Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Chinner | 4180 | 38.34% | 90 | 26.32% |
Darrick J. Wong | 3138 | 28.78% | 85 | 24.85% |
Christoph Hellwig | 1334 | 12.24% | 83 | 24.27% |
Brian Foster | 468 | 4.29% | 17 | 4.97% |
Allison Henderson | 457 | 4.19% | 12 | 3.51% |
Mandy Kirkconnell | 298 | 2.73% | 3 | 0.88% |
Shiyang Ruan | 226 | 2.07% | 1 | 0.29% |
Zhi Yong Wu | 222 | 2.04% | 4 | 1.17% |
Jan Kara | 106 | 0.97% | 3 | 0.88% |
Eric Sandeen | 72 | 0.66% | 4 | 1.17% |
Matthew Wilcox | 54 | 0.50% | 2 | 0.58% |
Jie Liu | 41 | 0.38% | 4 | 1.17% |
Lachlan McIlroy | 41 | 0.38% | 3 | 0.88% |
Russell Cattelan | 39 | 0.36% | 2 | 0.58% |
Barry Naujok | 34 | 0.31% | 2 | 0.58% |
Nathan Scott | 27 | 0.25% | 3 | 0.88% |
Carlos Maiolino | 27 | 0.25% | 1 | 0.29% |
Ben Myers | 25 | 0.23% | 1 | 0.29% |
Andrey Albershteyn | 22 | 0.20% | 1 | 0.29% |
kaixuxia | 17 | 0.16% | 2 | 0.58% |
Xia Kaixu | 14 | 0.13% | 2 | 0.58% |
Catherine Hoang | 13 | 0.12% | 1 | 0.29% |
Chandan Babu R | 10 | 0.09% | 3 | 0.88% |
Changcheng Deng | 8 | 0.07% | 1 | 0.29% |
Christian Brauner | 5 | 0.05% | 1 | 0.29% |
Zeng Heng | 4 | 0.04% | 1 | 0.29% |
Pavel Reichl | 3 | 0.03% | 1 | 0.29% |
Jeff Layton | 3 | 0.03% | 1 | 0.29% |
Ian Kent | 3 | 0.03% | 1 | 0.29% |
Josef Bacik | 2 | 0.02% | 1 | 0.29% |
Bill O'Donnell | 2 | 0.02% | 1 | 0.29% |
Randy Dunlap | 2 | 0.02% | 1 | 0.29% |
Ingo Molnar | 2 | 0.02% | 1 | 0.29% |
Lucas De Marchi | 1 | 0.01% | 1 | 0.29% |
Stephen Lord | 1 | 0.01% | 1 | 0.29% |
Al Viro | 1 | 0.01% | 1 | 0.29% |
Total | 10902 | 342 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2006 Silicon Graphics, Inc. * All Rights Reserved. */ #include <linux/iversion.h> #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_inode.h" #include "xfs_dir2.h" #include "xfs_attr.h" #include "xfs_bit.h" #include "xfs_trans_space.h" #include "xfs_trans.h" #include "xfs_buf_item.h" #include "xfs_inode_item.h" #include "xfs_iunlink_item.h" #include "xfs_ialloc.h" #include "xfs_bmap.h" #include "xfs_bmap_util.h" #include "xfs_errortag.h" #include "xfs_error.h" #include "xfs_quota.h" #include "xfs_filestream.h" #include "xfs_trace.h" #include "xfs_icache.h" #include "xfs_symlink.h" #include "xfs_trans_priv.h" #include "xfs_log.h" #include "xfs_bmap_btree.h" #include "xfs_reflink.h" #include "xfs_ag.h" #include "xfs_log_priv.h" #include "xfs_health.h" #include "xfs_pnfs.h" #include "xfs_parent.h" #include "xfs_xattr.h" #include "xfs_inode_util.h" struct kmem_cache *xfs_inode_cache; /* * These two are wrapper routines around the xfs_ilock() routine used to * centralize some grungy code. They are used in places that wish to lock the * inode solely for reading the extents. The reason these places can't just * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to * bringing in of the extents from disk for a file in b-tree format. If the * inode is in b-tree format, then we need to lock the inode exclusively until * the extents are read in. Locking it exclusively all the time would limit * our parallelism unnecessarily, though. What we do instead is check to see * if the extents have been read in yet, and only lock the inode exclusively * if they have not. * * The functions return a value which should be given to the corresponding * xfs_iunlock() call. */ uint xfs_ilock_data_map_shared( struct xfs_inode *ip) { uint lock_mode = XFS_ILOCK_SHARED; if (xfs_need_iread_extents(&ip->i_df)) lock_mode = XFS_ILOCK_EXCL; xfs_ilock(ip, lock_mode); return lock_mode; } uint xfs_ilock_attr_map_shared( struct xfs_inode *ip) { uint lock_mode = XFS_ILOCK_SHARED; if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) lock_mode = XFS_ILOCK_EXCL; xfs_ilock(ip, lock_mode); return lock_mode; } /* * You can't set both SHARED and EXCL for the same lock, * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED, * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values * to set in lock_flags. */ static inline void xfs_lock_flags_assert( uint lock_flags) { ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); ASSERT(lock_flags != 0); } /* * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 * multi-reader locks: invalidate_lock and the i_lock. This routine allows * various combinations of the locks to be obtained. * * The 3 locks should always be ordered so that the IO lock is obtained first, * the mmap lock second and the ilock last in order to prevent deadlock. * * Basic locking order: * * i_rwsem -> invalidate_lock -> page_lock -> i_ilock * * mmap_lock locking order: * * i_rwsem -> page lock -> mmap_lock * mmap_lock -> invalidate_lock -> page_lock * * The difference in mmap_lock locking order mean that we cannot hold the * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths * can fault in pages during copy in/out (for buffered IO) or require the * mmap_lock in get_user_pages() to map the user pages into the kernel address * space for direct IO. Similarly the i_rwsem cannot be taken inside a page * fault because page faults already hold the mmap_lock. * * Hence to serialise fully against both syscall and mmap based IO, we need to * take both the i_rwsem and the invalidate_lock. These locks should *only* be * both taken in places where we need to invalidate the page cache in a race * free manner (e.g. truncate, hole punch and other extent manipulation * functions). */ void xfs_ilock( xfs_inode_t *ip, uint lock_flags) { trace_xfs_ilock(ip, lock_flags, _RET_IP_); xfs_lock_flags_assert(lock_flags); if (lock_flags & XFS_IOLOCK_EXCL) { down_write_nested(&VFS_I(ip)->i_rwsem, XFS_IOLOCK_DEP(lock_flags)); } else if (lock_flags & XFS_IOLOCK_SHARED) { down_read_nested(&VFS_I(ip)->i_rwsem, XFS_IOLOCK_DEP(lock_flags)); } if (lock_flags & XFS_MMAPLOCK_EXCL) { down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, XFS_MMAPLOCK_DEP(lock_flags)); } else if (lock_flags & XFS_MMAPLOCK_SHARED) { down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, XFS_MMAPLOCK_DEP(lock_flags)); } if (lock_flags & XFS_ILOCK_EXCL) down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); else if (lock_flags & XFS_ILOCK_SHARED) down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); } /* * This is just like xfs_ilock(), except that the caller * is guaranteed not to sleep. It returns 1 if it gets * the requested locks and 0 otherwise. If the IO lock is * obtained but the inode lock cannot be, then the IO lock * is dropped before returning. * * ip -- the inode being locked * lock_flags -- this parameter indicates the inode's locks to be * to be locked. See the comment for xfs_ilock() for a list * of valid values. */ int xfs_ilock_nowait( xfs_inode_t *ip, uint lock_flags) { trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); xfs_lock_flags_assert(lock_flags); if (lock_flags & XFS_IOLOCK_EXCL) { if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) goto out; } else if (lock_flags & XFS_IOLOCK_SHARED) { if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) goto out; } if (lock_flags & XFS_MMAPLOCK_EXCL) { if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) goto out_undo_iolock; } else if (lock_flags & XFS_MMAPLOCK_SHARED) { if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) goto out_undo_iolock; } if (lock_flags & XFS_ILOCK_EXCL) { if (!down_write_trylock(&ip->i_lock)) goto out_undo_mmaplock; } else if (lock_flags & XFS_ILOCK_SHARED) { if (!down_read_trylock(&ip->i_lock)) goto out_undo_mmaplock; } return 1; out_undo_mmaplock: if (lock_flags & XFS_MMAPLOCK_EXCL) up_write(&VFS_I(ip)->i_mapping->invalidate_lock); else if (lock_flags & XFS_MMAPLOCK_SHARED) up_read(&VFS_I(ip)->i_mapping->invalidate_lock); out_undo_iolock: if (lock_flags & XFS_IOLOCK_EXCL) up_write(&VFS_I(ip)->i_rwsem); else if (lock_flags & XFS_IOLOCK_SHARED) up_read(&VFS_I(ip)->i_rwsem); out: return 0; } /* * xfs_iunlock() is used to drop the inode locks acquired with * xfs_ilock() and xfs_ilock_nowait(). The caller must pass * in the flags given to xfs_ilock() or xfs_ilock_nowait() so * that we know which locks to drop. * * ip -- the inode being unlocked * lock_flags -- this parameter indicates the inode's locks to be * to be unlocked. See the comment for xfs_ilock() for a list * of valid values for this parameter. * */ void xfs_iunlock( xfs_inode_t *ip, uint lock_flags) { xfs_lock_flags_assert(lock_flags); if (lock_flags & XFS_IOLOCK_EXCL) up_write(&VFS_I(ip)->i_rwsem); else if (lock_flags & XFS_IOLOCK_SHARED) up_read(&VFS_I(ip)->i_rwsem); if (lock_flags & XFS_MMAPLOCK_EXCL) up_write(&VFS_I(ip)->i_mapping->invalidate_lock); else if (lock_flags & XFS_MMAPLOCK_SHARED) up_read(&VFS_I(ip)->i_mapping->invalidate_lock); if (lock_flags & XFS_ILOCK_EXCL) up_write(&ip->i_lock); else if (lock_flags & XFS_ILOCK_SHARED) up_read(&ip->i_lock); trace_xfs_iunlock(ip, lock_flags, _RET_IP_); } /* * give up write locks. the i/o lock cannot be held nested * if it is being demoted. */ void xfs_ilock_demote( xfs_inode_t *ip, uint lock_flags) { ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); if (lock_flags & XFS_ILOCK_EXCL) downgrade_write(&ip->i_lock); if (lock_flags & XFS_MMAPLOCK_EXCL) downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); if (lock_flags & XFS_IOLOCK_EXCL) downgrade_write(&VFS_I(ip)->i_rwsem); trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); } void xfs_assert_ilocked( struct xfs_inode *ip, uint lock_flags) { /* * Sometimes we assert the ILOCK is held exclusively, but we're in * a workqueue, so lockdep doesn't know we're the owner. */ if (lock_flags & XFS_ILOCK_SHARED) rwsem_assert_held(&ip->i_lock); else if (lock_flags & XFS_ILOCK_EXCL) rwsem_assert_held_write_nolockdep(&ip->i_lock); if (lock_flags & XFS_MMAPLOCK_SHARED) rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock); else if (lock_flags & XFS_MMAPLOCK_EXCL) rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock); if (lock_flags & XFS_IOLOCK_SHARED) rwsem_assert_held(&VFS_I(ip)->i_rwsem); else if (lock_flags & XFS_IOLOCK_EXCL) rwsem_assert_held_write(&VFS_I(ip)->i_rwsem); } /* * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build * errors and warnings. */ #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) static bool xfs_lockdep_subclass_ok( int subclass) { return subclass < MAX_LOCKDEP_SUBCLASSES; } #else #define xfs_lockdep_subclass_ok(subclass) (true) #endif /* * Bump the subclass so xfs_lock_inodes() acquires each lock with a different * value. This can be called for any type of inode lock combination, including * parent locking. Care must be taken to ensure we don't overrun the subclass * storage fields in the class mask we build. */ static inline uint xfs_lock_inumorder( uint lock_mode, uint subclass) { uint class = 0; ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | XFS_ILOCK_RTSUM))); ASSERT(xfs_lockdep_subclass_ok(subclass)); if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); class += subclass << XFS_IOLOCK_SHIFT; } if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); class += subclass << XFS_MMAPLOCK_SHIFT; } if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); class += subclass << XFS_ILOCK_SHIFT; } return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; } /* * The following routine will lock n inodes in exclusive mode. We assume the * caller calls us with the inodes in i_ino order. * * We need to detect deadlock where an inode that we lock is in the AIL and we * start waiting for another inode that is locked by a thread in a long running * transaction (such as truncate). This can result in deadlock since the long * running trans might need to wait for the inode we just locked in order to * push the tail and free space in the log. * * xfs_lock_inodes() can only be used to lock one type of lock at a time - * the iolock, the mmaplock or the ilock, but not more than one at a time. If we * lock more than one at a time, lockdep will report false positives saying we * have violated locking orders. */ void xfs_lock_inodes( struct xfs_inode **ips, int inodes, uint lock_mode) { int attempts = 0; uint i; int j; bool try_lock; struct xfs_log_item *lp; /* * Currently supports between 2 and 5 inodes with exclusive locking. We * support an arbitrary depth of locking here, but absolute limits on * inodes depend on the type of locking and the limits placed by * lockdep annotations in xfs_lock_inumorder. These are all checked by * the asserts. */ ASSERT(ips && inodes >= 2 && inodes <= 5); ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)); ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | XFS_ILOCK_SHARED))); ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); if (lock_mode & XFS_IOLOCK_EXCL) { ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); } else if (lock_mode & XFS_MMAPLOCK_EXCL) ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); again: try_lock = false; i = 0; for (; i < inodes; i++) { ASSERT(ips[i]); if (i && (ips[i] == ips[i - 1])) /* Already locked */ continue; /* * If try_lock is not set yet, make sure all locked inodes are * not in the AIL. If any are, set try_lock to be used later. */ if (!try_lock) { for (j = (i - 1); j >= 0 && !try_lock; j--) { lp = &ips[j]->i_itemp->ili_item; if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) try_lock = true; } } /* * If any of the previous locks we have locked is in the AIL, * we must TRY to get the second and subsequent locks. If * we can't get any, we must release all we have * and try again. */ if (!try_lock) { xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); continue; } /* try_lock means we have an inode locked that is in the AIL. */ ASSERT(i != 0); if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) continue; /* * Unlock all previous guys and try again. xfs_iunlock will try * to push the tail if the inode is in the AIL. */ attempts++; for (j = i - 1; j >= 0; j--) { /* * Check to see if we've already unlocked this one. Not * the first one going back, and the inode ptr is the * same. */ if (j != (i - 1) && ips[j] == ips[j + 1]) continue; xfs_iunlock(ips[j], lock_mode); } if ((attempts % 5) == 0) { delay(1); /* Don't just spin the CPU */ } goto again; } } /* * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and * mmaplock must be double-locked separately since we use i_rwsem and * invalidate_lock for that. We now support taking one lock EXCL and the * other SHARED. */ void xfs_lock_two_inodes( struct xfs_inode *ip0, uint ip0_mode, struct xfs_inode *ip1, uint ip1_mode) { int attempts = 0; struct xfs_log_item *lp; ASSERT(hweight32(ip0_mode) == 1); ASSERT(hweight32(ip1_mode) == 1); ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); ASSERT(ip0->i_ino != ip1->i_ino); if (ip0->i_ino > ip1->i_ino) { swap(ip0, ip1); swap(ip0_mode, ip1_mode); } again: xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); /* * If the first lock we have locked is in the AIL, we must TRY to get * the second lock. If we can't get it, we must release the first one * and try again. */ lp = &ip0->i_itemp->ili_item; if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { xfs_iunlock(ip0, ip0_mode); if ((++attempts % 5) == 0) delay(1); /* Don't just spin the CPU */ goto again; } } else { xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); } } /* * Lookups up an inode from "name". If ci_name is not NULL, then a CI match * is allowed, otherwise it has to be an exact match. If a CI match is found, * ci_name->name will point to a the actual name (caller must free) or * will be set to NULL if an exact match is found. */ int xfs_lookup( struct xfs_inode *dp, const struct xfs_name *name, struct xfs_inode **ipp, struct xfs_name *ci_name) { xfs_ino_t inum; int error; trace_xfs_lookup(dp, name); if (xfs_is_shutdown(dp->i_mount)) return -EIO; if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) return -EIO; error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); if (error) goto out_unlock; error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); if (error) goto out_free_name; return 0; out_free_name: if (ci_name) kfree(ci_name->name); out_unlock: *ipp = NULL; return error; } /* * Initialise a newly allocated inode and return the in-core inode to the * caller locked exclusively. * * Caller is responsible for unlocking the inode manually upon return */ int xfs_icreate( struct xfs_trans *tp, xfs_ino_t ino, const struct xfs_icreate_args *args, struct xfs_inode **ipp) { struct xfs_mount *mp = tp->t_mountp; struct xfs_inode *ip = NULL; int error; /* * Get the in-core inode with the lock held exclusively to prevent * others from looking at until we're done. */ error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); if (error) return error; ASSERT(ip != NULL); xfs_trans_ijoin(tp, ip, 0); xfs_inode_init(tp, args, ip); /* now that we have an i_mode we can setup the inode structure */ xfs_setup_inode(ip); *ipp = ip; return 0; } /* Return dquots for the ids that will be assigned to a new file. */ int xfs_icreate_dqalloc( const struct xfs_icreate_args *args, struct xfs_dquot **udqpp, struct xfs_dquot **gdqpp, struct xfs_dquot **pdqpp) { struct inode *dir = VFS_I(args->pip); kuid_t uid = GLOBAL_ROOT_UID; kgid_t gid = GLOBAL_ROOT_GID; prid_t prid = 0; unsigned int flags = XFS_QMOPT_QUOTALL; if (args->idmap) { /* * The uid/gid computation code must match what the VFS uses to * assign i_[ug]id. INHERIT adjusts the gid computation for * setgid/grpid systems. */ uid = mapped_fsuid(args->idmap, i_user_ns(dir)); gid = mapped_fsgid(args->idmap, i_user_ns(dir)); prid = xfs_get_initial_prid(args->pip); flags |= XFS_QMOPT_INHERIT; } *udqpp = *gdqpp = *pdqpp = NULL; return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp, gdqpp, pdqpp); } int xfs_create( const struct xfs_icreate_args *args, struct xfs_name *name, struct xfs_inode **ipp) { struct xfs_inode *dp = args->pip; struct xfs_dir_update du = { .dp = dp, .name = name, }; struct xfs_mount *mp = dp->i_mount; struct xfs_trans *tp = NULL; struct xfs_dquot *udqp; struct xfs_dquot *gdqp; struct xfs_dquot *pdqp; struct xfs_trans_res *tres; xfs_ino_t ino; bool unlock_dp_on_error = false; bool is_dir = S_ISDIR(args->mode); uint resblks; int error; trace_xfs_create(dp, name); if (xfs_is_shutdown(mp)) return -EIO; if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) return -EIO; /* Make sure that we have allocated dquot(s) on disk. */ error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp); if (error) return error; if (is_dir) { resblks = xfs_mkdir_space_res(mp, name->len); tres = &M_RES(mp)->tr_mkdir; } else { resblks = xfs_create_space_res(mp, name->len); tres = &M_RES(mp)->tr_create; } error = xfs_parent_start(mp, &du.ppargs); if (error) goto out_release_dquots; /* * Initially assume that the file does not exist and * reserve the resources for that case. If that is not * the case we'll drop the one we have and get a more * appropriate transaction later. */ error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, &tp); if (error == -ENOSPC) { /* flush outstanding delalloc blocks and retry */ xfs_flush_inodes(mp); error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, &tp); } if (error) goto out_parent; xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); unlock_dp_on_error = true; /* * A newly created regular or special file just has one directory * entry pointing to them, but a directory also the "." entry * pointing to itself. */ error = xfs_dialloc(&tp, dp->i_ino, args->mode, &ino); if (!error) error = xfs_icreate(tp, ino, args, &du.ip); if (error) goto out_trans_cancel; /* * Now we join the directory inode to the transaction. We do not do it * earlier because xfs_dialloc might commit the previous transaction * (and release all the locks). An error from here on will result in * the transaction cancel unlocking dp so don't do it explicitly in the * error path. */ xfs_trans_ijoin(tp, dp, 0); error = xfs_dir_create_child(tp, resblks, &du); if (error) goto out_trans_cancel; /* * If this is a synchronous mount, make sure that the * create transaction goes to disk before returning to * the user. */ if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) xfs_trans_set_sync(tp); /* * Attach the dquot(s) to the inodes and modify them incore. * These ids of the inode couldn't have changed since the new * inode has been locked ever since it was created. */ xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp); error = xfs_trans_commit(tp); if (error) goto out_release_inode; xfs_qm_dqrele(udqp); xfs_qm_dqrele(gdqp); xfs_qm_dqrele(pdqp); *ipp = du.ip; xfs_iunlock(du.ip, XFS_ILOCK_EXCL); xfs_iunlock(dp, XFS_ILOCK_EXCL); xfs_parent_finish(mp, du.ppargs); return 0; out_trans_cancel: xfs_trans_cancel(tp); out_release_inode: /* * Wait until after the current transaction is aborted to finish the * setup of the inode and release the inode. This prevents recursive * transactions and deadlocks from xfs_inactive. */ if (du.ip) { xfs_iunlock(du.ip, XFS_ILOCK_EXCL); xfs_finish_inode_setup(du.ip); xfs_irele(du.ip); } out_parent: xfs_parent_finish(mp, du.ppargs); out_release_dquots: xfs_qm_dqrele(udqp); xfs_qm_dqrele(gdqp); xfs_qm_dqrele(pdqp); if (unlock_dp_on_error) xfs_iunlock(dp, XFS_ILOCK_EXCL); return error; } int xfs_create_tmpfile( const struct xfs_icreate_args *args, struct xfs_inode **ipp) { struct xfs_inode *dp = args->pip; struct xfs_mount *mp = dp->i_mount; struct xfs_inode *ip = NULL; struct xfs_trans *tp = NULL; struct xfs_dquot *udqp; struct xfs_dquot *gdqp; struct xfs_dquot *pdqp; struct xfs_trans_res *tres; xfs_ino_t ino; uint resblks; int error; ASSERT(args->flags & XFS_ICREATE_TMPFILE); if (xfs_is_shutdown(mp)) return -EIO; /* Make sure that we have allocated dquot(s) on disk. */ error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp); if (error) return error; resblks = XFS_IALLOC_SPACE_RES(mp); tres = &M_RES(mp)->tr_create_tmpfile; error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, &tp); if (error) goto out_release_dquots; error = xfs_dialloc(&tp, dp->i_ino, args->mode, &ino); if (!error) error = xfs_icreate(tp, ino, args, &ip); if (error) goto out_trans_cancel; if (xfs_has_wsync(mp)) xfs_trans_set_sync(tp); /* * Attach the dquot(s) to the inodes and modify them incore. * These ids of the inode couldn't have changed since the new * inode has been locked ever since it was created. */ xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); error = xfs_iunlink(tp, ip); if (error) goto out_trans_cancel; error = xfs_trans_commit(tp); if (error) goto out_release_inode; xfs_qm_dqrele(udqp); xfs_qm_dqrele(gdqp); xfs_qm_dqrele(pdqp); *ipp = ip; xfs_iunlock(ip, XFS_ILOCK_EXCL); return 0; out_trans_cancel: xfs_trans_cancel(tp); out_release_inode: /* * Wait until after the current transaction is aborted to finish the * setup of the inode and release the inode. This prevents recursive * transactions and deadlocks from xfs_inactive. */ if (ip) { xfs_iunlock(ip, XFS_ILOCK_EXCL); xfs_finish_inode_setup(ip); xfs_irele(ip); } out_release_dquots: xfs_qm_dqrele(udqp); xfs_qm_dqrele(gdqp); xfs_qm_dqrele(pdqp); return error; } int xfs_link( struct xfs_inode *tdp, struct xfs_inode *sip, struct xfs_name *target_name) { struct xfs_dir_update du = { .dp = tdp, .name = target_name, .ip = sip, }; struct xfs_mount *mp = tdp->i_mount; struct xfs_trans *tp; int error, nospace_error = 0; int resblks; trace_xfs_link(tdp, target_name); ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); if (xfs_is_shutdown(mp)) return -EIO; if (xfs_ifork_zapped(tdp, XFS_DATA_FORK)) return -EIO; error = xfs_qm_dqattach(sip); if (error) goto std_return; error = xfs_qm_dqattach(tdp); if (error) goto std_return; error = xfs_parent_start(mp, &du.ppargs); if (error) goto std_return; resblks = xfs_link_space_res(mp, target_name->len); error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks, &tp, &nospace_error); if (error) goto out_parent; /* * We don't allow reservationless or quotaless hardlinking when parent * pointers are enabled because we can't back out if the xattrs must * grow. */ if (du.ppargs && nospace_error) { error = nospace_error; goto error_return; } /* * If we are using project inheritance, we only allow hard link * creation in our tree when the project IDs are the same; else * the tree quota mechanism could be circumvented. */ if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && tdp->i_projid != sip->i_projid)) { /* * Project quota setup skips special files which can * leave inodes in a PROJINHERIT directory without a * project ID set. We need to allow links to be made * to these "project-less" inodes because userspace * expects them to succeed after project ID setup, * but everything else should be rejected. */ if (!special_file(VFS_I(sip)->i_mode) || sip->i_projid != 0) { error = -EXDEV; goto error_return; } } error = xfs_dir_add_child(tp, resblks, &du); if (error) goto error_return; /* * If this is a synchronous mount, make sure that the * link transaction goes to disk before returning to * the user. */ if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) xfs_trans_set_sync(tp); error = xfs_trans_commit(tp); xfs_iunlock(tdp, XFS_ILOCK_EXCL); xfs_iunlock(sip, XFS_ILOCK_EXCL); xfs_parent_finish(mp, du.ppargs); return error; error_return: xfs_trans_cancel(tp); xfs_iunlock(tdp, XFS_ILOCK_EXCL); xfs_iunlock(sip, XFS_ILOCK_EXCL); out_parent: xfs_parent_finish(mp, du.ppargs); std_return: if (error == -ENOSPC && nospace_error) error = nospace_error; return error; } /* Clear the reflink flag and the cowblocks tag if possible. */ static void xfs_itruncate_clear_reflink_flags( struct xfs_inode *ip) { struct xfs_ifork *dfork; struct xfs_ifork *cfork; if (!xfs_is_reflink_inode(ip)) return; dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK); cfork = xfs_ifork_ptr(ip, XFS_COW_FORK); if (dfork->if_bytes == 0 && cfork->if_bytes == 0) ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; if (cfork->if_bytes == 0) xfs_inode_clear_cowblocks_tag(ip); } /* * Free up the underlying blocks past new_size. The new size must be smaller * than the current size. This routine can be used both for the attribute and * data fork, and does not modify the inode size, which is left to the caller. * * The transaction passed to this routine must have made a permanent log * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the * given transaction and start new ones, so make sure everything involved in * the transaction is tidy before calling here. Some transaction will be * returned to the caller to be committed. The incoming transaction must * already include the inode, and both inode locks must be held exclusively. * The inode must also be "held" within the transaction. On return the inode * will be "held" within the returned transaction. This routine does NOT * require any disk space to be reserved for it within the transaction. * * If we get an error, we must return with the inode locked and linked into the * current transaction. This keeps things simple for the higher level code, * because it always knows that the inode is locked and held in the transaction * that returns to it whether errors occur or not. We don't mark the inode * dirty on error so that transactions can be easily aborted if possible. */ int xfs_itruncate_extents_flags( struct xfs_trans **tpp, struct xfs_inode *ip, int whichfork, xfs_fsize_t new_size, int flags) { struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp = *tpp; xfs_fileoff_t first_unmap_block; int error = 0; xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); if (atomic_read(&VFS_I(ip)->i_count)) xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL); ASSERT(new_size <= XFS_ISIZE(ip)); ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); ASSERT(ip->i_itemp != NULL); ASSERT(ip->i_itemp->ili_lock_flags == 0); ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); trace_xfs_itruncate_extents_start(ip, new_size); flags |= xfs_bmapi_aflag(whichfork); /* * Since it is possible for space to become allocated beyond * the end of the file (in a crash where the space is allocated * but the inode size is not yet updated), simply remove any * blocks which show up between the new EOF and the maximum * possible file size. * * We have to free all the blocks to the bmbt maximum offset, even if * the page cache can't scale that far. */ first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); if (!xfs_verify_fileoff(mp, first_unmap_block)) { WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); return 0; } error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block, XFS_MAX_FILEOFF); if (error) goto out; if (whichfork == XFS_DATA_FORK) { /* Remove all pending CoW reservations. */ error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block, XFS_MAX_FILEOFF, true); if (error) goto out; xfs_itruncate_clear_reflink_flags(ip); } /* * Always re-log the inode so that our permanent transaction can keep * on rolling it forward in the log. */ xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); trace_xfs_itruncate_extents_end(ip, new_size); out: *tpp = tp; return error; } int xfs_release( xfs_inode_t *ip) { xfs_mount_t *mp = ip->i_mount; int error = 0; if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) return 0; /* If this is a read-only mount, don't do this (would generate I/O) */ if (xfs_is_readonly(mp)) return 0; if (!xfs_is_shutdown(mp)) { int truncated; /* * If we previously truncated this file and removed old data * in the process, we want to initiate "early" writeout on * the last close. This is an attempt to combat the notorious * NULL files problem which is particularly noticeable from a * truncate down, buffered (re-)write (delalloc), followed by * a crash. What we are effectively doing here is * significantly reducing the time window where we'd otherwise * be exposed to that problem. */ truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); if (truncated) { xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); if (ip->i_delayed_blks > 0) { error = filemap_flush(VFS_I(ip)->i_mapping); if (error) return error; } } } if (VFS_I(ip)->i_nlink == 0) return 0; /* * If we can't get the iolock just skip truncating the blocks past EOF * because we could deadlock with the mmap_lock otherwise. We'll get * another chance to drop them once the last reference to the inode is * dropped, so we'll never leak blocks permanently. */ if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) return 0; if (xfs_can_free_eofblocks(ip)) { /* * Check if the inode is being opened, written and closed * frequently and we have delayed allocation blocks outstanding * (e.g. streaming writes from the NFS server), truncating the * blocks past EOF will cause fragmentation to occur. * * In this case don't do the truncation, but we have to be * careful how we detect this case. Blocks beyond EOF show up as * i_delayed_blks even when the inode is clean, so we need to * truncate them away first before checking for a dirty release. * Hence on the first dirty close we will still remove the * speculative allocation, but after that we will leave it in * place. */ if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) goto out_unlock; error = xfs_free_eofblocks(ip); if (error) goto out_unlock; /* delalloc blocks after truncation means it really is dirty */ if (ip->i_delayed_blks) xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); } out_unlock: xfs_iunlock(ip, XFS_IOLOCK_EXCL); return error; } /* * Mark all the buffers attached to this directory stale. In theory we should * never be freeing a directory with any blocks at all, but this covers the * case where we've recovered a directory swap with a "temporary" directory * created by online repair and now need to dump it. */ STATIC void xfs_inactive_dir( struct xfs_inode *dp) { struct xfs_iext_cursor icur; struct xfs_bmbt_irec got; struct xfs_mount *mp = dp->i_mount; struct xfs_da_geometry *geo = mp->m_dir_geo; struct xfs_ifork *ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK); xfs_fileoff_t off; /* * Invalidate each directory block. All directory blocks are of * fsbcount length and alignment, so we only need to walk those same * offsets. We hold the only reference to this inode, so we must wait * for the buffer locks. */ for_each_xfs_iext(ifp, &icur, &got) { for (off = round_up(got.br_startoff, geo->fsbcount); off < got.br_startoff + got.br_blockcount; off += geo->fsbcount) { struct xfs_buf *bp = NULL; xfs_fsblock_t fsbno; int error; fsbno = (off - got.br_startoff) + got.br_startblock; error = xfs_buf_incore(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsbno), XFS_FSB_TO_BB(mp, geo->fsbcount), XBF_LIVESCAN, &bp); if (error) continue; xfs_buf_stale(bp); xfs_buf_relse(bp); } } } /* * xfs_inactive_truncate * * Called to perform a truncate when an inode becomes unlinked. */ STATIC int xfs_inactive_truncate( struct xfs_inode *ip) { struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; int error; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); if (error) { ASSERT(xfs_is_shutdown(mp)); return error; } xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_trans_ijoin(tp, ip, 0); /* * Log the inode size first to prevent stale data exposure in the event * of a system crash before the truncate completes. See the related * comment in xfs_vn_setattr_size() for details. */ ip->i_disk_size = 0; xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); if (error) goto error_trans_cancel; ASSERT(ip->i_df.if_nextents == 0); error = xfs_trans_commit(tp); if (error) goto error_unlock; xfs_iunlock(ip, XFS_ILOCK_EXCL); return 0; error_trans_cancel: xfs_trans_cancel(tp); error_unlock: xfs_iunlock(ip, XFS_ILOCK_EXCL); return error; } /* * xfs_inactive_ifree() * * Perform the inode free when an inode is unlinked. */ STATIC int xfs_inactive_ifree( struct xfs_inode *ip) { struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; int error; /* * We try to use a per-AG reservation for any block needed by the finobt * tree, but as the finobt feature predates the per-AG reservation * support a degraded file system might not have enough space for the * reservation at mount time. In that case try to dip into the reserved * pool and pray. * * Send a warning if the reservation does happen to fail, as the inode * now remains allocated and sits on the unlinked list until the fs is * repaired. */ if (unlikely(mp->m_finobt_nores)) { error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp); } else { error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); } if (error) { if (error == -ENOSPC) { xfs_warn_ratelimited(mp, "Failed to remove inode(s) from unlinked list. " "Please free space, unmount and run xfs_repair."); } else { ASSERT(xfs_is_shutdown(mp)); } return error; } /* * We do not hold the inode locked across the entire rolling transaction * here. We only need to hold it for the first transaction that * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode * here breaks the relationship between cluster buffer invalidation and * stale inode invalidation on cluster buffer item journal commit * completion, and can result in leaving dirty stale inodes hanging * around in memory. * * We have no need for serialising this inode operation against other * operations - we freed the inode and hence reallocation is required * and that will serialise on reallocating the space the deferops need * to free. Hence we can unlock the inode on the first commit of * the transaction rather than roll it right through the deferops. This * avoids relogging the XFS_ISTALE inode. * * We check that xfs_ifree() hasn't grown an internal transaction roll * by asserting that the inode is still locked when it returns. */ xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); error = xfs_ifree(tp, ip); xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); if (error) { /* * If we fail to free the inode, shut down. The cancel * might do that, we need to make sure. Otherwise the * inode might be lost for a long time or forever. */ if (!xfs_is_shutdown(mp)) { xfs_notice(mp, "%s: xfs_ifree returned error %d", __func__, error); xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); } xfs_trans_cancel(tp); return error; } /* * Credit the quota account(s). The inode is gone. */ xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); return xfs_trans_commit(tp); } /* * Returns true if we need to update the on-disk metadata before we can free * the memory used by this inode. Updates include freeing post-eof * preallocations; freeing COW staging extents; and marking the inode free in * the inobt if it is on the unlinked list. */ bool xfs_inode_needs_inactive( struct xfs_inode *ip) { struct xfs_mount *mp = ip->i_mount; struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); /* * If the inode is already free, then there can be nothing * to clean up here. */ if (VFS_I(ip)->i_mode == 0) return false; /* * If this is a read-only mount, don't do this (would generate I/O) * unless we're in log recovery and cleaning the iunlinked list. */ if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) return false; /* If the log isn't running, push inodes straight to reclaim. */ if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) return false; /* Metadata inodes require explicit resource cleanup. */ if (xfs_is_metadata_inode(ip)) return false; /* Want to clean out the cow blocks if there are any. */ if (cow_ifp && cow_ifp->if_bytes > 0) return true; /* Unlinked files must be freed. */ if (VFS_I(ip)->i_nlink == 0) return true; /* * This file isn't being freed, so check if there are post-eof blocks * to free. * * Note: don't bother with iolock here since lockdep complains about * acquiring it in reclaim context. We have the only reference to the * inode at this point anyways. */ return xfs_can_free_eofblocks(ip); } /* * Save health status somewhere, if we're dumping an inode with uncorrected * errors and online repair isn't running. */ static inline void xfs_inactive_health( struct xfs_inode *ip) { struct xfs_mount *mp = ip->i_mount; struct xfs_perag *pag; unsigned int sick; unsigned int checked; xfs_inode_measure_sickness(ip, &sick, &checked); if (!sick) return; trace_xfs_inode_unfixed_corruption(ip, sick); if (sick & XFS_SICK_INO_FORGET) return; pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); if (!pag) { /* There had better still be a perag structure! */ ASSERT(0); return; } xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES); xfs_perag_put(pag); } /* * xfs_inactive * * This is called when the vnode reference count for the vnode * goes to zero. If the file has been unlinked, then it must * now be truncated. Also, we clear all of the read-ahead state * kept for the inode here since the file is now closed. */ int xfs_inactive( xfs_inode_t *ip) { struct xfs_mount *mp; int error = 0; int truncate = 0; /* * If the inode is already free, then there can be nothing * to clean up here. */ if (VFS_I(ip)->i_mode == 0) { ASSERT(ip->i_df.if_broot_bytes == 0); goto out; } mp = ip->i_mount; ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); xfs_inactive_health(ip); /* * If this is a read-only mount, don't do this (would generate I/O) * unless we're in log recovery and cleaning the iunlinked list. */ if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) goto out; /* Metadata inodes require explicit resource cleanup. */ if (xfs_is_metadata_inode(ip)) goto out; /* Try to clean out the cow blocks if there are any. */ if (xfs_inode_has_cow_data(ip)) xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); if (VFS_I(ip)->i_nlink != 0) { /* * Note: don't bother with iolock here since lockdep complains * about acquiring it in reclaim context. We have the only * reference to the inode at this point anyways. */ if (xfs_can_free_eofblocks(ip)) error = xfs_free_eofblocks(ip); goto out; } if (S_ISREG(VFS_I(ip)->i_mode) && (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) truncate = 1; if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) { /* * If this inode is being inactivated during a quotacheck and * has not yet been scanned by quotacheck, we /must/ remove * the dquots from the inode before inactivation changes the * block and inode counts. Most probably this is a result of * reloading the incore iunlinked list to purge unrecovered * unlinked inodes. */ xfs_qm_dqdetach(ip); } else { error = xfs_qm_dqattach(ip); if (error) goto out; } if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) { xfs_inactive_dir(ip); truncate = 1; } if (S_ISLNK(VFS_I(ip)->i_mode)) error = xfs_inactive_symlink(ip); else if (truncate) error = xfs_inactive_truncate(ip); if (error) goto out; /* * If there are attributes associated with the file then blow them away * now. The code calls a routine that recursively deconstructs the * attribute fork. If also blows away the in-core attribute fork. */ if (xfs_inode_has_attr_fork(ip)) { error = xfs_attr_inactive(ip); if (error) goto out; } ASSERT(ip->i_forkoff == 0); /* * Free the inode. */ error = xfs_inactive_ifree(ip); out: /* * We're done making metadata updates for this inode, so we can release * the attached dquots. */ xfs_qm_dqdetach(ip); return error; } /* * Find an inode on the unlinked list. This does not take references to the * inode as we have existence guarantees by holding the AGI buffer lock and that * only unlinked, referenced inodes can be on the unlinked inode list. If we * don't find the inode in cache, then let the caller handle the situation. */ struct xfs_inode * xfs_iunlink_lookup( struct xfs_perag *pag, xfs_agino_t agino) { struct xfs_inode *ip; rcu_read_lock(); ip = radix_tree_lookup(&pag->pag_ici_root, agino); if (!ip) { /* Caller can handle inode not being in memory. */ rcu_read_unlock(); return NULL; } /* * Inode in RCU freeing limbo should not happen. Warn about this and * let the caller handle the failure. */ if (WARN_ON_ONCE(!ip->i_ino)) { rcu_read_unlock(); return NULL; } ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)); rcu_read_unlock(); return ip; } /* * Load the inode @next_agino into the cache and set its prev_unlinked pointer * to @prev_agino. Caller must hold the AGI to synchronize with other changes * to the unlinked list. */ int xfs_iunlink_reload_next( struct xfs_trans *tp, struct xfs_buf *agibp, xfs_agino_t prev_agino, xfs_agino_t next_agino) { struct xfs_perag *pag = agibp->b_pag; struct xfs_mount *mp = pag->pag_mount; struct xfs_inode *next_ip = NULL; xfs_ino_t ino; int error; ASSERT(next_agino != NULLAGINO); #ifdef DEBUG rcu_read_lock(); next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino); ASSERT(next_ip == NULL); rcu_read_unlock(); #endif xfs_info_ratelimited(mp, "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.", next_agino, pag->pag_agno); /* * Use an untrusted lookup just to be cautious in case the AGI has been * corrupted and now points at a free inode. That shouldn't happen, * but we'd rather shut down now since we're already running in a weird * situation. */ ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino); error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip); if (error) { xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); return error; } /* If this is not an unlinked inode, something is very wrong. */ if (VFS_I(next_ip)->i_nlink != 0) { xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); error = -EFSCORRUPTED; goto rele; } next_ip->i_prev_unlinked = prev_agino; trace_xfs_iunlink_reload_next(next_ip); rele: ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE)); if (xfs_is_quotacheck_running(mp) && next_ip) xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED); xfs_irele(next_ip); return error; } /* * Look up the inode number specified and if it is not already marked XFS_ISTALE * mark it stale. We should only find clean inodes in this lookup that aren't * already stale. */ static void xfs_ifree_mark_inode_stale( struct xfs_perag *pag, struct xfs_inode *free_ip, xfs_ino_t inum) { struct xfs_mount *mp = pag->pag_mount; struct xfs_inode_log_item *iip; struct xfs_inode *ip; retry: rcu_read_lock(); ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); /* Inode not in memory, nothing to do */ if (!ip) { rcu_read_unlock(); return; } /* * because this is an RCU protected lookup, we could find a recently * freed or even reallocated inode during the lookup. We need to check * under the i_flags_lock for a valid inode here. Skip it if it is not * valid, the wrong inode or stale. */ spin_lock(&ip->i_flags_lock); if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) goto out_iflags_unlock; /* * Don't try to lock/unlock the current inode, but we _cannot_ skip the * other inodes that we did not find in the list attached to the buffer * and are not already marked stale. If we can't lock it, back off and * retry. */ if (ip != free_ip) { if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { spin_unlock(&ip->i_flags_lock); rcu_read_unlock(); delay(1); goto retry; } } ip->i_flags |= XFS_ISTALE; /* * If the inode is flushing, it is already attached to the buffer. All * we needed to do here is mark the inode stale so buffer IO completion * will remove it from the AIL. */ iip = ip->i_itemp; if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { ASSERT(!list_empty(&iip->ili_item.li_bio_list)); ASSERT(iip->ili_last_fields); goto out_iunlock; } /* * Inodes not attached to the buffer can be released immediately. * Everything else has to go through xfs_iflush_abort() on journal * commit as the flock synchronises removal of the inode from the * cluster buffer against inode reclaim. */ if (!iip || list_empty(&iip->ili_item.li_bio_list)) goto out_iunlock; __xfs_iflags_set(ip, XFS_IFLUSHING); spin_unlock(&ip->i_flags_lock); rcu_read_unlock(); /* we have a dirty inode in memory that has not yet been flushed. */ spin_lock(&iip->ili_lock); iip->ili_last_fields = iip->ili_fields; iip->ili_fields = 0; iip->ili_fsync_fields = 0; spin_unlock(&iip->ili_lock); ASSERT(iip->ili_last_fields); if (ip != free_ip) xfs_iunlock(ip, XFS_ILOCK_EXCL); return; out_iunlock: if (ip != free_ip) xfs_iunlock(ip, XFS_ILOCK_EXCL); out_iflags_unlock: spin_unlock(&ip->i_flags_lock); rcu_read_unlock(); } /* * A big issue when freeing the inode cluster is that we _cannot_ skip any * inodes that are in memory - they all must be marked stale and attached to * the cluster buffer. */ static int xfs_ifree_cluster( struct xfs_trans *tp, struct xfs_perag *pag, struct xfs_inode *free_ip, struct xfs_icluster *xic) { struct xfs_mount *mp = free_ip->i_mount; struct xfs_ino_geometry *igeo = M_IGEO(mp); struct xfs_buf *bp; xfs_daddr_t blkno; xfs_ino_t inum = xic->first_ino; int nbufs; int i, j; int ioffset; int error; nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { /* * The allocation bitmap tells us which inodes of the chunk were * physically allocated. Skip the cluster if an inode falls into * a sparse region. */ ioffset = inum - xic->first_ino; if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { ASSERT(ioffset % igeo->inodes_per_cluster == 0); continue; } blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), XFS_INO_TO_AGBNO(mp, inum)); /* * We obtain and lock the backing buffer first in the process * here to ensure dirty inodes attached to the buffer remain in * the flushing state while we mark them stale. * * If we scan the in-memory inodes first, then buffer IO can * complete before we get a lock on it, and hence we may fail * to mark all the active inodes on the buffer stale. */ error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, mp->m_bsize * igeo->blocks_per_cluster, XBF_UNMAPPED, &bp); if (error) return error; /* * This buffer may not have been correctly initialised as we * didn't read it from disk. That's not important because we are * only using to mark the buffer as stale in the log, and to * attach stale cached inodes on it. * * For the inode that triggered the cluster freeing, this * attachment may occur in xfs_inode_item_precommit() after we * have marked this buffer stale. If this buffer was not in * memory before xfs_ifree_cluster() started, it will not be * marked XBF_DONE and this will cause problems later in * xfs_inode_item_precommit() when we trip over a (stale, !done) * buffer to attached to the transaction. * * Hence we have to mark the buffer as XFS_DONE here. This is * safe because we are also marking the buffer as XBF_STALE and * XFS_BLI_STALE. That means it will never be dispatched for * IO and it won't be unlocked until the cluster freeing has * been committed to the journal and the buffer unpinned. If it * is written, we want to know about it, and we want it to * fail. We can acheive this by adding a write verifier to the * buffer. */ bp->b_flags |= XBF_DONE; bp->b_ops = &xfs_inode_buf_ops; /* * Now we need to set all the cached clean inodes as XFS_ISTALE, * too. This requires lookups, and will skip inodes that we've * already marked XFS_ISTALE. */ for (i = 0; i < igeo->inodes_per_cluster; i++) xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); xfs_trans_stale_inode_buf(tp, bp); xfs_trans_binval(tp, bp); } return 0; } /* * This is called to return an inode to the inode free list. The inode should * already be truncated to 0 length and have no pages associated with it. This * routine also assumes that the inode is already a part of the transaction. * * The on-disk copy of the inode will have been added to the list of unlinked * inodes in the AGI. We need to remove the inode from that list atomically with * respect to freeing it here. */ int xfs_ifree( struct xfs_trans *tp, struct xfs_inode *ip) { struct xfs_mount *mp = ip->i_mount; struct xfs_perag *pag; struct xfs_icluster xic = { 0 }; struct xfs_inode_log_item *iip = ip->i_itemp; int error; xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); ASSERT(VFS_I(ip)->i_nlink == 0); ASSERT(ip->i_df.if_nextents == 0); ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); ASSERT(ip->i_nblocks == 0); pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); error = xfs_inode_uninit(tp, pag, ip, &xic); if (error) goto out; if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); /* Don't attempt to replay owner changes for a deleted inode */ spin_lock(&iip->ili_lock); iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); spin_unlock(&iip->ili_lock); if (xic.deleted) error = xfs_ifree_cluster(tp, pag, ip, &xic); out: xfs_perag_put(pag); return error; } /* * This is called to unpin an inode. The caller must have the inode locked * in at least shared mode so that the buffer cannot be subsequently pinned * once someone is waiting for it to be unpinned. */ static void xfs_iunpin( struct xfs_inode *ip) { xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); trace_xfs_inode_unpin_nowait(ip, _RET_IP_); /* Give the log a push to start the unpinning I/O */ xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); } static void __xfs_iunpin_wait( struct xfs_inode *ip) { wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); xfs_iunpin(ip); do { prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); if (xfs_ipincount(ip)) io_schedule(); } while (xfs_ipincount(ip)); finish_wait(wq, &wait.wq_entry); } void xfs_iunpin_wait( struct xfs_inode *ip) { if (xfs_ipincount(ip)) __xfs_iunpin_wait(ip); } /* * Removing an inode from the namespace involves removing the directory entry * and dropping the link count on the inode. Removing the directory entry can * result in locking an AGF (directory blocks were freed) and removing a link * count can result in placing the inode on an unlinked list which results in * locking an AGI. * * The big problem here is that we have an ordering constraint on AGF and AGI * locking - inode allocation locks the AGI, then can allocate a new extent for * new inodes, locking the AGF after the AGI. Similarly, freeing the inode * removes the inode from the unlinked list, requiring that we lock the AGI * first, and then freeing the inode can result in an inode chunk being freed * and hence freeing disk space requiring that we lock an AGF. * * Hence the ordering that is imposed by other parts of the code is AGI before * AGF. This means we cannot remove the directory entry before we drop the inode * reference count and put it on the unlinked list as this results in a lock * order of AGF then AGI, and this can deadlock against inode allocation and * freeing. Therefore we must drop the link counts before we remove the * directory entry. * * This is still safe from a transactional point of view - it is not until we * get to xfs_defer_finish() that we have the possibility of multiple * transactions in this operation. Hence as long as we remove the directory * entry and drop the link count in the first transaction of the remove * operation, there are no transactional constraints on the ordering here. */ int xfs_remove( struct xfs_inode *dp, struct xfs_name *name, struct xfs_inode *ip) { struct xfs_dir_update du = { .dp = dp, .name = name, .ip = ip, }; struct xfs_mount *mp = dp->i_mount; struct xfs_trans *tp = NULL; int is_dir = S_ISDIR(VFS_I(ip)->i_mode); int dontcare; int error = 0; uint resblks; trace_xfs_remove(dp, name); if (xfs_is_shutdown(mp)) return -EIO; if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) return -EIO; error = xfs_qm_dqattach(dp); if (error) goto std_return; error = xfs_qm_dqattach(ip); if (error) goto std_return; error = xfs_parent_start(mp, &du.ppargs); if (error) goto std_return; /* * We try to get the real space reservation first, allowing for * directory btree deletion(s) implying possible bmap insert(s). If we * can't get the space reservation then we use 0 instead, and avoid the * bmap btree insert(s) in the directory code by, if the bmap insert * tries to happen, instead trimming the LAST block from the directory. * * Ignore EDQUOT and ENOSPC being returned via nospace_error because * the directory code can handle a reservationless update and we don't * want to prevent a user from trying to free space by deleting things. */ resblks = xfs_remove_space_res(mp, name->len); error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks, &tp, &dontcare); if (error) { ASSERT(error != -ENOSPC); goto out_parent; } error = xfs_dir_remove_child(tp, resblks, &du); if (error) goto out_trans_cancel; /* * If this is a synchronous mount, make sure that the * remove transaction goes to disk before returning to * the user. */ if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) xfs_trans_set_sync(tp); error = xfs_trans_commit(tp); if (error) goto out_unlock; if (is_dir && xfs_inode_is_filestream(ip)) xfs_filestream_deassociate(ip); xfs_iunlock(ip, XFS_ILOCK_EXCL); xfs_iunlock(dp, XFS_ILOCK_EXCL); xfs_parent_finish(mp, du.ppargs); return 0; out_trans_cancel: xfs_trans_cancel(tp); out_unlock: xfs_iunlock(ip, XFS_ILOCK_EXCL); xfs_iunlock(dp, XFS_ILOCK_EXCL); out_parent: xfs_parent_finish(mp, du.ppargs); std_return: return error; } static inline void xfs_iunlock_rename( struct xfs_inode **i_tab, int num_inodes) { int i; for (i = num_inodes - 1; i >= 0; i--) { /* Skip duplicate inodes if src and target dps are the same */ if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1])) continue; xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL); } } /* * Enter all inodes for a rename transaction into a sorted array. */ #define __XFS_SORT_INODES 5 STATIC void xfs_sort_for_rename( struct xfs_inode *dp1, /* in: old (source) directory inode */ struct xfs_inode *dp2, /* in: new (target) directory inode */ struct xfs_inode *ip1, /* in: inode of old entry */ struct xfs_inode *ip2, /* in: inode of new entry */ struct xfs_inode *wip, /* in: whiteout inode */ struct xfs_inode **i_tab,/* out: sorted array of inodes */ int *num_inodes) /* in/out: inodes in array */ { int i; ASSERT(*num_inodes == __XFS_SORT_INODES); memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); /* * i_tab contains a list of pointers to inodes. We initialize * the table here & we'll sort it. We will then use it to * order the acquisition of the inode locks. * * Note that the table may contain duplicates. e.g., dp1 == dp2. */ i = 0; i_tab[i++] = dp1; i_tab[i++] = dp2; i_tab[i++] = ip1; if (ip2) i_tab[i++] = ip2; if (wip) i_tab[i++] = wip; *num_inodes = i; xfs_sort_inodes(i_tab, *num_inodes); } void xfs_sort_inodes( struct xfs_inode **i_tab, unsigned int num_inodes) { int i, j; ASSERT(num_inodes <= __XFS_SORT_INODES); /* * Sort the elements via bubble sort. (Remember, there are at * most 5 elements to sort, so this is adequate.) */ for (i = 0; i < num_inodes; i++) { for (j = 1; j < num_inodes; j++) { if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) swap(i_tab[j], i_tab[j - 1]); } } } /* * xfs_rename_alloc_whiteout() * * Return a referenced, unlinked, unlocked inode that can be used as a * whiteout in a rename transaction. We use a tmpfile inode here so that if we * crash between allocating the inode and linking it into the rename transaction * recovery will free the inode and we won't leak it. */ static int xfs_rename_alloc_whiteout( struct mnt_idmap *idmap, struct xfs_name *src_name, struct xfs_inode *dp, struct xfs_inode **wip) { struct xfs_icreate_args args = { .idmap = idmap, .pip = dp, .mode = S_IFCHR | WHITEOUT_MODE, .flags = XFS_ICREATE_TMPFILE, }; struct xfs_inode *tmpfile; struct qstr name; int error; error = xfs_create_tmpfile(&args, &tmpfile); if (error) return error; name.name = src_name->name; name.len = src_name->len; error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name); if (error) { xfs_finish_inode_setup(tmpfile); xfs_irele(tmpfile); return error; } /* * Prepare the tmpfile inode as if it were created through the VFS. * Complete the inode setup and flag it as linkable. nlink is already * zero, so we can skip the drop_nlink. */ xfs_setup_iops(tmpfile); xfs_finish_inode_setup(tmpfile); VFS_I(tmpfile)->i_state |= I_LINKABLE; *wip = tmpfile; return 0; } /* * xfs_rename */ int xfs_rename( struct mnt_idmap *idmap, struct xfs_inode *src_dp, struct xfs_name *src_name, struct xfs_inode *src_ip, struct xfs_inode *target_dp, struct xfs_name *target_name, struct xfs_inode *target_ip, unsigned int flags) { struct xfs_dir_update du_src = { .dp = src_dp, .name = src_name, .ip = src_ip, }; struct xfs_dir_update du_tgt = { .dp = target_dp, .name = target_name, .ip = target_ip, }; struct xfs_dir_update du_wip = { }; struct xfs_mount *mp = src_dp->i_mount; struct xfs_trans *tp; struct xfs_inode *inodes[__XFS_SORT_INODES]; int i; int num_inodes = __XFS_SORT_INODES; bool new_parent = (src_dp != target_dp); bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); int spaceres; bool retried = false; int error, nospace_error = 0; trace_xfs_rename(src_dp, target_dp, src_name, target_name); if ((flags & RENAME_EXCHANGE) && !target_ip) return -EINVAL; /* * If we are doing a whiteout operation, allocate the whiteout inode * we will be placing at the target and ensure the type is set * appropriately. */ if (flags & RENAME_WHITEOUT) { error = xfs_rename_alloc_whiteout(idmap, src_name, target_dp, &du_wip.ip); if (error) return error; /* setup target dirent info as whiteout */ src_name->type = XFS_DIR3_FT_CHRDEV; } xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, du_wip.ip, inodes, &num_inodes); error = xfs_parent_start(mp, &du_src.ppargs); if (error) goto out_release_wip; if (du_wip.ip) { error = xfs_parent_start(mp, &du_wip.ppargs); if (error) goto out_src_ppargs; } if (target_ip) { error = xfs_parent_start(mp, &du_tgt.ppargs); if (error) goto out_wip_ppargs; } retry: nospace_error = 0; spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL, target_name->len, du_wip.ip != NULL); error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); if (error == -ENOSPC) { nospace_error = error; spaceres = 0; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, &tp); } if (error) goto out_tgt_ppargs; /* * We don't allow reservationless renaming when parent pointers are * enabled because we can't back out if the xattrs must grow. */ if (du_src.ppargs && nospace_error) { error = nospace_error; xfs_trans_cancel(tp); goto out_tgt_ppargs; } /* * Attach the dquots to the inodes */ error = xfs_qm_vop_rename_dqattach(inodes); if (error) { xfs_trans_cancel(tp); goto out_tgt_ppargs; } /* * Lock all the participating inodes. Depending upon whether * the target_name exists in the target directory, and * whether the target directory is the same as the source * directory, we can lock from 2 to 5 inodes. */ xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); /* * Join all the inodes to the transaction. */ xfs_trans_ijoin(tp, src_dp, 0); if (new_parent) xfs_trans_ijoin(tp, target_dp, 0); xfs_trans_ijoin(tp, src_ip, 0); if (target_ip) xfs_trans_ijoin(tp, target_ip, 0); if (du_wip.ip) xfs_trans_ijoin(tp, du_wip.ip, 0); /* * If we are using project inheritance, we only allow renames * into our tree when the project IDs are the same; else the * tree quota mechanism would be circumvented. */ if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && target_dp->i_projid != src_ip->i_projid)) { error = -EXDEV; goto out_trans_cancel; } /* RENAME_EXCHANGE is unique from here on. */ if (flags & RENAME_EXCHANGE) { error = xfs_dir_exchange_children(tp, &du_src, &du_tgt, spaceres); if (error) goto out_trans_cancel; goto out_commit; } /* * Try to reserve quota to handle an expansion of the target directory. * We'll allow the rename to continue in reservationless mode if we hit * a space usage constraint. If we trigger reservationless mode, save * the errno if there isn't any free space in the target directory. */ if (spaceres != 0) { error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres, 0, false); if (error == -EDQUOT || error == -ENOSPC) { if (!retried) { xfs_trans_cancel(tp); xfs_iunlock_rename(inodes, num_inodes); xfs_blockgc_free_quota(target_dp, 0); retried = true; goto retry; } nospace_error = error; spaceres = 0; error = 0; } if (error) goto out_trans_cancel; } /* * We don't allow quotaless renaming when parent pointers are enabled * because we can't back out if the xattrs must grow. */ if (du_src.ppargs && nospace_error) { error = nospace_error; goto out_trans_cancel; } /* * Lock the AGI buffers we need to handle bumping the nlink of the * whiteout inode off the unlinked list and to handle dropping the * nlink of the target inode. Per locking order rules, do this in * increasing AG order and before directory block allocation tries to * grab AGFs because we grab AGIs before AGFs. * * The (vfs) caller must ensure that if src is a directory then * target_ip is either null or an empty directory. */ for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { if (inodes[i] == du_wip.ip || (inodes[i] == target_ip && (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { struct xfs_perag *pag; struct xfs_buf *bp; pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inodes[i]->i_ino)); error = xfs_read_agi(pag, tp, 0, &bp); xfs_perag_put(pag); if (error) goto out_trans_cancel; } } error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres, &du_wip); if (error) goto out_trans_cancel; if (du_wip.ip) { /* * Now we have a real link, clear the "I'm a tmpfile" state * flag from the inode so it doesn't accidentally get misused in * future. */ VFS_I(du_wip.ip)->i_state &= ~I_LINKABLE; } out_commit: /* * If this is a synchronous mount, make sure that the rename * transaction goes to disk before returning to the user. */ if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) xfs_trans_set_sync(tp); error = xfs_trans_commit(tp); nospace_error = 0; goto out_unlock; out_trans_cancel: xfs_trans_cancel(tp); out_unlock: xfs_iunlock_rename(inodes, num_inodes); out_tgt_ppargs: xfs_parent_finish(mp, du_tgt.ppargs); out_wip_ppargs: xfs_parent_finish(mp, du_wip.ppargs); out_src_ppargs: xfs_parent_finish(mp, du_src.ppargs); out_release_wip: if (du_wip.ip) xfs_irele(du_wip.ip); if (error == -ENOSPC && nospace_error) error = nospace_error; return error; } static int xfs_iflush( struct xfs_inode *ip, struct xfs_buf *bp) { struct xfs_inode_log_item *iip = ip->i_itemp; struct xfs_dinode *dip; struct xfs_mount *mp = ip->i_mount; int error; xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); ASSERT(iip->ili_item.li_buf == bp); dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); /* * We don't flush the inode if any of the following checks fail, but we * do still update the log item and attach to the backing buffer as if * the flush happened. This is a formality to facilitate predictable * error handling as the caller will shutdown and fail the buffer. */ error = -EFSCORRUPTED; if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), mp, XFS_ERRTAG_IFLUSH_1)) { xfs_alert_tag(mp, XFS_PTAG_IFLUSH, "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT, __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); goto flush_out; } if (S_ISREG(VFS_I(ip)->i_mode)) { if (XFS_TEST_ERROR( ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && ip->i_df.if_format != XFS_DINODE_FMT_BTREE, mp, XFS_ERRTAG_IFLUSH_3)) { xfs_alert_tag(mp, XFS_PTAG_IFLUSH, "%s: Bad regular inode %llu, ptr "PTR_FMT, __func__, ip->i_ino, ip); goto flush_out; } } else if (S_ISDIR(VFS_I(ip)->i_mode)) { if (XFS_TEST_ERROR( ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && ip->i_df.if_format != XFS_DINODE_FMT_BTREE && ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, mp, XFS_ERRTAG_IFLUSH_4)) { xfs_alert_tag(mp, XFS_PTAG_IFLUSH, "%s: Bad directory inode %llu, ptr "PTR_FMT, __func__, ip->i_ino, ip); goto flush_out; } } if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) > ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { xfs_alert_tag(mp, XFS_PTAG_IFLUSH, "%s: detected corrupt incore inode %llu, " "total extents = %llu nblocks = %lld, ptr "PTR_FMT, __func__, ip->i_ino, ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af), ip->i_nblocks, ip); goto flush_out; } if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, mp, XFS_ERRTAG_IFLUSH_6)) { xfs_alert_tag(mp, XFS_PTAG_IFLUSH, "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT, __func__, ip->i_ino, ip->i_forkoff, ip); goto flush_out; } /* * Inode item log recovery for v2 inodes are dependent on the flushiter * count for correct sequencing. We bump the flush iteration count so * we can detect flushes which postdate a log record during recovery. * This is redundant as we now log every change and hence this can't * happen but we need to still do it to ensure backwards compatibility * with old kernels that predate logging all inode changes. */ if (!xfs_has_v3inodes(mp)) ip->i_flushiter++; /* * If there are inline format data / attr forks attached to this inode, * make sure they are not corrupt. */ if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && xfs_ifork_verify_local_data(ip)) goto flush_out; if (xfs_inode_has_attr_fork(ip) && ip->i_af.if_format == XFS_DINODE_FMT_LOCAL && xfs_ifork_verify_local_attr(ip)) goto flush_out; /* * Copy the dirty parts of the inode into the on-disk inode. We always * copy out the core of the inode, because if the inode is dirty at all * the core must be. */ xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); /* Wrap, we never let the log put out DI_MAX_FLUSH */ if (!xfs_has_v3inodes(mp)) { if (ip->i_flushiter == DI_MAX_FLUSH) ip->i_flushiter = 0; } xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); if (xfs_inode_has_attr_fork(ip)) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); /* * We've recorded everything logged in the inode, so we'd like to clear * the ili_fields bits so we don't log and flush things unnecessarily. * However, we can't stop logging all this information until the data * we've copied into the disk buffer is written to disk. If we did we * might overwrite the copy of the inode in the log with all the data * after re-logging only part of it, and in the face of a crash we * wouldn't have all the data we need to recover. * * What we do is move the bits to the ili_last_fields field. When * logging the inode, these bits are moved back to the ili_fields field. * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since * we know that the information those bits represent is permanently on * disk. As long as the flush completes before the inode is logged * again, then both ili_fields and ili_last_fields will be cleared. */ error = 0; flush_out: spin_lock(&iip->ili_lock); iip->ili_last_fields = iip->ili_fields; iip->ili_fields = 0; iip->ili_fsync_fields = 0; set_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags); spin_unlock(&iip->ili_lock); /* * Store the current LSN of the inode so that we can tell whether the * item has moved in the AIL from xfs_buf_inode_iodone(). */ xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, &iip->ili_item.li_lsn); /* generate the checksum. */ xfs_dinode_calc_crc(mp, dip); if (error) xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); return error; } /* * Non-blocking flush of dirty inode metadata into the backing buffer. * * The caller must have a reference to the inode and hold the cluster buffer * locked. The function will walk across all the inodes on the cluster buffer it * can find and lock without blocking, and flush them to the cluster buffer. * * On successful flushing of at least one inode, the caller must write out the * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and * the caller needs to release the buffer. On failure, the filesystem will be * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED * will be returned. */ int xfs_iflush_cluster( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_mount; struct xfs_log_item *lip, *n; struct xfs_inode *ip; struct xfs_inode_log_item *iip; int clcount = 0; int error = 0; /* * We must use the safe variant here as on shutdown xfs_iflush_abort() * will remove itself from the list. */ list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { iip = (struct xfs_inode_log_item *)lip; ip = iip->ili_inode; /* * Quick and dirty check to avoid locks if possible. */ if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) continue; if (xfs_ipincount(ip)) continue; /* * The inode is still attached to the buffer, which means it is * dirty but reclaim might try to grab it. Check carefully for * that, and grab the ilock while still holding the i_flags_lock * to guarantee reclaim will not be able to reclaim this inode * once we drop the i_flags_lock. */ spin_lock(&ip->i_flags_lock); ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { spin_unlock(&ip->i_flags_lock); continue; } /* * ILOCK will pin the inode against reclaim and prevent * concurrent transactions modifying the inode while we are * flushing the inode. If we get the lock, set the flushing * state before we drop the i_flags_lock. */ if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { spin_unlock(&ip->i_flags_lock); continue; } __xfs_iflags_set(ip, XFS_IFLUSHING); spin_unlock(&ip->i_flags_lock); /* * Abort flushing this inode if we are shut down because the * inode may not currently be in the AIL. This can occur when * log I/O failure unpins the inode without inserting into the * AIL, leaving a dirty/unpinned inode attached to the buffer * that otherwise looks like it should be flushed. */ if (xlog_is_shutdown(mp->m_log)) { xfs_iunpin_wait(ip); xfs_iflush_abort(ip); xfs_iunlock(ip, XFS_ILOCK_SHARED); error = -EIO; continue; } /* don't block waiting on a log force to unpin dirty inodes */ if (xfs_ipincount(ip)) { xfs_iflags_clear(ip, XFS_IFLUSHING); xfs_iunlock(ip, XFS_ILOCK_SHARED); continue; } if (!xfs_inode_clean(ip)) error = xfs_iflush(ip, bp); else xfs_iflags_clear(ip, XFS_IFLUSHING); xfs_iunlock(ip, XFS_ILOCK_SHARED); if (error) break; clcount++; } if (error) { /* * Shutdown first so we kill the log before we release this * buffer. If it is an INODE_ALLOC buffer and pins the tail * of the log, failing it before the _log_ is shut down can * result in the log tail being moved forward in the journal * on disk because log writes can still be taking place. Hence * unpinning the tail will allow the ICREATE intent to be * removed from the log an recovery will fail with uninitialised * inode cluster buffers. */ xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); bp->b_flags |= XBF_ASYNC; xfs_buf_ioend_fail(bp); return error; } if (!clcount) return -EAGAIN; XFS_STATS_INC(mp, xs_icluster_flushcnt); XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); return 0; } /* Release an inode. */ void xfs_irele( struct xfs_inode *ip) { trace_xfs_irele(ip, _RET_IP_); iput(VFS_I(ip)); } /* * Ensure all commited transactions touching the inode are written to the log. */ int xfs_log_force_inode( struct xfs_inode *ip) { xfs_csn_t seq = 0; xfs_ilock(ip, XFS_ILOCK_SHARED); if (xfs_ipincount(ip)) seq = ip->i_itemp->ili_commit_seq; xfs_iunlock(ip, XFS_ILOCK_SHARED); if (!seq) return 0; return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); } /* * Grab the exclusive iolock for a data copy from src to dest, making sure to * abide vfs locking order (lowest pointer value goes first) and breaking the * layout leases before proceeding. The loop is needed because we cannot call * the blocking break_layout() with the iolocks held, and therefore have to * back out both locks. */ static int xfs_iolock_two_inodes_and_break_layout( struct inode *src, struct inode *dest) { int error; if (src > dest) swap(src, dest); retry: /* Wait to break both inodes' layouts before we start locking. */ error = break_layout(src, true); if (error) return error; if (src != dest) { error = break_layout(dest, true); if (error) return error; } /* Lock one inode and make sure nobody got in and leased it. */ inode_lock(src); error = break_layout(src, false); if (error) { inode_unlock(src); if (error == -EWOULDBLOCK) goto retry; return error; } if (src == dest) return 0; /* Lock the other inode and make sure nobody got in and leased it. */ inode_lock_nested(dest, I_MUTEX_NONDIR2); error = break_layout(dest, false); if (error) { inode_unlock(src); inode_unlock(dest); if (error == -EWOULDBLOCK) goto retry; return error; } return 0; } static int xfs_mmaplock_two_inodes_and_break_dax_layout( struct xfs_inode *ip1, struct xfs_inode *ip2) { int error; bool retry; struct page *page; if (ip1->i_ino > ip2->i_ino) swap(ip1, ip2); again: retry = false; /* Lock the first inode */ xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); error = xfs_break_dax_layouts(VFS_I(ip1), &retry); if (error || retry) { xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); if (error == 0 && retry) goto again; return error; } if (ip1 == ip2) return 0; /* Nested lock the second inode */ xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1)); /* * We cannot use xfs_break_dax_layouts() directly here because it may * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable * for this nested lock case. */ page = dax_layout_busy_page(VFS_I(ip2)->i_mapping); if (page && page_ref_count(page) != 1) { xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); goto again; } return 0; } /* * Lock two inodes so that userspace cannot initiate I/O via file syscalls or * mmap activity. */ int xfs_ilock2_io_mmap( struct xfs_inode *ip1, struct xfs_inode *ip2) { int ret; ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); if (ret) return ret; if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2); if (ret) { inode_unlock(VFS_I(ip2)); if (ip1 != ip2) inode_unlock(VFS_I(ip1)); return ret; } } else filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, VFS_I(ip2)->i_mapping); return 0; } /* Unlock both inodes to allow IO and mmap activity. */ void xfs_iunlock2_io_mmap( struct xfs_inode *ip1, struct xfs_inode *ip2) { if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); if (ip1 != ip2) xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); } else filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, VFS_I(ip2)->i_mapping); inode_unlock(VFS_I(ip2)); if (ip1 != ip2) inode_unlock(VFS_I(ip1)); } /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */ void xfs_iunlock2_remapping( struct xfs_inode *ip1, struct xfs_inode *ip2) { xfs_iflags_clear(ip1, XFS_IREMAPPING); if (ip1 != ip2) xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED); xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); if (ip1 != ip2) inode_unlock_shared(VFS_I(ip1)); inode_unlock(VFS_I(ip2)); } /* * Reload the incore inode list for this inode. Caller should ensure that * the link count cannot change, either by taking ILOCK_SHARED or otherwise * preventing other threads from executing. */ int xfs_inode_reload_unlinked_bucket( struct xfs_trans *tp, struct xfs_inode *ip) { struct xfs_mount *mp = tp->t_mountp; struct xfs_buf *agibp; struct xfs_agi *agi; struct xfs_perag *pag; xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); xfs_agino_t prev_agino, next_agino; unsigned int bucket; bool foundit = false; int error; /* Grab the first inode in the list */ pag = xfs_perag_get(mp, agno); error = xfs_ialloc_read_agi(pag, tp, 0, &agibp); xfs_perag_put(pag); if (error) return error; /* * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the * incore unlinked list pointers for this inode. Check once more to * see if we raced with anyone else to reload the unlinked list. */ if (!xfs_inode_unlinked_incomplete(ip)) { foundit = true; goto out_agibp; } bucket = agino % XFS_AGI_UNLINKED_BUCKETS; agi = agibp->b_addr; trace_xfs_inode_reload_unlinked_bucket(ip); xfs_info_ratelimited(mp, "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.", agino, agno); prev_agino = NULLAGINO; next_agino = be32_to_cpu(agi->agi_unlinked[bucket]); while (next_agino != NULLAGINO) { struct xfs_inode *next_ip = NULL; /* Found this caller's inode, set its backlink. */ if (next_agino == agino) { next_ip = ip; next_ip->i_prev_unlinked = prev_agino; foundit = true; goto next_inode; } /* Try in-memory lookup first. */ next_ip = xfs_iunlink_lookup(pag, next_agino); if (next_ip) goto next_inode; /* Inode not in memory, try reloading it. */ error = xfs_iunlink_reload_next(tp, agibp, prev_agino, next_agino); if (error) break; /* Grab the reloaded inode. */ next_ip = xfs_iunlink_lookup(pag, next_agino); if (!next_ip) { /* No incore inode at all? We reloaded it... */ ASSERT(next_ip != NULL); error = -EFSCORRUPTED; break; } next_inode: prev_agino = next_agino; next_agino = next_ip->i_next_unlinked; } out_agibp: xfs_trans_brelse(tp, agibp); /* Should have found this inode somewhere in the iunlinked bucket. */ if (!error && !foundit) error = -EFSCORRUPTED; return error; } /* Decide if this inode is missing its unlinked list and reload it. */ int xfs_inode_reload_unlinked( struct xfs_inode *ip) { struct xfs_trans *tp; int error; error = xfs_trans_alloc_empty(ip->i_mount, &tp); if (error) return error; xfs_ilock(ip, XFS_ILOCK_SHARED); if (xfs_inode_unlinked_incomplete(ip)) error = xfs_inode_reload_unlinked_bucket(tp, ip); xfs_iunlock(ip, XFS_ILOCK_SHARED); xfs_trans_cancel(tp); return error; } /* Has this inode fork been zapped by repair? */ bool xfs_ifork_zapped( const struct xfs_inode *ip, int whichfork) { unsigned int datamask = 0; switch (whichfork) { case XFS_DATA_FORK: switch (ip->i_vnode.i_mode & S_IFMT) { case S_IFDIR: datamask = XFS_SICK_INO_DIR_ZAPPED; break; case S_IFLNK: datamask = XFS_SICK_INO_SYMLINK_ZAPPED; break; } return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask); case XFS_ATTR_FORK: return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED; default: return false; } } /* Compute the number of data and realtime blocks used by a file. */ void xfs_inode_count_blocks( struct xfs_trans *tp, struct xfs_inode *ip, xfs_filblks_t *dblocks, xfs_filblks_t *rblocks) { struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); *rblocks = 0; if (XFS_IS_REALTIME_INODE(ip)) xfs_bmap_count_leaves(ifp, rblocks); *dblocks = ip->i_nblocks - *rblocks; } static void xfs_wait_dax_page( struct inode *inode) { struct xfs_inode *ip = XFS_I(inode); xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); schedule(); xfs_ilock(ip, XFS_MMAPLOCK_EXCL); } int xfs_break_dax_layouts( struct inode *inode, bool *retry) { struct page *page; xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL); page = dax_layout_busy_page(inode->i_mapping); if (!page) return 0; *retry = true; return ___wait_var_event(&page->_refcount, atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 0, 0, xfs_wait_dax_page(inode)); } int xfs_break_layouts( struct inode *inode, uint *iolock, enum layout_break_reason reason) { bool retry; int error; xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL); do { retry = false; switch (reason) { case BREAK_UNMAP: error = xfs_break_dax_layouts(inode, &retry); if (error || retry) break; fallthrough; case BREAK_WRITE: error = xfs_break_leased_layouts(inode, iolock, &retry); break; default: WARN_ON_ONCE(1); error = -EINVAL; } } while (error == 0 && retry); return error; } /* Returns the size of fundamental allocation unit for a file, in bytes. */ unsigned int xfs_inode_alloc_unitsize( struct xfs_inode *ip) { unsigned int blocks = 1; if (XFS_IS_REALTIME_INODE(ip)) blocks = ip->i_mount->m_sb.sb_rextsize; return XFS_FSB_TO_B(ip->i_mount, blocks); } /* Should we always be using copy on write for file writes? */ bool xfs_is_always_cow_inode( struct xfs_inode *ip) { return ip->i_mount->m_always_cow && xfs_has_reflink(ip->i_mount); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1