnobt/cntbt contribution to btreeblks */ xfs_agblock_t freesp_btblocks; /* old agf_rmap_blocks counter */ unsigned int old_rmapbt_fsbcount; }; /* Set us up to repair reverse mapping btrees. */ int xrep_setup_ag_rmapbt( struct xfs_scrub *sc) { struct xrep_rmap *rr; char *descr; int error; xchk_fsgates_enable(sc, XCHK_FSGATES_RMAP); descr = xchk_xfile_ag_descr(sc, "reverse mapping records"); error = xrep_setup_xfbtree(sc, descr); kfree(descr); if (error) return error; rr = kzalloc(sizeof(struct xrep_rmap), XCHK_GFP_FLAGS); if (!rr) return -ENOMEM; rr->sc = sc; sc->buf = rr; return 0; } /* Make sure there's nothing funny about this mapping. */ STATIC int xrep_rmap_check_mapping( struct xfs_scrub *sc, const struct xfs_rmap_irec *rec) { enum xbtree_recpacking outcome; int error; if (xfs_rmap_check_irec(sc->sa.pag, rec) != NULL) return -EFSCORRUPTED; /* Make sure this isn't free space. */ error = xfs_alloc_has_records(sc->sa.bno_cur, rec->rm_startblock, rec->rm_blockcount, &outcome); if (error) return error; if (outcome != XBTREE_RECPACKING_EMPTY) return -EFSCORRUPTED; return 0; } /* Store a reverse-mapping record. */ static inline int xrep_rmap_stash( struct xrep_rmap *rr, xfs_agblock_t startblock, xfs_extlen_t blockcount, uint64_t owner, uint64_t offset, unsigned int flags) { struct xfs_rmap_irec rmap = { .rm_startblock = startblock, .rm_blockcount = blockcount, .rm_owner = owner, .rm_offset = offset, .rm_flags = flags, }; struct xfs_scrub *sc = rr->sc; struct xfs_btree_cur *mcur; int error = 0; if (xchk_should_terminate(sc, &error)) return error; if (xchk_iscan_aborted(&rr->iscan)) return -EFSCORRUPTED; trace_xrep_rmap_found(sc->mp, sc->sa.pag->pag_agno, &rmap); mutex_lock(&rr->lock); mcur = xfs_rmapbt_mem_cursor(sc->sa.pag, sc->tp, &rr->rmap_btree); error = xfs_rmap_map_raw(mcur, &rmap); xfs_btree_del_cursor(mcur, error); if (error) goto out_cancel; error = xfbtree_trans_commit(&rr->rmap_btree, sc->tp); if (error) goto out_abort; mutex_unlock(&rr->lock); return 0; out_cancel: xfbtree_trans_cancel(&rr->rmap_btree, sc->tp); out_abort: xchk_iscan_abort(&rr->iscan); mutex_unlock(&rr->lock); return error; } struct xrep_rmap_stash_run { struct xrep_rmap *rr; uint64_t owner; unsigned int rmap_flags; }; static int xrep_rmap_stash_run( uint32_t start, uint32_t len, void *priv) { struct xrep_rmap_stash_run *rsr = priv; struct xrep_rmap *rr = rsr->rr; return xrep_rmap_stash(rr, start, len, rsr->owner, 0, rsr->rmap_flags); } /* * Emit rmaps for every extent of bits set in the bitmap. Caller must ensure * that the ranges are in units of FS blocks. */ STATIC int xrep_rmap_stash_bitmap( struct xrep_rmap *rr, struct xagb_bitmap *bitmap, const struct xfs_owner_info *oinfo) { struct xrep_rmap_stash_run rsr = { .rr = rr, .owner = oinfo->oi_owner, .rmap_flags = 0, }; if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK) rsr.rmap_flags |= XFS_RMAP_ATTR_FORK; if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK) rsr.rmap_flags |= XFS_RMAP_BMBT_BLOCK; return xagb_bitmap_walk(bitmap, xrep_rmap_stash_run, &rsr); } /* Section (I): Finding all file and bmbt extents. */ /* Context for accumulating rmaps for an inode fork. */ struct xrep_rmap_ifork { /* * Accumulate rmap data here to turn multiple adjacent bmaps into a * single rmap. */ struct xfs_rmap_irec accum; /* Bitmap of bmbt blocks in this AG. */ struct xagb_bitmap bmbt_blocks; struct xrep_rmap *rr; /* Which inode fork? */ int whichfork; }; /* Stash an rmap that we accumulated while walking an inode fork. */ STATIC int xrep_rmap_stash_accumulated( struct xrep_rmap_ifork *rf) { if (rf->accum.rm_blockcount == 0) return 0; return xrep_rmap_stash(rf->rr, rf->accum.rm_startblock, rf->accum.rm_blockcount, rf->accum.rm_owner, rf->accum.rm_offset, rf->accum.rm_flags); } /* Accumulate a bmbt record. */ STATIC int xrep_rmap_visit_bmbt( struct xfs_btree_cur *cur, struct xfs_bmbt_irec *rec, void *priv) { struct xrep_rmap_ifork *rf = priv; struct xfs_mount *mp = rf->rr->sc->mp; struct xfs_rmap_irec *accum = &rf->accum; xfs_agblock_t agbno; unsigned int rmap_flags = 0; int error; if (XFS_FSB_TO_AGNO(mp, rec->br_startblock) != rf->rr->sc->sa.pag->pag_agno) return 0; agbno = XFS_FSB_TO_AGBNO(mp, rec->br_startblock); if (rf->whichfork == XFS_ATTR_FORK) rmap_flags |= XFS_RMAP_ATTR_FORK; if (rec->br_state == XFS_EXT_UNWRITTEN) rmap_flags |= XFS_RMAP_UNWRITTEN; /* If this bmap is adjacent to the previous one, just add it. */ if (accum->rm_blockcount > 0 && rec->br_startoff == accum->rm_offset + accum->rm_blockcount && agbno == accum->rm_startblock + accum->rm_blockcount && rmap_flags == accum->rm_flags) { accum->rm_blockcount += rec->br_blockcount; return 0; } /* Otherwise stash the old rmap and start accumulating a new one. */ error = xrep_rmap_stash_accumulated(rf); if (error) return error; accum->rm_startblock = agbno; accum->rm_blockcount = rec->br_blockcount; accum->rm_offset = rec->br_startoff; accum->rm_flags = rmap_flags; return 0; } /* Add a btree block to the bitmap. */ STATIC int xrep_rmap_visit_iroot_btree_block( struct xfs_btree_cur *cur, int level, void *priv) { struct xrep_rmap_ifork *rf = priv; struct xfs_buf *bp; xfs_fsblock_t fsbno; xfs_agblock_t agbno; xfs_btree_get_block(cur, level, &bp); if (!bp) return 0; fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp)); if (XFS_FSB_TO_AGNO(cur->bc_mp, fsbno) != rf->rr->sc->sa.pag->pag_agno) return 0; agbno = XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno); return xagb_bitmap_set(&rf->bmbt_blocks, agbno, 1); } /* * Iterate a metadata btree rooted in an inode to collect rmap records for * anything in this fork that matches the AG. */ STATIC int xrep_rmap_scan_iroot_btree( struct xrep_rmap_ifork *rf, struct xfs_btree_cur *cur) { struct xfs_owner_info oinfo; struct xrep_rmap *rr = rf->rr; int error; xagb_bitmap_init(&rf->bmbt_blocks); /* Record all the blocks in the btree itself. */ error = xfs_btree_visit_blocks(cur, xrep_rmap_visit_iroot_btree_block, XFS_BTREE_VISIT_ALL, rf); if (error) goto out; /* Emit rmaps for the btree blocks. */ xfs_rmap_ino_bmbt_owner(&oinfo, rf->accum.rm_owner, rf->whichfork); error = xrep_rmap_stash_bitmap(rr, &rf->bmbt_blocks, &oinfo); if (error) goto out; /* Stash any remaining accumulated rmaps. */ error = xrep_rmap_stash_accumulated(rf); out: xagb_bitmap_destroy(&rf->bmbt_blocks); return error; } /* * Iterate the block mapping btree to collect rmap records for anything in this * fork that matches the AG. Sets @mappings_done to true if we've scanned the * block mappings in this fork. */ STATIC int xrep_rmap_scan_bmbt( struct xrep_rmap_ifork *rf, struct xfs_inode *ip, bool *mappings_done) { struct xrep_rmap *rr = rf->rr; struct xfs_btree_cur *cur; struct xfs_ifork *ifp; int error; *mappings_done = false; ifp = xfs_ifork_ptr(ip, rf->whichfork); cur = xfs_bmbt_init_cursor(rr->sc->mp, rr->sc->tp, ip, rf->whichfork); if (!xfs_ifork_is_realtime(ip, rf->whichfork) && xfs_need_iread_extents(ifp)) { /* * If the incore extent cache isn't loaded, scan the bmbt for * mapping records. This avoids loading the incore extent * tree, which will increase memory pressure at a time when * we're trying to run as quickly as we possibly can. Ignore * realtime extents. */ error = xfs_bmap_query_all(cur, xrep_rmap_visit_bmbt, rf); if (error) goto out_cur; *mappings_done = true; } /* Scan for the bmbt blocks, which always live on the data device. */ error = xrep_rmap_scan_iroot_btree(rf, cur); out_cur: xfs_btree_del_cursor(cur, error); return error; } /* * Iterate the in-core extent cache to collect rmap records for anything in * this fork that matches the AG. */ STATIC int xrep_rmap_scan_iext( struct xrep_rmap_ifork *rf, struct xfs_ifork *ifp) { struct xfs_bmbt_irec rec; struct xfs_iext_cursor icur; int error; for_each_xfs_iext(ifp, &icur, &rec) { if (isnullstartblock(rec.br_startblock)) continue; error = xrep_rmap_visit_bmbt(NULL, &rec, rf); if (error) return error; } return xrep_rmap_stash_accumulated(rf); } /* Find all the extents from a given AG in an inode fork. */ STATIC int xrep_rmap_scan_ifork( struct xrep_rmap *rr, struct xfs_inode *ip, int whichfork) { struct xrep_rmap_ifork rf = { .accum = { .rm_owner = ip->i_ino, }, .rr = rr, .whichfork = whichfork, }; struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); int error = 0; if (!ifp) return 0; if (ifp->if_format == XFS_DINODE_FMT_BTREE) { bool mappings_done; /* * Scan the bmap btree for data device mappings. This includes * the btree blocks themselves, even if this is a realtime * file. */ error = xrep_rmap_scan_bmbt(&rf, ip, &mappings_done); if (error || mappings_done) return error; } else if (ifp->if_format != XFS_DINODE_FMT_EXTENTS) { return 0; } /* Scan incore extent cache if this isn't a realtime file. */ if (xfs_ifork_is_realtime(ip, whichfork)) return 0; return xrep_rmap_scan_iext(&rf, ifp); } /* * Take ILOCK on a file that we want to scan. * * Select ILOCK_EXCL if the file has an unloaded data bmbt or has an unloaded * attr bmbt. Otherwise, take ILOCK_SHARED. */ static inline unsigned int xrep_rmap_scan_ilock( struct xfs_inode *ip) { uint lock_mode = XFS_ILOCK_SHARED; if (xfs_need_iread_extents(&ip->i_df)) { lock_mode = XFS_ILOCK_EXCL; goto lock; } if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) lock_mode = XFS_ILOCK_EXCL; lock: xfs_ilock(ip, lock_mode); return lock_mode; } /* Record reverse mappings for a file. */ STATIC int xrep_rmap_scan_inode( struct xrep_rmap *rr, struct xfs_inode *ip) { unsigned int lock_mode = xrep_rmap_scan_ilock(ip); int error; /* Check the data fork. */ error = xrep_rmap_scan_ifork(rr, ip, XFS_DATA_FORK); if (error) goto out_unlock; /* Check the attr fork. */ error = xrep_rmap_scan_ifork(rr, ip, XFS_ATTR_FORK); if (error) goto out_unlock; /* COW fork extents are "owned" by the refcount btree. */ xchk_iscan_mark_visited(&rr->iscan, ip); out_unlock: xfs_iunlock(ip, lock_mode); return error; } /* Section (I): Find all AG metadata extents except for free space metadata. */ struct xrep_rmap_inodes { struct xrep_rmap *rr; struct xagb_bitmap inobt_blocks; /* INOBIT */ struct xagb_bitmap ichunk_blocks; /* ICHUNKBIT */ }; /* Record inode btree rmaps. */ STATIC int xrep_rmap_walk_inobt( struct xfs_btree_cur *cur, const union xfs_btree_rec *rec, void *priv) { struct xfs_inobt_rec_incore irec; struct xrep_rmap_inodes *ri = priv; struct xfs_mount *mp = cur->bc_mp; xfs_agblock_t agbno; xfs_extlen_t aglen; xfs_agino_t agino; xfs_agino_t iperhole; unsigned int i; int error; /* Record the inobt blocks. */ error = xagb_bitmap_set_btcur_path(&ri->inobt_blocks, cur); if (error) return error; xfs_inobt_btrec_to_irec(mp, rec, &irec); if (xfs_inobt_check_irec(cur->bc_ag.pag, &irec) != NULL) return -EFSCORRUPTED; agino = irec.ir_startino; /* Record a non-sparse inode chunk. */ if (!xfs_inobt_issparse(irec.ir_holemask)) { agbno = XFS_AGINO_TO_AGBNO(mp, agino); aglen = max_t(xfs_extlen_t, 1, XFS_INODES_PER_CHUNK / mp->m_sb.sb_inopblock); return xagb_bitmap_set(&ri->ichunk_blocks, agbno, aglen); } /* Iterate each chunk. */ iperhole = max_t(xfs_agino_t, mp->m_sb.sb_inopblock, XFS_INODES_PER_HOLEMASK_BIT); aglen = iperhole / mp->m_sb.sb_inopblock; for (i = 0, agino = irec.ir_startino; i < XFS_INOBT_HOLEMASK_BITS; i += iperhole / XFS_INODES_PER_HOLEMASK_BIT, agino += iperhole) { /* Skip holes. */ if (irec.ir_holemask & (1 << i)) continue; /* Record the inode chunk otherwise. */ agbno = XFS_AGINO_TO_AGBNO(mp, agino); error = xagb_bitmap_set(&ri->ichunk_blocks, agbno, aglen); if (error) return error; } return 0; } /* Collect rmaps for the blocks containing inode btrees and the inode chunks. */ STATIC int xrep_rmap_find_inode_rmaps( struct xrep_rmap *rr) { struct xrep_rmap_inodes ri = { .rr = rr, }; struct xfs_scrub *sc = rr->sc; int error; xagb_bitmap_init(&ri.inobt_blocks); xagb_bitmap_init(&ri.ichunk_blocks); /* * Iterate every record in the inobt so we can capture all the inode * chunks and the blocks in the inobt itself. */ error = xfs_btree_query_all(sc->sa.ino_cur, xrep_rmap_walk_inobt, &ri); if (error) goto out_bitmap; /* * Note that if there are zero records in the inobt then query_all does * nothing and we have to account the empty inobt root manually. */ if (xagb_bitmap_empty(&ri.ichunk_blocks)) { struct xfs_agi *agi = sc->sa.agi_bp->b_addr; error = xagb_bitmap_set(&ri.inobt_blocks, be32_to_cpu(agi->agi_root), 1); if (error) goto out_bitmap; } /* Scan the finobt too. */ if (xfs_has_finobt(sc->mp)) { error = xagb_bitmap_set_btblocks(&ri.inobt_blocks, sc->sa.fino_cur); if (error) goto out_bitmap; } /* Generate rmaps for everything. */ error = xrep_rmap_stash_bitmap(rr, &ri.inobt_blocks, &XFS_RMAP_OINFO_INOBT); if (error) goto out_bitmap; error = xrep_rmap_stash_bitmap(rr, &ri.ichunk_blocks, &XFS_RMAP_OINFO_INODES); out_bitmap: xagb_bitmap_destroy(&ri.inobt_blocks); xagb_bitmap_destroy(&ri.ichunk_blocks); return error; } /* Record a CoW staging extent. */ STATIC int xrep_rmap_walk_cowblocks( struct xfs_btree_cur *cur, const struct xfs_refcount_irec *irec, void *priv) { struct xagb_bitmap *bitmap = priv; if (!xfs_refcount_check_domain(irec) || irec->rc_domain != XFS_REFC_DOMAIN_COW) return -EFSCORRUPTED; return xagb_bitmap_set(bitmap, irec->rc_startblock, irec->rc_blockcount); } /* * Collect rmaps for the blocks containing the refcount btree, and all CoW * staging extents. */ STATIC int xrep_rmap_find_refcount_rmaps( struct xrep_rmap *rr) { struct xagb_bitmap refcountbt_blocks; /* REFCBIT */ struct xagb_bitmap cow_blocks; /* COWBIT */ struct xfs_refcount_irec low = { .rc_startblock = 0, .rc_domain = XFS_REFC_DOMAIN_COW, }; struct xfs_refcount_irec high = { .rc_startblock = -1U, .rc_domain = XFS_REFC_DOMAIN_COW, }; struct xfs_scrub *sc = rr->sc; int error; if (!xfs_has_reflink(sc->mp)) return 0; xagb_bitmap_init(&refcountbt_blocks); xagb_bitmap_init(&cow_blocks); /* refcountbt */ error = xagb_bitmap_set_btblocks(&refcountbt_blocks, sc->sa.refc_cur); if (error) goto out_bitmap; /* Collect rmaps for CoW staging extents. */ error = xfs_refcount_query_range(sc->sa.refc_cur, &low, &high, xrep_rmap_walk_cowblocks, &cow_blocks); if (error) goto out_bitmap; /* Generate rmaps for everything. */ error = xrep_rmap_stash_bitmap(rr, &cow_blocks, &XFS_RMAP_OINFO_COW); if (error) goto out_bitmap; error = xrep_rmap_stash_bitmap(rr, &refcountbt_blocks, &XFS_RMAP_OINFO_REFC); out_bitmap: xagb_bitmap_destroy(&cow_blocks); xagb_bitmap_destroy(&refcountbt_blocks); return error; } /* Generate rmaps for the AG headers (AGI/AGF/AGFL) */ STATIC int xrep_rmap_find_agheader_rmaps( struct xrep_rmap *rr) { struct xfs_scrub *sc = rr->sc; /* Create a record for the AG sb->agfl. */ return xrep_rmap_stash(rr, XFS_SB_BLOCK(sc->mp), XFS_AGFL_BLOCK(sc->mp) - XFS_SB_BLOCK(sc->mp) + 1, XFS_RMAP_OWN_FS, 0, 0); } /* Generate rmaps for the log, if it's in this AG. */ STATIC int xrep_rmap_find_log_rmaps( struct xrep_rmap *rr) { struct xfs_scrub *sc = rr->sc; if (!xfs_ag_contains_log(sc->mp, sc->sa.pag->pag_agno)) return 0; return xrep_rmap_stash(rr, XFS_FSB_TO_AGBNO(sc->mp, sc->mp->m_sb.sb_logstart), sc->mp->m_sb.sb_logblocks, XFS_RMAP_OWN_LOG, 0, 0); } /* Check and count all the records that we gathered. */ STATIC int xrep_rmap_check_record( struct xfs_btree_cur *cur, const struct xfs_rmap_irec *rec, void *priv) { struct xrep_rmap *rr = priv; int error; error = xrep_rmap_check_mapping(rr->sc, rec); if (error) return error; rr->nr_records++; return 0; } /* * Generate all the reverse-mappings for this AG, a list of the old rmapbt * blocks, and the new btreeblks count. Figure out if we have enough free * space to reconstruct the inode btrees. The caller must clean up the lists * if anything goes wrong. This implements section (I) above. */ STATIC int xrep_rmap_find_rmaps( struct xrep_rmap *rr) { struct xfs_scrub *sc = rr->sc; struct xchk_ag *sa = &sc->sa; struct xfs_inode *ip; struct xfs_btree_cur *mcur; int error; /* Find all the per-AG metadata. */ xrep_ag_btcur_init(sc, &sc->sa); error = xrep_rmap_find_inode_rmaps(rr); if (error) goto end_agscan; error = xrep_rmap_find_refcount_rmaps(rr); if (error) goto end_agscan; error = xrep_rmap_find_agheader_rmaps(rr); if (error) goto end_agscan; error = xrep_rmap_find_log_rmaps(rr); end_agscan: xchk_ag_btcur_free(&sc->sa); if (error) return error; /* * Set up for a potentially lengthy filesystem scan by reducing our * transaction resource usage for the duration. Specifically: * * Unlock the AG header buffers and cancel the transaction to release * the log grant space while we scan the filesystem. * * Create a new empty transaction to eliminate the possibility of the * inode scan deadlocking on cyclical metadata. * * We pass the empty transaction to the file scanning function to avoid * repeatedly cycling empty transactions. This can be done even though * we take the IOLOCK to quiesce the file because empty transactions * do not take sb_internal. */ sa->agf_bp = NULL; sa->agi_bp = NULL; xchk_trans_cancel(sc); error = xchk_trans_alloc_empty(sc); if (error) return error; /* Iterate all AGs for inodes rmaps. */ while ((error = xchk_iscan_iter(&rr->iscan, &ip)) == 1) { error = xrep_rmap_scan_inode(rr, ip); xchk_irele(sc, ip); if (error) break; if (xchk_should_terminate(sc, &error)) break; } xchk_iscan_iter_finish(&rr->iscan); if (error) return error; /* * Switch out for a real transaction and lock the AG headers in * preparation for building a new tree. */ xchk_trans_cancel(sc); error = xchk_setup_fs(sc); if (error) return error; error = xchk_perag_drain_and_lock(sc); if (error) return error; /* * If a hook failed to update the in-memory btree, we lack the data to * continue the repair. */ if (xchk_iscan_aborted(&rr->iscan)) return -EFSCORRUPTED; /* * Now that we have everything locked again, we need to count the * number of rmap records stashed in the btree. This should reflect * all actively-owned space in the filesystem. At the same time, check * all our records before we start building a new btree, which requires * a bnobt cursor. */ mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, &rr->rmap_btree); sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, sc->sa.pag); rr->nr_records = 0; error = xfs_rmap_query_all(mcur, xrep_rmap_check_record, rr); xfs_btree_del_cursor(sc->sa.bno_cur, error); sc->sa.bno_cur = NULL; xfs_btree_del_cursor(mcur, error); return error; } /* Section (II): Reserving space for new rmapbt and setting free space bitmap */ struct xrep_rmap_agfl { struct xagb_bitmap *bitmap; xfs_agnumber_t agno; }; /* Add an AGFL block to the rmap list. */ STATIC int xrep_rmap_walk_agfl( struct xfs_mount *mp, xfs_agblock_t agbno, void *priv) { struct xrep_rmap_agfl *ra = priv; return xagb_bitmap_set(ra->bitmap, agbno, 1); } /* * Run one round of reserving space for the new rmapbt and recomputing the * number of blocks needed to store the previously observed rmapbt records and * the ones we'll create for the free space metadata. When we don't need more * blocks, return a bitmap of OWN_AG extents in @freesp_blocks and set @done to * true. */ STATIC int xrep_rmap_try_reserve( struct xrep_rmap *rr, struct xfs_btree_cur *rmap_cur, struct xagb_bitmap *freesp_blocks, uint64_t *blocks_reserved, bool *done) { struct xrep_rmap_agfl ra = { .bitmap = freesp_blocks, .agno = rr->sc->sa.pag->pag_agno, }; struct xfs_scrub *sc = rr->sc; struct xrep_newbt_resv *resv, *n; struct xfs_agf *agf = sc->sa.agf_bp->b_addr; struct xfs_buf *agfl_bp; uint64_t nr_blocks; /* RMB */ uint64_t freesp_records; int error; /* * We're going to recompute new_btree.bload.nr_blocks at the end of * this function to reflect however many btree blocks we need to store * all the rmap records (including the ones that reflect the changes we * made to support the new rmapbt blocks), so we save the old value * here so we can decide if we've reserved enough blocks. */ nr_blocks = rr->new_btree.bload.nr_blocks; /* * Make sure we've reserved enough space for the new btree. This can * change the shape of the free space btrees, which can cause secondary * interactions with the rmap records because all three space btrees * have the same rmap owner. We'll account for all that below. */ error = xrep_newbt_alloc_blocks(&rr->new_btree, nr_blocks - *blocks_reserved); if (error) return error; *blocks_reserved = rr->new_btree.bload.nr_blocks; /* Clear everything in the bitmap. */ xagb_bitmap_destroy(freesp_blocks); /* Set all the bnobt blocks in the bitmap. */ sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, sc->sa.pag); error = xagb_bitmap_set_btblocks(freesp_blocks, sc->sa.bno_cur); xfs_btree_del_cursor(sc->sa.bno_cur, error); sc->sa.bno_cur = NULL; if (error) return error; /* Set all the cntbt blocks in the bitmap. */ sc->sa.cnt_cur = xfs_cntbt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, sc->sa.pag); error = xagb_bitmap_set_btblocks(freesp_blocks, sc->sa.cnt_cur); xfs_btree_del_cursor(sc->sa.cnt_cur, error); sc->sa.cnt_cur = NULL; if (error) return error; /* Record our new btreeblks value. */ rr->freesp_btblocks = xagb_bitmap_hweight(freesp_blocks) - 2; /* Set all the new rmapbt blocks in the bitmap. */ list_for_each_entry_safe(resv, n, &rr->new_btree.resv_list, list) { error = xagb_bitmap_set(freesp_blocks, resv->agbno, resv->len); if (error) return error; } /* Set all the AGFL blocks in the bitmap. */ error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp); if (error) return error; error = xfs_agfl_walk(sc->mp, agf, agfl_bp, xrep_rmap_walk_agfl, &ra); if (error) return error; /* Count the extents in the bitmap. */ freesp_records = xagb_bitmap_count_set_regions(freesp_blocks); /* Compute how many blocks we'll need for all the rmaps. */ error = xfs_btree_bload_compute_geometry(rmap_cur, &rr->new_btree.bload, rr->nr_records + freesp_records); if (error) return error; /* We're done when we don't need more blocks. */ *done = nr_blocks >= rr->new_btree.bload.nr_blocks; return 0; } /* * Iteratively reserve space for rmap btree while recording OWN_AG rmaps for * the free space metadata. This implements section (II) above. */ STATIC int xrep_rmap_reserve_space( struct xrep_rmap *rr, struct xfs_btree_cur *rmap_cur) { struct xagb_bitmap freesp_blocks; /* AGBIT */ uint64_t blocks_reserved = 0; bool done = false; int error; /* Compute how many blocks we'll need for the rmaps collected so far. */ error = xfs_btree_bload_compute_geometry(rmap_cur, &rr->new_btree.bload, rr->nr_records); if (error) return error; /* Last chance to abort before we start committing fixes. */ if (xchk_should_terminate(rr->sc, &error)) return error; xagb_bitmap_init(&freesp_blocks); /* * Iteratively reserve space for the new rmapbt and recompute the * number of blocks needed to store the previously observed rmapbt * records and the ones we'll create for the free space metadata. * Finish when we don't need more blocks. */ do { error = xrep_rmap_try_reserve(rr, rmap_cur, &freesp_blocks, &blocks_reserved, &done); if (error) goto out_bitmap; } while (!done); /* Emit rmaps for everything in the free space bitmap. */ xrep_ag_btcur_init(rr->sc, &rr->sc->sa); error = xrep_rmap_stash_bitmap(rr, &freesp_blocks, &XFS_RMAP_OINFO_AG); xchk_ag_btcur_free(&rr->sc->sa); out_bitmap: xagb_bitmap_destroy(&freesp_blocks); return error; } /* Section (III): Building the new rmap btree. */ /* Update the AGF counters. */ STATIC int xrep_rmap_reset_counters( struct xrep_rmap *rr) { struct xfs_scrub *sc = rr->sc; struct xfs_perag *pag = sc->sa.pag; struct xfs_agf *agf = sc->sa.agf_bp->b_addr; xfs_agblock_t rmap_btblocks; /* * The AGF header contains extra information related to the reverse * mapping btree, so we must update those fields here. */ rmap_btblocks = rr->new_btree.afake.af_blocks - 1; agf->agf_btreeblks = cpu_to_be32(rr->freesp_btblocks + rmap_btblocks); xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_BTREEBLKS); /* * After we commit the new btree to disk, it is possible that the * process to reap the old btree blocks will race with the AIL trying * to checkpoint the old btree blocks into the filesystem. If the new * tree is shorter than the old one, the rmapbt write verifier will * fail and the AIL will shut down the filesystem. * * To avoid this, save the old incore btree height values as the alt * height values before re-initializing the perag info from the updated * AGF to capture all the new values. */ pag->pagf_repair_rmap_level = pag->pagf_rmap_level; /* Reinitialize with the values we just logged. */ return xrep_reinit_pagf(sc); } /* Retrieve rmapbt data for bulk load. */ STATIC int xrep_rmap_get_records( struct xfs_btree_cur *cur, unsigned int idx, struct xfs_btree_block *block, unsigned int nr_wanted, void *priv) { struct xrep_rmap *rr = priv; union xfs_btree_rec *block_rec; unsigned int loaded; int error; for (loaded = 0; loaded < nr_wanted; loaded++, idx++) { int stat = 0; error = xfs_btree_increment(rr->mcur, 0, &stat); if (error) return error; if (!stat) return -EFSCORRUPTED; error = xfs_rmap_get_rec(rr->mcur, &cur->bc_rec.r, &stat); if (error) return error; if (!stat) return -EFSCORRUPTED; block_rec = xfs_btree_rec_addr(cur, idx, block); cur->bc_ops->init_rec_from_cur(cur, block_rec); } return loaded; } /* Feed one of the new btree blocks to the bulk loader. */ STATIC int xrep_rmap_claim_block( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr, void *priv) { struct xrep_rmap *rr = priv; return xrep_newbt_claim_block(cur, &rr->new_btree, ptr); } /* Custom allocation function for new rmap btrees. */ STATIC int xrep_rmap_alloc_vextent( struct xfs_scrub *sc, struct xfs_alloc_arg *args, xfs_fsblock_t alloc_hint) { int error; /* * We don't want an rmap update on the allocation, since we iteratively * compute the OWN_AG records /after/ allocating blocks for the records * that we already know we need to store. Therefore, fix the freelist * with the NORMAP flag set so that we don't also try to create an rmap * for new AGFL blocks. */ error = xrep_fix_freelist(sc, XFS_ALLOC_FLAG_NORMAP); if (error) return error; /* * If xrep_fix_freelist fixed the freelist by moving blocks from the * free space btrees or by removing blocks from the AGFL and queueing * an EFI to free the block, the transaction will be dirty. This * second case is of interest to us. * * Later on, we will need to compare gaps in the new recordset against * the block usage of all OWN_AG owners in order to free the old * btree's blocks, which means that we can't have EFIs for former AGFL * blocks attached to the repair transaction when we commit the new * btree. * * xrep_newbt_alloc_blocks guarantees this for us by calling * xrep_defer_finish to commit anything that fix_freelist may have * added to the transaction. */ return xfs_alloc_vextent_near_bno(args, alloc_hint); } /* Count the records in this btree. */ STATIC int xrep_rmap_count_records( struct xfs_btree_cur *cur, unsigned long long *nr) { int running = 1; int error; *nr = 0; error = xfs_btree_goto_left_edge(cur); if (error) return error; while (running && !(error = xfs_btree_increment(cur, 0, &running))) { if (running) (*nr)++; } return error; } /* * Use the collected rmap information to stage a new rmap btree. If this is * successful we'll return with the new btree root information logged to the * repair transaction but not yet committed. This implements section (III) * above. */ STATIC int xrep_rmap_build_new_tree( struct xrep_rmap *rr) { struct xfs_scrub *sc = rr->sc; struct xfs_perag *pag = sc->sa.pag; struct xfs_agf *agf = sc->sa.agf_bp->b_addr; struct xfs_btree_cur *rmap_cur; xfs_fsblock_t fsbno; int error; /* * Preserve the old rmapbt block count so that we can adjust the * per-AG rmapbt reservation after we commit the new btree root and * want to dispose of the old btree blocks. */ rr->old_rmapbt_fsbcount = be32_to_cpu(agf->agf_rmap_blocks); /* * Prepare to construct the new btree by reserving disk space for the * new btree and setting up all the accounting information we'll need * to root the new btree while it's under construction and before we * attach it to the AG header. The new blocks are accounted to the * rmapbt per-AG reservation, which we will adjust further after * committing the new btree. */ fsbno = XFS_AGB_TO_FSB(sc->mp, pag->pag_agno, XFS_RMAP_BLOCK(sc->mp)); xrep_newbt_init_ag(&rr->new_btree, sc, &XFS_RMAP_OINFO_SKIP_UPDATE, fsbno, XFS_AG_RESV_RMAPBT); rr->new_btree.bload.get_records = xrep_rmap_get_records; rr->new_btree.bload.claim_block = xrep_rmap_claim_block; rr->new_btree.alloc_vextent = xrep_rmap_alloc_vextent; rmap_cur = xfs_rmapbt_init_cursor(sc->mp, NULL, NULL, pag); xfs_btree_stage_afakeroot(rmap_cur, &rr->new_btree.afake); /* * Initialize @rr->new_btree, reserve space for the new rmapbt, * and compute OWN_AG rmaps. */ error = xrep_rmap_reserve_space(rr, rmap_cur); if (error) goto err_cur; /* * Count the rmapbt records again, because the space reservation * for the rmapbt itself probably added more records to the btree. */ rr->mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, &rr->rmap_btree); error = xrep_rmap_count_records(rr->mcur, &rr->nr_records); if (error) goto err_mcur; /* * Due to btree slack factors, it's possible for a new btree to be one * level taller than the old btree. Update the incore btree height so * that we don't trip the verifiers when writing the new btree blocks * to disk. */ pag->pagf_repair_rmap_level = rr->new_btree.bload.btree_height; /* * Move the cursor to the left edge of the tree so that the first * increment in ->get_records positions us at the first record. */ error = xfs_btree_goto_left_edge(rr->mcur); if (error) goto err_level; /* Add all observed rmap records. */ error = xfs_btree_bload(rmap_cur, &rr->new_btree.bload, rr); if (error) goto err_level; /* * Install the new btree in the AG header. After this point the old * btree is no longer accessible and the new tree is live. */ xfs_rmapbt_commit_staged_btree(rmap_cur, sc->tp, sc->sa.agf_bp); xfs_btree_del_cursor(rmap_cur, 0); xfs_btree_del_cursor(rr->mcur, 0); rr->mcur = NULL; /* * Now that we've written the new btree to disk, we don't need to keep * updating the in-memory btree. Abort the scan to stop live updates. */ xchk_iscan_abort(&rr->iscan); /* * The newly committed rmap recordset includes mappings for the blocks * that we reserved to build the new btree. If there is excess space * reservation to be freed, the corresponding rmap records must also be * removed. */ rr->new_btree.oinfo = XFS_RMAP_OINFO_AG; /* Reset the AGF counters now that we've changed the btree shape. */ error = xrep_rmap_reset_counters(rr); if (error) goto err_newbt; /* Dispose of any unused blocks and the accounting information. */ error = xrep_newbt_commit(&rr->new_btree); if (error) return error; return xrep_roll_ag_trans(sc); err_level: pag->pagf_repair_rmap_level = 0; err_mcur: xfs_btree_del_cursor(rr->mcur, error); err_cur: xfs_btree_del_cursor(rmap_cur, error); err_newbt: xrep_newbt_cancel(&rr->new_btree); return error; } /* Section (IV): Reaping the old btree. */ struct xrep_rmap_find_gaps { struct xagb_bitmap rmap_gaps; xfs_agblock_t next_agbno; }; /* Subtract each free extent in the bnobt from the rmap gaps. */ STATIC int xrep_rmap_find_freesp( struct xfs_btree_cur *cur, const struct xfs_alloc_rec_incore *rec, void *priv) { struct xrep_rmap_find_gaps *rfg = priv; return xagb_bitmap_clear(&rfg->rmap_gaps, rec->ar_startblock, rec->ar_blockcount); } /* Record the free space we find, as part of cleaning out the btree. */ STATIC int xrep_rmap_find_gaps( struct xfs_btree_cur *cur, const struct xfs_rmap_irec *rec, void *priv) { struct xrep_rmap_find_gaps *rfg = priv; int error; if (rec->rm_startblock > rfg->next_agbno) { error = xagb_bitmap_set(&rfg->rmap_gaps, rfg->next_agbno, rec->rm_startblock - rfg->next_agbno); if (error) return error; } rfg->next_agbno = max_t(xfs_agblock_t, rfg->next_agbno, rec->rm_startblock + rec->rm_blockcount); return 0; } /* * Reap the old rmapbt blocks. Now that the rmapbt is fully rebuilt, we make * a list of gaps in the rmap records and a list of the extents mentioned in * the bnobt. Any block that's in the new rmapbt gap list but not mentioned * in the bnobt is a block from the old rmapbt and can be removed. */ STATIC int xrep_rmap_remove_old_tree( struct xrep_rmap *rr) { struct xrep_rmap_find_gaps rfg = { .next_agbno = 0, }; struct xfs_scrub *sc = rr->sc; struct xfs_agf *agf = sc->sa.agf_bp->b_addr; struct xfs_perag *pag = sc->sa.pag; struct xfs_btree_cur *mcur; xfs_agblock_t agend; int error; xagb_bitmap_init(&rfg.rmap_gaps); /* Compute free space from the new rmapbt. */ mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, &rr->rmap_btree); error = xfs_rmap_query_all(mcur, xrep_rmap_find_gaps, &rfg); xfs_btree_del_cursor(mcur, error); if (error) goto out_bitmap; /* Insert a record for space between the last rmap and EOAG. */ agend = be32_to_cpu(agf->agf_length); if (rfg.next_agbno < agend) { error = xagb_bitmap_set(&rfg.rmap_gaps, rfg.next_agbno, agend - rfg.next_agbno); if (error) goto out_bitmap; } /* Compute free space from the existing bnobt. */ sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, sc->sa.pag); error = xfs_alloc_query_all(sc->sa.bno_cur, xrep_rmap_find_freesp, &rfg); xfs_btree_del_cursor(sc->sa.bno_cur, error); sc->sa.bno_cur = NULL; if (error) goto out_bitmap; /* * Free the "free" blocks that the new rmapbt knows about but the bnobt * doesn't--these are the old rmapbt blocks. Credit the old rmapbt * block usage count back to the per-AG rmapbt reservation (and not * fdblocks, since the rmap btree lives in free space) to keep the * reservation and free space accounting correct. */ error = xrep_reap_agblocks(sc, &rfg.rmap_gaps, &XFS_RMAP_OINFO_ANY_OWNER, XFS_AG_RESV_RMAPBT); if (error) goto out_bitmap; /* * Now that we've zapped all the old rmapbt blocks we can turn off * the alternate height mechanism and reset the per-AG space * reservation. */ pag->pagf_repair_rmap_level = 0; sc->flags |= XREP_RESET_PERAG_RESV; out_bitmap: xagb_bitmap_destroy(&rfg.rmap_gaps); return error; } static inline bool xrep_rmapbt_want_live_update( struct xchk_iscan *iscan, const struct xfs_owner_info *oi) { if (xchk_iscan_aborted(iscan)) return false; /* * Before unlocking the AG header to perform the inode scan, we * recorded reverse mappings for all AG metadata except for the OWN_AG * metadata. IOWs, the in-memory btree knows about the AG headers, the * two inode btrees, the CoW staging extents, and the refcount btrees. * For these types of metadata, we need to record the live updates in * the in-memory rmap btree. * * However, we do not scan the free space btrees or the AGFL until we * have re-locked the AGF and are ready to reserve space for the new * rmap btree, so we do not want live updates for OWN_AG metadata. */ if (XFS_RMAP_NON_INODE_OWNER(oi->oi_owner)) return oi->oi_owner != XFS_RMAP_OWN_AG; /* Ignore updates to files that the scanner hasn't visited yet. */ return xchk_iscan_want_live_update(iscan, oi->oi_owner); } /* * Apply a rmapbt update from the regular filesystem into our shadow btree. * We're running from the thread that owns the AGF buffer and is generating * the update, so we must be careful about which parts of the struct xrep_rmap * that we change. */ static int xrep_rmapbt_live_update( struct notifier_block *nb, unsigned long action, void *data) { struct xfs_rmap_update_params *p = data; struct xrep_rmap *rr; struct xfs_mount *mp; struct xfs_btree_cur *mcur; struct xfs_trans *tp; void *txcookie; int error; rr = container_of(nb, struct xrep_rmap, rhook.rmap_hook.nb); mp = rr->sc->mp; if (!xrep_rmapbt_want_live_update(&rr->iscan, &p->oinfo)) goto out_unlock; trace_xrep_rmap_live_update(mp, rr->sc->sa.pag->pag_agno, action, p); error = xrep_trans_alloc_hook_dummy(mp, &txcookie, &tp); if (error) goto out_abort; mutex_lock(&rr->lock); mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, tp, &rr->rmap_btree); error = __xfs_rmap_finish_intent(mcur, action, p->startblock, p->blockcount, &p->oinfo, p->unwritten); xfs_btree_del_cursor(mcur, error); if (error) goto out_cancel; error = xfbtree_trans_commit(&rr->rmap_btree, tp); if (error) goto out_cancel; xrep_trans_cancel_hook_dummy(&txcookie, tp); mutex_unlock(&rr->lock); return NOTIFY_DONE; out_cancel: xfbtree_trans_cancel(&rr->rmap_btree, tp); xrep_trans_cancel_hook_dummy(&txcookie, tp); out_abort: mutex_unlock(&rr->lock); xchk_iscan_abort(&rr->iscan); out_unlock: return NOTIFY_DONE; } /* Set up the filesystem scan components. */ STATIC int xrep_rmap_setup_scan( struct xrep_rmap *rr) { struct xfs_scrub *sc = rr->sc; int error; mutex_init(&rr->lock); /* Set up in-memory rmap btree */ error = xfs_rmapbt_mem_init(sc->mp, &rr->rmap_btree, sc->xmbtp, sc->sa.pag->pag_agno); if (error) goto out_mutex; /* Retry iget every tenth of a second for up to 30 seconds. */ xchk_iscan_start(sc, 30000, 100, &rr->iscan); /* * Hook into live rmap operations so that we can update our in-memory * btree to reflect live changes on the filesystem. Since we drop the * AGF buffer to scan all the inodes, we need this piece to avoid * installing a stale btree. */ ASSERT(sc->flags & XCHK_FSGATES_RMAP); xfs_rmap_hook_setup(&rr->rhook, xrep_rmapbt_live_update); error = xfs_rmap_hook_add(sc->sa.pag, &rr->rhook); if (error) goto out_iscan; return 0; out_iscan: xchk_iscan_teardown(&rr->iscan); xfbtree_destroy(&rr->rmap_btree); out_mutex: mutex_destroy(&rr->lock); return error; } /* Tear down scan components. */ STATIC void xrep_rmap_teardown( struct xrep_rmap *rr) { struct xfs_scrub *sc = rr->sc; xchk_iscan_abort(&rr->iscan); xfs_rmap_hook_del(sc->sa.pag, &rr->rhook); xchk_iscan_teardown(&rr->iscan); xfbtree_destroy(&rr->rmap_btree); mutex_destroy(&rr->lock); } /* Repair the rmap btree for some AG. */ int xrep_rmapbt( struct xfs_scrub *sc) { struct xrep_rmap *rr = sc->buf; int error; error = xrep_rmap_setup_scan(rr); if (error) return error; /* * Collect rmaps for everything in this AG that isn't space metadata. * These rmaps won't change even as we try to allocate blocks. */ error = xrep_rmap_find_rmaps(rr); if (error) goto out_records; /* Rebuild the rmap information. */ error = xrep_rmap_build_new_tree(rr); if (error) goto out_records; /* Kill the old tree. */ error = xrep_rmap_remove_old_tree(rr); if (error) goto out_records; out_records: xrep_rmap_teardown(rr); return error; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1