Contributors: 120
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Christoph Hellwig |
2536 |
40.44% |
161 |
28.80% |
Jens Axboe |
572 |
9.12% |
63 |
11.27% |
Al Viro |
452 |
7.21% |
23 |
4.11% |
Damien Le Moal |
319 |
5.09% |
19 |
3.40% |
Martin K. Petersen |
291 |
4.64% |
19 |
3.40% |
John Garry |
207 |
3.30% |
9 |
1.61% |
Tejun Heo |
122 |
1.95% |
31 |
5.55% |
Linus Torvalds |
119 |
1.90% |
11 |
1.97% |
Keith Busch |
112 |
1.79% |
9 |
1.61% |
Andrew Morton |
87 |
1.39% |
12 |
2.15% |
Hannes Reinecke |
76 |
1.21% |
2 |
0.36% |
Ming Lei |
76 |
1.21% |
13 |
2.33% |
David Woodhouse |
68 |
1.08% |
1 |
0.18% |
Pankaj Raghav |
65 |
1.04% |
3 |
0.54% |
Bart Van Assche |
61 |
0.97% |
13 |
2.33% |
Neil Brown |
60 |
0.96% |
6 |
1.07% |
Christian Brauner |
56 |
0.89% |
5 |
0.89% |
Linus Torvalds (pre-git) |
55 |
0.88% |
15 |
2.68% |
Chaitanya Kulkarni |
51 |
0.81% |
4 |
0.72% |
Lukas Czerner |
49 |
0.78% |
1 |
0.18% |
Satya Tangirala |
43 |
0.69% |
3 |
0.54% |
Eric Biggers |
36 |
0.57% |
3 |
0.54% |
Niklas Svensson (Niklas Cassel) |
32 |
0.51% |
2 |
0.36% |
FUJITA Tomonori |
30 |
0.48% |
3 |
0.54% |
Dan J Williams |
25 |
0.40% |
6 |
1.07% |
Greg Ungerer |
24 |
0.38% |
1 |
0.18% |
Omar Sandoval |
23 |
0.37% |
3 |
0.54% |
Kiyoshi Ueda |
22 |
0.35% |
3 |
0.54% |
Ilya Loginov |
22 |
0.35% |
1 |
0.18% |
Arnd Bergmann |
22 |
0.35% |
1 |
0.18% |
Naohiro Aota |
22 |
0.35% |
1 |
0.18% |
Hugh Dickins |
21 |
0.33% |
1 |
0.18% |
Will Drewry |
20 |
0.32% |
1 |
0.18% |
Johannes Thumshirn |
20 |
0.32% |
3 |
0.54% |
Stephen Rothwell |
18 |
0.29% |
1 |
0.18% |
Dmitry Osipenko |
17 |
0.27% |
1 |
0.18% |
David Howells |
17 |
0.27% |
1 |
0.18% |
Jan Kara |
17 |
0.27% |
4 |
0.72% |
Song Liu |
16 |
0.26% |
1 |
0.18% |
Xie Yongji |
16 |
0.26% |
1 |
0.18% |
Fernando Luis Vázquez Cao |
16 |
0.26% |
1 |
0.18% |
Kay Sievers |
13 |
0.21% |
2 |
0.36% |
Martin Wilck |
13 |
0.21% |
1 |
0.18% |
Dmitriy Monakhov |
12 |
0.19% |
2 |
0.36% |
yu kuai |
12 |
0.19% |
3 |
0.54% |
Vivek Goyal |
11 |
0.18% |
1 |
0.18% |
Hou Tao |
11 |
0.18% |
2 |
0.36% |
Kent Overstreet |
10 |
0.16% |
2 |
0.36% |
Mikulas Patocka |
10 |
0.16% |
2 |
0.36% |
Shaohua Li |
10 |
0.16% |
1 |
0.18% |
David Alan Gilbert |
9 |
0.14% |
1 |
0.18% |
Mike Snitzer |
9 |
0.14% |
2 |
0.36% |
Nitin Gupta |
9 |
0.14% |
1 |
0.18% |
Lin Ming |
8 |
0.13% |
1 |
0.18% |
Dawei Li |
8 |
0.13% |
1 |
0.18% |
Matthew Wilcox |
8 |
0.13% |
1 |
0.18% |
Alan Stern |
7 |
0.11% |
1 |
0.18% |
Fabian Frederick |
7 |
0.11% |
1 |
0.18% |
Chao Leng |
7 |
0.11% |
1 |
0.18% |
Prasad Singamsetty |
7 |
0.11% |
1 |
0.18% |
Alexey Dobriyan |
6 |
0.10% |
2 |
0.36% |
Luis R. Rodriguez |
6 |
0.10% |
2 |
0.36% |
Jun'ichi Nomura |
6 |
0.10% |
2 |
0.36% |
David C Somayajulu |
6 |
0.10% |
1 |
0.18% |
Shaun Tancheff |
6 |
0.10% |
1 |
0.18% |
Akinobu Mita |
6 |
0.10% |
2 |
0.36% |
Alan D. Brunelle |
6 |
0.10% |
2 |
0.36% |
Benjamin Herrenschmidt |
5 |
0.08% |
2 |
0.36% |
Michael Christie |
5 |
0.08% |
1 |
0.18% |
Shin'ichiro Kawasaki |
5 |
0.08% |
1 |
0.18% |
Srivatsa Vaddagiri |
5 |
0.08% |
1 |
0.18% |
Toshi Kani |
5 |
0.08% |
3 |
0.54% |
Sagi Grimberg |
5 |
0.08% |
1 |
0.18% |
Bartlomiej Zolnierkiewicz |
4 |
0.06% |
1 |
0.18% |
Byungchul Park |
4 |
0.06% |
1 |
0.18% |
Vishal Verma |
4 |
0.06% |
1 |
0.18% |
Andy Shevchenko |
4 |
0.06% |
2 |
0.36% |
Pete Wyckoff |
4 |
0.06% |
1 |
0.18% |
Kanchan Joshi |
4 |
0.06% |
1 |
0.18% |
Sebastian Ott |
4 |
0.06% |
1 |
0.18% |
Jaroslav Kysela |
3 |
0.05% |
1 |
0.18% |
Koji Sato |
3 |
0.05% |
1 |
0.18% |
James Bottomley |
3 |
0.05% |
1 |
0.18% |
Josef Bacik |
3 |
0.05% |
1 |
0.18% |
Matteo Croce |
3 |
0.05% |
1 |
0.18% |
Peter Zijlstra |
3 |
0.05% |
1 |
0.18% |
Nicholas Bellinger |
3 |
0.05% |
1 |
0.18% |
Huang Ying |
3 |
0.05% |
1 |
0.18% |
Ingo Molnar |
3 |
0.05% |
1 |
0.18% |
Nico Pitre |
3 |
0.05% |
1 |
0.18% |
Max Gurtovoy |
3 |
0.05% |
1 |
0.18% |
Li Zefan |
3 |
0.05% |
1 |
0.18% |
Martin Dalecki |
3 |
0.05% |
1 |
0.18% |
Yuezhang.Mo |
2 |
0.03% |
1 |
0.18% |
Ajay Joshi |
2 |
0.03% |
1 |
0.18% |
Stephen Warren |
2 |
0.03% |
1 |
0.18% |
Thomas Weißschuh |
2 |
0.03% |
1 |
0.18% |
Theodore Y. Ts'o |
2 |
0.03% |
1 |
0.18% |
Geert Uytterhoeven |
2 |
0.03% |
1 |
0.18% |
Emese Revfy |
2 |
0.03% |
1 |
0.18% |
Dave Kleikamp |
2 |
0.03% |
1 |
0.18% |
Namhyung Kim |
2 |
0.03% |
1 |
0.18% |
Boris Burkov |
2 |
0.03% |
1 |
0.18% |
Jerome Marchand |
2 |
0.03% |
2 |
0.36% |
Bob Liu |
1 |
0.02% |
1 |
0.18% |
Milan Broz |
1 |
0.02% |
1 |
0.18% |
Oleksandr Natalenko |
1 |
0.02% |
1 |
0.18% |
Kristen Carlson Accardi |
1 |
0.02% |
1 |
0.18% |
Jeff Moyer |
1 |
0.02% |
1 |
0.18% |
Pavel Begunkov |
1 |
0.02% |
1 |
0.18% |
Christoph Lameter |
1 |
0.02% |
1 |
0.18% |
Lei Ming |
1 |
0.02% |
1 |
0.18% |
Paolo Bonzini |
1 |
0.02% |
1 |
0.18% |
Ricardo B. Marliere |
1 |
0.02% |
1 |
0.18% |
Andries E. Brouwer |
1 |
0.02% |
1 |
0.18% |
Greg Kroah-Hartman |
1 |
0.02% |
1 |
0.18% |
Minwoo Im |
1 |
0.02% |
1 |
0.18% |
Konstantin Khlebnikov |
1 |
0.02% |
1 |
0.18% |
Suresh Jayaraman |
1 |
0.02% |
1 |
0.18% |
Nikanth Karthikesan |
1 |
0.02% |
1 |
0.18% |
Total |
6271 |
|
559 |
|
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Portions Copyright (C) 1992 Drew Eckhardt
*/
#ifndef _LINUX_BLKDEV_H
#define _LINUX_BLKDEV_H
#include <linux/types.h>
#include <linux/blk_types.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/llist.h>
#include <linux/minmax.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/wait.h>
#include <linux/bio.h>
#include <linux/gfp.h>
#include <linux/kdev_t.h>
#include <linux/rcupdate.h>
#include <linux/percpu-refcount.h>
#include <linux/blkzoned.h>
#include <linux/sched.h>
#include <linux/sbitmap.h>
#include <linux/uuid.h>
#include <linux/xarray.h>
#include <linux/file.h>
struct module;
struct request_queue;
struct elevator_queue;
struct blk_trace;
struct request;
struct sg_io_hdr;
struct blkcg_gq;
struct blk_flush_queue;
struct kiocb;
struct pr_ops;
struct rq_qos;
struct blk_queue_stats;
struct blk_stat_callback;
struct blk_crypto_profile;
extern const struct device_type disk_type;
extern const struct device_type part_type;
extern const struct class block_class;
/*
* Maximum number of blkcg policies allowed to be registered concurrently.
* Defined here to simplify include dependency.
*/
#define BLKCG_MAX_POLS 6
#define DISK_MAX_PARTS 256
#define DISK_NAME_LEN 32
#define PARTITION_META_INFO_VOLNAMELTH 64
/*
* Enough for the string representation of any kind of UUID plus NULL.
* EFI UUID is 36 characters. MSDOS UUID is 11 characters.
*/
#define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1)
struct partition_meta_info {
char uuid[PARTITION_META_INFO_UUIDLTH];
u8 volname[PARTITION_META_INFO_VOLNAMELTH];
};
/**
* DOC: genhd capability flags
*
* ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
* removable media. When set, the device remains present even when media is not
* inserted. Shall not be set for devices which are removed entirely when the
* media is removed.
*
* ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
* doesn't appear in sysfs, and can't be opened from userspace or using
* blkdev_get*. Used for the underlying components of multipath devices.
*
* ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not
* scan for partitions from add_disk, and users can't add partitions manually.
*
*/
enum {
GENHD_FL_REMOVABLE = 1 << 0,
GENHD_FL_HIDDEN = 1 << 1,
GENHD_FL_NO_PART = 1 << 2,
};
enum {
DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */
DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */
};
enum {
/* Poll even if events_poll_msecs is unset */
DISK_EVENT_FLAG_POLL = 1 << 0,
/* Forward events to udev */
DISK_EVENT_FLAG_UEVENT = 1 << 1,
/* Block event polling when open for exclusive write */
DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2,
};
struct disk_events;
struct badblocks;
enum blk_integrity_checksum {
BLK_INTEGRITY_CSUM_NONE = 0,
BLK_INTEGRITY_CSUM_IP = 1,
BLK_INTEGRITY_CSUM_CRC = 2,
BLK_INTEGRITY_CSUM_CRC64 = 3,
} __packed ;
struct blk_integrity {
unsigned char flags;
enum blk_integrity_checksum csum_type;
unsigned char tuple_size;
unsigned char pi_offset;
unsigned char interval_exp;
unsigned char tag_size;
};
typedef unsigned int __bitwise blk_mode_t;
/* open for reading */
#define BLK_OPEN_READ ((__force blk_mode_t)(1 << 0))
/* open for writing */
#define BLK_OPEN_WRITE ((__force blk_mode_t)(1 << 1))
/* open exclusively (vs other exclusive openers */
#define BLK_OPEN_EXCL ((__force blk_mode_t)(1 << 2))
/* opened with O_NDELAY */
#define BLK_OPEN_NDELAY ((__force blk_mode_t)(1 << 3))
/* open for "writes" only for ioctls (specialy hack for floppy.c) */
#define BLK_OPEN_WRITE_IOCTL ((__force blk_mode_t)(1 << 4))
/* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */
#define BLK_OPEN_RESTRICT_WRITES ((__force blk_mode_t)(1 << 5))
/* return partition scanning errors */
#define BLK_OPEN_STRICT_SCAN ((__force blk_mode_t)(1 << 6))
struct gendisk {
/*
* major/first_minor/minors should not be set by any new driver, the
* block core will take care of allocating them automatically.
*/
int major;
int first_minor;
int minors;
char disk_name[DISK_NAME_LEN]; /* name of major driver */
unsigned short events; /* supported events */
unsigned short event_flags; /* flags related to event processing */
struct xarray part_tbl;
struct block_device *part0;
const struct block_device_operations *fops;
struct request_queue *queue;
void *private_data;
struct bio_set bio_split;
int flags;
unsigned long state;
#define GD_NEED_PART_SCAN 0
#define GD_READ_ONLY 1
#define GD_DEAD 2
#define GD_NATIVE_CAPACITY 3
#define GD_ADDED 4
#define GD_SUPPRESS_PART_SCAN 5
#define GD_OWNS_QUEUE 6
struct mutex open_mutex; /* open/close mutex */
unsigned open_partitions; /* number of open partitions */
struct backing_dev_info *bdi;
struct kobject queue_kobj; /* the queue/ directory */
struct kobject *slave_dir;
#ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
struct list_head slave_bdevs;
#endif
struct timer_rand_state *random;
atomic_t sync_io; /* RAID */
struct disk_events *ev;
#ifdef CONFIG_BLK_DEV_ZONED
/*
* Zoned block device information. Reads of this information must be
* protected with blk_queue_enter() / blk_queue_exit(). Modifying this
* information is only allowed while no requests are being processed.
* See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue().
*/
unsigned int nr_zones;
unsigned int zone_capacity;
unsigned int last_zone_capacity;
unsigned long *conv_zones_bitmap;
unsigned int zone_wplugs_hash_bits;
spinlock_t zone_wplugs_lock;
struct mempool_s *zone_wplugs_pool;
struct hlist_head *zone_wplugs_hash;
struct list_head zone_wplugs_err_list;
struct work_struct zone_wplugs_work;
struct workqueue_struct *zone_wplugs_wq;
#endif /* CONFIG_BLK_DEV_ZONED */
#if IS_ENABLED(CONFIG_CDROM)
struct cdrom_device_info *cdi;
#endif
int node_id;
struct badblocks *bb;
struct lockdep_map lockdep_map;
u64 diskseq;
blk_mode_t open_mode;
/*
* Independent sector access ranges. This is always NULL for
* devices that do not have multiple independent access ranges.
*/
struct blk_independent_access_ranges *ia_ranges;
};
/**
* disk_openers - returns how many openers are there for a disk
* @disk: disk to check
*
* This returns the number of openers for a disk. Note that this value is only
* stable if disk->open_mutex is held.
*
* Note: Due to a quirk in the block layer open code, each open partition is
* only counted once even if there are multiple openers.
*/
static inline unsigned int disk_openers(struct gendisk *disk)
{
return atomic_read(&disk->part0->bd_openers);
}
/**
* disk_has_partscan - return %true if partition scanning is enabled on a disk
* @disk: disk to check
*
* Returns %true if partitions scanning is enabled for @disk, or %false if
* partition scanning is disabled either permanently or temporarily.
*/
static inline bool disk_has_partscan(struct gendisk *disk)
{
return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) &&
!test_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
}
/*
* The gendisk is refcounted by the part0 block_device, and the bd_device
* therein is also used for device model presentation in sysfs.
*/
#define dev_to_disk(device) \
(dev_to_bdev(device)->bd_disk)
#define disk_to_dev(disk) \
(&((disk)->part0->bd_device))
#if IS_REACHABLE(CONFIG_CDROM)
#define disk_to_cdi(disk) ((disk)->cdi)
#else
#define disk_to_cdi(disk) NULL
#endif
static inline dev_t disk_devt(struct gendisk *disk)
{
return MKDEV(disk->major, disk->first_minor);
}
/* blk_validate_limits() validates bsize, so drivers don't usually need to */
static inline int blk_validate_block_size(unsigned long bsize)
{
if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
return -EINVAL;
return 0;
}
static inline bool blk_op_is_passthrough(blk_opf_t op)
{
op &= REQ_OP_MASK;
return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
}
/* flags set by the driver in queue_limits.features */
typedef unsigned int __bitwise blk_features_t;
/* supports a volatile write cache */
#define BLK_FEAT_WRITE_CACHE ((__force blk_features_t)(1u << 0))
/* supports passing on the FUA bit */
#define BLK_FEAT_FUA ((__force blk_features_t)(1u << 1))
/* rotational device (hard drive or floppy) */
#define BLK_FEAT_ROTATIONAL ((__force blk_features_t)(1u << 2))
/* contributes to the random number pool */
#define BLK_FEAT_ADD_RANDOM ((__force blk_features_t)(1u << 3))
/* do disk/partitions IO accounting */
#define BLK_FEAT_IO_STAT ((__force blk_features_t)(1u << 4))
/* don't modify data until writeback is done */
#define BLK_FEAT_STABLE_WRITES ((__force blk_features_t)(1u << 5))
/* always completes in submit context */
#define BLK_FEAT_SYNCHRONOUS ((__force blk_features_t)(1u << 6))
/* supports REQ_NOWAIT */
#define BLK_FEAT_NOWAIT ((__force blk_features_t)(1u << 7))
/* supports DAX */
#define BLK_FEAT_DAX ((__force blk_features_t)(1u << 8))
/* supports I/O polling */
#define BLK_FEAT_POLL ((__force blk_features_t)(1u << 9))
/* is a zoned device */
#define BLK_FEAT_ZONED ((__force blk_features_t)(1u << 10))
/* supports PCI(e) p2p requests */
#define BLK_FEAT_PCI_P2PDMA ((__force blk_features_t)(1u << 12))
/* skip this queue in blk_mq_(un)quiesce_tagset */
#define BLK_FEAT_SKIP_TAGSET_QUIESCE ((__force blk_features_t)(1u << 13))
/* bounce all highmem pages */
#define BLK_FEAT_BOUNCE_HIGH ((__force blk_features_t)(1u << 14))
/* undocumented magic for bcache */
#define BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE \
((__force blk_features_t)(1u << 15))
/*
* Flags automatically inherited when stacking limits.
*/
#define BLK_FEAT_INHERIT_MASK \
(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \
BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | BLK_FEAT_BOUNCE_HIGH | \
BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE)
/* internal flags in queue_limits.flags */
typedef unsigned int __bitwise blk_flags_t;
/* do not send FLUSH/FUA commands despite advertising a write cache */
#define BLK_FLAG_WRITE_CACHE_DISABLED ((__force blk_flags_t)(1u << 0))
/* I/O topology is misaligned */
#define BLK_FLAG_MISALIGNED ((__force blk_flags_t)(1u << 1))
struct queue_limits {
blk_features_t features;
blk_flags_t flags;
unsigned long seg_boundary_mask;
unsigned long virt_boundary_mask;
unsigned int max_hw_sectors;
unsigned int max_dev_sectors;
unsigned int chunk_sectors;
unsigned int max_sectors;
unsigned int max_user_sectors;
unsigned int max_segment_size;
unsigned int physical_block_size;
unsigned int logical_block_size;
unsigned int alignment_offset;
unsigned int io_min;
unsigned int io_opt;
unsigned int max_discard_sectors;
unsigned int max_hw_discard_sectors;
unsigned int max_user_discard_sectors;
unsigned int max_secure_erase_sectors;
unsigned int max_write_zeroes_sectors;
unsigned int max_zone_append_sectors;
unsigned int discard_granularity;
unsigned int discard_alignment;
unsigned int zone_write_granularity;
/* atomic write limits */
unsigned int atomic_write_hw_max;
unsigned int atomic_write_max_sectors;
unsigned int atomic_write_hw_boundary;
unsigned int atomic_write_boundary_sectors;
unsigned int atomic_write_hw_unit_min;
unsigned int atomic_write_unit_min;
unsigned int atomic_write_hw_unit_max;
unsigned int atomic_write_unit_max;
unsigned short max_segments;
unsigned short max_integrity_segments;
unsigned short max_discard_segments;
unsigned int max_open_zones;
unsigned int max_active_zones;
/*
* Drivers that set dma_alignment to less than 511 must be prepared to
* handle individual bvec's that are not a multiple of a SECTOR_SIZE
* due to possible offsets.
*/
unsigned int dma_alignment;
unsigned int dma_pad_mask;
struct blk_integrity integrity;
};
typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
void *data);
#define BLK_ALL_ZONES ((unsigned int)-1)
int blkdev_report_zones(struct block_device *bdev, sector_t sector,
unsigned int nr_zones, report_zones_cb cb, void *data);
int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
sector_t sectors, sector_t nr_sectors);
int blk_revalidate_disk_zones(struct gendisk *disk);
/*
* Independent access ranges: struct blk_independent_access_range describes
* a range of contiguous sectors that can be accessed using device command
* execution resources that are independent from the resources used for
* other access ranges. This is typically found with single-LUN multi-actuator
* HDDs where each access range is served by a different set of heads.
* The set of independent ranges supported by the device is defined using
* struct blk_independent_access_ranges. The independent ranges must not overlap
* and must include all sectors within the disk capacity (no sector holes
* allowed).
* For a device with multiple ranges, requests targeting sectors in different
* ranges can be executed in parallel. A request can straddle an access range
* boundary.
*/
struct blk_independent_access_range {
struct kobject kobj;
sector_t sector;
sector_t nr_sectors;
};
struct blk_independent_access_ranges {
struct kobject kobj;
bool sysfs_registered;
unsigned int nr_ia_ranges;
struct blk_independent_access_range ia_range[];
};
struct request_queue {
/*
* The queue owner gets to use this for whatever they like.
* ll_rw_blk doesn't touch it.
*/
void *queuedata;
struct elevator_queue *elevator;
const struct blk_mq_ops *mq_ops;
/* sw queues */
struct blk_mq_ctx __percpu *queue_ctx;
/*
* various queue flags, see QUEUE_* below
*/
unsigned long queue_flags;
unsigned int rq_timeout;
unsigned int queue_depth;
refcount_t refs;
/* hw dispatch queues */
unsigned int nr_hw_queues;
struct xarray hctx_table;
struct percpu_ref q_usage_counter;
struct request *last_merge;
spinlock_t queue_lock;
int quiesce_depth;
struct gendisk *disk;
/*
* mq queue kobject
*/
struct kobject *mq_kobj;
struct queue_limits limits;
#ifdef CONFIG_PM
struct device *dev;
enum rpm_status rpm_status;
#endif
/*
* Number of contexts that have called blk_set_pm_only(). If this
* counter is above zero then only RQF_PM requests are processed.
*/
atomic_t pm_only;
struct blk_queue_stats *stats;
struct rq_qos *rq_qos;
struct mutex rq_qos_mutex;
/*
* ida allocated id for this queue. Used to index queues from
* ioctx.
*/
int id;
/*
* queue settings
*/
unsigned long nr_requests; /* Max # of requests */
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
struct blk_crypto_profile *crypto_profile;
struct kobject *crypto_kobject;
#endif
struct timer_list timeout;
struct work_struct timeout_work;
atomic_t nr_active_requests_shared_tags;
struct blk_mq_tags *sched_shared_tags;
struct list_head icq_list;
#ifdef CONFIG_BLK_CGROUP
DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
struct blkcg_gq *root_blkg;
struct list_head blkg_list;
struct mutex blkcg_mutex;
#endif
int node;
spinlock_t requeue_lock;
struct list_head requeue_list;
struct delayed_work requeue_work;
#ifdef CONFIG_BLK_DEV_IO_TRACE
struct blk_trace __rcu *blk_trace;
#endif
/*
* for flush operations
*/
struct blk_flush_queue *fq;
struct list_head flush_list;
struct mutex sysfs_lock;
struct mutex sysfs_dir_lock;
struct mutex limits_lock;
/*
* for reusing dead hctx instance in case of updating
* nr_hw_queues
*/
struct list_head unused_hctx_list;
spinlock_t unused_hctx_lock;
int mq_freeze_depth;
#ifdef CONFIG_BLK_DEV_THROTTLING
/* Throttle data */
struct throtl_data *td;
#endif
struct rcu_head rcu_head;
wait_queue_head_t mq_freeze_wq;
/*
* Protect concurrent access to q_usage_counter by
* percpu_ref_kill() and percpu_ref_reinit().
*/
struct mutex mq_freeze_lock;
struct blk_mq_tag_set *tag_set;
struct list_head tag_set_list;
struct dentry *debugfs_dir;
struct dentry *sched_debugfs_dir;
struct dentry *rqos_debugfs_dir;
/*
* Serializes all debugfs metadata operations using the above dentries.
*/
struct mutex debugfs_mutex;
bool mq_sysfs_init_done;
};
/* Keep blk_queue_flag_name[] in sync with the definitions below */
enum {
QUEUE_FLAG_DYING, /* queue being torn down */
QUEUE_FLAG_NOMERGES, /* disable merge attempts */
QUEUE_FLAG_SAME_COMP, /* complete on same CPU-group */
QUEUE_FLAG_FAIL_IO, /* fake timeout */
QUEUE_FLAG_NOXMERGES, /* No extended merges */
QUEUE_FLAG_SAME_FORCE, /* force complete on same CPU */
QUEUE_FLAG_INIT_DONE, /* queue is initialized */
QUEUE_FLAG_STATS, /* track IO start and completion times */
QUEUE_FLAG_REGISTERED, /* queue has been registered to a disk */
QUEUE_FLAG_QUIESCED, /* queue has been quiesced */
QUEUE_FLAG_RQ_ALLOC_TIME, /* record rq->alloc_time_ns */
QUEUE_FLAG_HCTX_ACTIVE, /* at least one blk-mq hctx is active */
QUEUE_FLAG_SQ_SCHED, /* single queue style io dispatch */
QUEUE_FLAG_MAX
};
#define QUEUE_FLAG_MQ_DEFAULT (1UL << QUEUE_FLAG_SAME_COMP)
void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
#define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
#define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
#define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
#define blk_queue_noxmerges(q) \
test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
#define blk_queue_nonrot(q) (!((q)->limits.features & BLK_FEAT_ROTATIONAL))
#define blk_queue_io_stat(q) ((q)->limits.features & BLK_FEAT_IO_STAT)
#define blk_queue_dax(q) ((q)->limits.features & BLK_FEAT_DAX)
#define blk_queue_pci_p2pdma(q) ((q)->limits.features & BLK_FEAT_PCI_P2PDMA)
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
#define blk_queue_rq_alloc_time(q) \
test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
#else
#define blk_queue_rq_alloc_time(q) false
#endif
#define blk_noretry_request(rq) \
((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
REQ_FAILFAST_DRIVER))
#define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
#define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
#define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
#define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
#define blk_queue_skip_tagset_quiesce(q) \
((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE)
extern void blk_set_pm_only(struct request_queue *q);
extern void blk_clear_pm_only(struct request_queue *q);
#define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
#define dma_map_bvec(dev, bv, dir, attrs) \
dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
(dir), (attrs))
static inline bool queue_is_mq(struct request_queue *q)
{
return q->mq_ops;
}
#ifdef CONFIG_PM
static inline enum rpm_status queue_rpm_status(struct request_queue *q)
{
return q->rpm_status;
}
#else
static inline enum rpm_status queue_rpm_status(struct request_queue *q)
{
return RPM_ACTIVE;
}
#endif
static inline bool blk_queue_is_zoned(struct request_queue *q)
{
return IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
(q->limits.features & BLK_FEAT_ZONED);
}
#ifdef CONFIG_BLK_DEV_ZONED
static inline unsigned int disk_nr_zones(struct gendisk *disk)
{
return disk->nr_zones;
}
bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs);
#else /* CONFIG_BLK_DEV_ZONED */
static inline unsigned int disk_nr_zones(struct gendisk *disk)
{
return 0;
}
static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs)
{
return false;
}
#endif /* CONFIG_BLK_DEV_ZONED */
static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
{
if (!blk_queue_is_zoned(disk->queue))
return 0;
return sector >> ilog2(disk->queue->limits.chunk_sectors);
}
static inline unsigned int bdev_nr_zones(struct block_device *bdev)
{
return disk_nr_zones(bdev->bd_disk);
}
static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
{
return bdev->bd_disk->queue->limits.max_open_zones;
}
static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
{
return bdev->bd_disk->queue->limits.max_active_zones;
}
static inline unsigned int blk_queue_depth(struct request_queue *q)
{
if (q->queue_depth)
return q->queue_depth;
return q->nr_requests;
}
/*
* default timeout for SG_IO if none specified
*/
#define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
#define BLK_MIN_SG_TIMEOUT (7 * HZ)
/* This should not be used directly - use rq_for_each_segment */
#define for_each_bio(_bio) \
for (; _bio; _bio = _bio->bi_next)
int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
const struct attribute_group **groups);
static inline int __must_check add_disk(struct gendisk *disk)
{
return device_add_disk(NULL, disk, NULL);
}
void del_gendisk(struct gendisk *gp);
void invalidate_disk(struct gendisk *disk);
void set_disk_ro(struct gendisk *disk, bool read_only);
void disk_uevent(struct gendisk *disk, enum kobject_action action);
static inline u8 bdev_partno(const struct block_device *bdev)
{
return atomic_read(&bdev->__bd_flags) & BD_PARTNO;
}
static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag)
{
return atomic_read(&bdev->__bd_flags) & flag;
}
static inline void bdev_set_flag(struct block_device *bdev, unsigned flag)
{
atomic_or(flag, &bdev->__bd_flags);
}
static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag)
{
atomic_andnot(flag, &bdev->__bd_flags);
}
static inline int get_disk_ro(struct gendisk *disk)
{
return bdev_test_flag(disk->part0, BD_READ_ONLY) ||
test_bit(GD_READ_ONLY, &disk->state);
}
static inline int bdev_read_only(struct block_device *bdev)
{
return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk);
}
bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
void disk_force_media_change(struct gendisk *disk);
void bdev_mark_dead(struct block_device *bdev, bool surprise);
void add_disk_randomness(struct gendisk *disk) __latent_entropy;
void rand_initialize_disk(struct gendisk *disk);
static inline sector_t get_start_sect(struct block_device *bdev)
{
return bdev->bd_start_sect;
}
static inline sector_t bdev_nr_sectors(struct block_device *bdev)
{
return bdev->bd_nr_sectors;
}
static inline loff_t bdev_nr_bytes(struct block_device *bdev)
{
return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
}
static inline sector_t get_capacity(struct gendisk *disk)
{
return bdev_nr_sectors(disk->part0);
}
static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
{
return bdev_nr_sectors(sb->s_bdev) >>
(sb->s_blocksize_bits - SECTOR_SHIFT);
}
int bdev_disk_changed(struct gendisk *disk, bool invalidate);
void put_disk(struct gendisk *disk);
struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node,
struct lock_class_key *lkclass);
/**
* blk_alloc_disk - allocate a gendisk structure
* @lim: queue limits to be used for this disk.
* @node_id: numa node to allocate on
*
* Allocate and pre-initialize a gendisk structure for use with BIO based
* drivers.
*
* Returns an ERR_PTR on error, else the allocated disk.
*
* Context: can sleep
*/
#define blk_alloc_disk(lim, node_id) \
({ \
static struct lock_class_key __key; \
\
__blk_alloc_disk(lim, node_id, &__key); \
})
int __register_blkdev(unsigned int major, const char *name,
void (*probe)(dev_t devt));
#define register_blkdev(major, name) \
__register_blkdev(major, name, NULL)
void unregister_blkdev(unsigned int major, const char *name);
bool disk_check_media_change(struct gendisk *disk);
void set_capacity(struct gendisk *disk, sector_t size);
#ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
#else
static inline int bd_link_disk_holder(struct block_device *bdev,
struct gendisk *disk)
{
return 0;
}
static inline void bd_unlink_disk_holder(struct block_device *bdev,
struct gendisk *disk)
{
}
#endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
dev_t part_devt(struct gendisk *disk, u8 partno);
void inc_diskseq(struct gendisk *disk);
void blk_request_module(dev_t devt);
extern int blk_register_queue(struct gendisk *disk);
extern void blk_unregister_queue(struct gendisk *disk);
void submit_bio_noacct(struct bio *bio);
struct bio *bio_split_to_limits(struct bio *bio);
extern int blk_lld_busy(struct request_queue *q);
extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
extern void blk_queue_exit(struct request_queue *q);
extern void blk_sync_queue(struct request_queue *q);
/* Helper to convert REQ_OP_XXX to its string format XXX */
extern const char *blk_op_str(enum req_op op);
int blk_status_to_errno(blk_status_t status);
blk_status_t errno_to_blk_status(int errno);
const char *blk_status_to_str(blk_status_t status);
/* only poll the hardware once, don't continue until a completion was found */
#define BLK_POLL_ONESHOT (1 << 0)
int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
unsigned int flags);
static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
{
return bdev->bd_queue; /* this is never NULL */
}
/* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
static inline unsigned int bio_zone_no(struct bio *bio)
{
return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
}
static inline bool bio_straddles_zones(struct bio *bio)
{
return bio_sectors(bio) &&
bio_zone_no(bio) !=
disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1);
}
/*
* Return how much within the boundary is left to be used for I/O at a given
* offset.
*/
static inline unsigned int blk_boundary_sectors_left(sector_t offset,
unsigned int boundary_sectors)
{
if (unlikely(!is_power_of_2(boundary_sectors)))
return boundary_sectors - sector_div(offset, boundary_sectors);
return boundary_sectors - (offset & (boundary_sectors - 1));
}
/**
* queue_limits_start_update - start an atomic update of queue limits
* @q: queue to update
*
* This functions starts an atomic update of the queue limits. It takes a lock
* to prevent other updates and returns a snapshot of the current limits that
* the caller can modify. The caller must call queue_limits_commit_update()
* to finish the update.
*
* Context: process context. The caller must have frozen the queue or ensured
* that there is outstanding I/O by other means.
*/
static inline struct queue_limits
queue_limits_start_update(struct request_queue *q)
{
mutex_lock(&q->limits_lock);
return q->limits;
}
int queue_limits_commit_update(struct request_queue *q,
struct queue_limits *lim);
int queue_limits_set(struct request_queue *q, struct queue_limits *lim);
/**
* queue_limits_cancel_update - cancel an atomic update of queue limits
* @q: queue to update
*
* This functions cancels an atomic update of the queue limits started by
* queue_limits_start_update() and should be used when an error occurs after
* starting update.
*/
static inline void queue_limits_cancel_update(struct request_queue *q)
{
mutex_unlock(&q->limits_lock);
}
/*
* These helpers are for drivers that have sloppy feature negotiation and might
* have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O
* completion handler when the device returned an indicator that the respective
* feature is not actually supported. They are racy and the driver needs to
* cope with that. Try to avoid this scheme if you can.
*/
static inline void blk_queue_disable_discard(struct request_queue *q)
{
q->limits.max_discard_sectors = 0;
}
static inline void blk_queue_disable_secure_erase(struct request_queue *q)
{
q->limits.max_secure_erase_sectors = 0;
}
static inline void blk_queue_disable_write_zeroes(struct request_queue *q)
{
q->limits.max_write_zeroes_sectors = 0;
}
/*
* Access functions for manipulating queue properties
*/
extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
extern void blk_set_stacking_limits(struct queue_limits *lim);
extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
sector_t offset);
void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
sector_t offset, const char *pfx);
extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
struct blk_independent_access_ranges *
disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
void disk_set_independent_access_ranges(struct gendisk *disk,
struct blk_independent_access_ranges *iars);
bool __must_check blk_get_queue(struct request_queue *);
extern void blk_put_queue(struct request_queue *);
void blk_mark_disk_dead(struct gendisk *disk);
#ifdef CONFIG_BLOCK
/*
* blk_plug permits building a queue of related requests by holding the I/O
* fragments for a short period. This allows merging of sequential requests
* into single larger request. As the requests are moved from a per-task list to
* the device's request_queue in a batch, this results in improved scalability
* as the lock contention for request_queue lock is reduced.
*
* It is ok not to disable preemption when adding the request to the plug list
* or when attempting a merge. For details, please see schedule() where
* blk_flush_plug() is called.
*/
struct blk_plug {
struct request *mq_list; /* blk-mq requests */
/* if ios_left is > 1, we can batch tag/rq allocations */
struct request *cached_rq;
u64 cur_ktime;
unsigned short nr_ios;
unsigned short rq_count;
bool multiple_queues;
bool has_elevator;
struct list_head cb_list; /* md requires an unplug callback */
};
struct blk_plug_cb;
typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
struct blk_plug_cb {
struct list_head list;
blk_plug_cb_fn callback;
void *data;
};
extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
void *data, int size);
extern void blk_start_plug(struct blk_plug *);
extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
extern void blk_finish_plug(struct blk_plug *);
void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
static inline void blk_flush_plug(struct blk_plug *plug, bool async)
{
if (plug)
__blk_flush_plug(plug, async);
}
/*
* tsk == current here
*/
static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
{
struct blk_plug *plug = tsk->plug;
if (plug)
plug->cur_ktime = 0;
current->flags &= ~PF_BLOCK_TS;
}
int blkdev_issue_flush(struct block_device *bdev);
long nr_blockdev_pages(void);
#else /* CONFIG_BLOCK */
struct blk_plug {
};
static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
unsigned short nr_ios)
{
}
static inline void blk_start_plug(struct blk_plug *plug)
{
}
static inline void blk_finish_plug(struct blk_plug *plug)
{
}
static inline void blk_flush_plug(struct blk_plug *plug, bool async)
{
}
static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
{
}
static inline int blkdev_issue_flush(struct block_device *bdev)
{
return 0;
}
static inline long nr_blockdev_pages(void)
{
return 0;
}
#endif /* CONFIG_BLOCK */
extern void blk_io_schedule(void);
int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp_mask);
int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp);
#define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
#define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
#define BLKDEV_ZERO_KILLABLE (1 << 2) /* interruptible by fatal signals */
extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
unsigned flags);
extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
static inline int sb_issue_discard(struct super_block *sb, sector_t block,
sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
{
return blkdev_issue_discard(sb->s_bdev,
block << (sb->s_blocksize_bits -
SECTOR_SHIFT),
nr_blocks << (sb->s_blocksize_bits -
SECTOR_SHIFT),
gfp_mask);
}
static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
sector_t nr_blocks, gfp_t gfp_mask)
{
return blkdev_issue_zeroout(sb->s_bdev,
block << (sb->s_blocksize_bits -
SECTOR_SHIFT),
nr_blocks << (sb->s_blocksize_bits -
SECTOR_SHIFT),
gfp_mask, 0);
}
static inline bool bdev_is_partition(struct block_device *bdev)
{
return bdev_partno(bdev) != 0;
}
enum blk_default_limits {
BLK_MAX_SEGMENTS = 128,
BLK_SAFE_MAX_SECTORS = 255,
BLK_MAX_SEGMENT_SIZE = 65536,
BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
};
/*
* Default upper limit for the software max_sectors limit used for
* regular file system I/O. This can be increased through sysfs.
*
* Not to be confused with the max_hw_sector limit that is entirely
* controlled by the driver, usually based on hardware limits.
*/
#define BLK_DEF_MAX_SECTORS_CAP 2560u
static inline unsigned long queue_segment_boundary(const struct request_queue *q)
{
return q->limits.seg_boundary_mask;
}
static inline unsigned long queue_virt_boundary(const struct request_queue *q)
{
return q->limits.virt_boundary_mask;
}
static inline unsigned int queue_max_sectors(const struct request_queue *q)
{
return q->limits.max_sectors;
}
static inline unsigned int queue_max_bytes(struct request_queue *q)
{
return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
}
static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
{
return q->limits.max_hw_sectors;
}
static inline unsigned short queue_max_segments(const struct request_queue *q)
{
return q->limits.max_segments;
}
static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
{
return q->limits.max_discard_segments;
}
static inline unsigned int queue_max_segment_size(const struct request_queue *q)
{
return q->limits.max_segment_size;
}
static inline unsigned int queue_limits_max_zone_append_sectors(struct queue_limits *l)
{
unsigned int max_sectors = min(l->chunk_sectors, l->max_hw_sectors);
return min_not_zero(l->max_zone_append_sectors, max_sectors);
}
static inline unsigned int queue_max_zone_append_sectors(struct request_queue *q)
{
if (!blk_queue_is_zoned(q))
return 0;
return queue_limits_max_zone_append_sectors(&q->limits);
}
static inline bool queue_emulates_zone_append(struct request_queue *q)
{
return blk_queue_is_zoned(q) && !q->limits.max_zone_append_sectors;
}
static inline bool bdev_emulates_zone_append(struct block_device *bdev)
{
return queue_emulates_zone_append(bdev_get_queue(bdev));
}
static inline unsigned int
bdev_max_zone_append_sectors(struct block_device *bdev)
{
return queue_max_zone_append_sectors(bdev_get_queue(bdev));
}
static inline unsigned int bdev_max_segments(struct block_device *bdev)
{
return queue_max_segments(bdev_get_queue(bdev));
}
static inline unsigned queue_logical_block_size(const struct request_queue *q)
{
return q->limits.logical_block_size;
}
static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
{
return queue_logical_block_size(bdev_get_queue(bdev));
}
static inline unsigned int queue_physical_block_size(const struct request_queue *q)
{
return q->limits.physical_block_size;
}
static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
{
return queue_physical_block_size(bdev_get_queue(bdev));
}
static inline unsigned int queue_io_min(const struct request_queue *q)
{
return q->limits.io_min;
}
static inline int bdev_io_min(struct block_device *bdev)
{
return queue_io_min(bdev_get_queue(bdev));
}
static inline unsigned int queue_io_opt(const struct request_queue *q)
{
return q->limits.io_opt;
}
static inline int bdev_io_opt(struct block_device *bdev)
{
return queue_io_opt(bdev_get_queue(bdev));
}
static inline unsigned int
queue_zone_write_granularity(const struct request_queue *q)
{
return q->limits.zone_write_granularity;
}
static inline unsigned int
bdev_zone_write_granularity(struct block_device *bdev)
{
return queue_zone_write_granularity(bdev_get_queue(bdev));
}
int bdev_alignment_offset(struct block_device *bdev);
unsigned int bdev_discard_alignment(struct block_device *bdev);
static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
{
return bdev_get_queue(bdev)->limits.max_discard_sectors;
}
static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
{
return bdev_get_queue(bdev)->limits.discard_granularity;
}
static inline unsigned int
bdev_max_secure_erase_sectors(struct block_device *bdev)
{
return bdev_get_queue(bdev)->limits.max_secure_erase_sectors;
}
static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
{
return bdev_get_queue(bdev)->limits.max_write_zeroes_sectors;
}
static inline bool bdev_nonrot(struct block_device *bdev)
{
return blk_queue_nonrot(bdev_get_queue(bdev));
}
static inline bool bdev_synchronous(struct block_device *bdev)
{
return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS;
}
static inline bool bdev_stable_writes(struct block_device *bdev)
{
struct request_queue *q = bdev_get_queue(bdev);
if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE)
return true;
return q->limits.features & BLK_FEAT_STABLE_WRITES;
}
static inline bool blk_queue_write_cache(struct request_queue *q)
{
return (q->limits.features & BLK_FEAT_WRITE_CACHE) &&
!(q->limits.flags & BLK_FLAG_WRITE_CACHE_DISABLED);
}
static inline bool bdev_write_cache(struct block_device *bdev)
{
return blk_queue_write_cache(bdev_get_queue(bdev));
}
static inline bool bdev_fua(struct block_device *bdev)
{
return bdev_get_queue(bdev)->limits.features & BLK_FEAT_FUA;
}
static inline bool bdev_nowait(struct block_device *bdev)
{
return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT;
}
static inline bool bdev_is_zoned(struct block_device *bdev)
{
return blk_queue_is_zoned(bdev_get_queue(bdev));
}
static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
{
return disk_zone_no(bdev->bd_disk, sec);
}
static inline sector_t bdev_zone_sectors(struct block_device *bdev)
{
struct request_queue *q = bdev_get_queue(bdev);
if (!blk_queue_is_zoned(q))
return 0;
return q->limits.chunk_sectors;
}
static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
sector_t sector)
{
return sector & (bdev_zone_sectors(bdev) - 1);
}
static inline sector_t bio_offset_from_zone_start(struct bio *bio)
{
return bdev_offset_from_zone_start(bio->bi_bdev,
bio->bi_iter.bi_sector);
}
static inline bool bdev_is_zone_start(struct block_device *bdev,
sector_t sector)
{
return bdev_offset_from_zone_start(bdev, sector) == 0;
}
static inline int queue_dma_alignment(const struct request_queue *q)
{
return q->limits.dma_alignment;
}
static inline unsigned int
queue_atomic_write_unit_max_bytes(const struct request_queue *q)
{
return q->limits.atomic_write_unit_max;
}
static inline unsigned int
queue_atomic_write_unit_min_bytes(const struct request_queue *q)
{
return q->limits.atomic_write_unit_min;
}
static inline unsigned int
queue_atomic_write_boundary_bytes(const struct request_queue *q)
{
return q->limits.atomic_write_boundary_sectors << SECTOR_SHIFT;
}
static inline unsigned int
queue_atomic_write_max_bytes(const struct request_queue *q)
{
return q->limits.atomic_write_max_sectors << SECTOR_SHIFT;
}
static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
{
return queue_dma_alignment(bdev_get_queue(bdev));
}
static inline bool bdev_iter_is_aligned(struct block_device *bdev,
struct iov_iter *iter)
{
return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
bdev_logical_block_size(bdev) - 1);
}
static inline int blk_lim_dma_alignment_and_pad(struct queue_limits *lim)
{
return lim->dma_alignment | lim->dma_pad_mask;
}
static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
unsigned int len)
{
unsigned int alignment = blk_lim_dma_alignment_and_pad(&q->limits);
return !(addr & alignment) && !(len & alignment);
}
/* assumes size > 256 */
static inline unsigned int blksize_bits(unsigned int size)
{
return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
}
int kblockd_schedule_work(struct work_struct *work);
int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
#define MODULE_ALIAS_BLOCKDEV(major,minor) \
MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
#define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
MODULE_ALIAS("block-major-" __stringify(major) "-*")
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
bool blk_crypto_register(struct blk_crypto_profile *profile,
struct request_queue *q);
#else /* CONFIG_BLK_INLINE_ENCRYPTION */
static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
struct request_queue *q)
{
return true;
}
#endif /* CONFIG_BLK_INLINE_ENCRYPTION */
enum blk_unique_id {
/* these match the Designator Types specified in SPC */
BLK_UID_T10 = 1,
BLK_UID_EUI64 = 2,
BLK_UID_NAA = 3,
};
struct block_device_operations {
void (*submit_bio)(struct bio *bio);
int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
unsigned int flags);
int (*open)(struct gendisk *disk, blk_mode_t mode);
void (*release)(struct gendisk *disk);
int (*ioctl)(struct block_device *bdev, blk_mode_t mode,
unsigned cmd, unsigned long arg);
int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode,
unsigned cmd, unsigned long arg);
unsigned int (*check_events) (struct gendisk *disk,
unsigned int clearing);
void (*unlock_native_capacity) (struct gendisk *);
int (*getgeo)(struct block_device *, struct hd_geometry *);
int (*set_read_only)(struct block_device *bdev, bool ro);
void (*free_disk)(struct gendisk *disk);
/* this callback is with swap_lock and sometimes page table lock held */
void (*swap_slot_free_notify) (struct block_device *, unsigned long);
int (*report_zones)(struct gendisk *, sector_t sector,
unsigned int nr_zones, report_zones_cb cb, void *data);
char *(*devnode)(struct gendisk *disk, umode_t *mode);
/* returns the length of the identifier or a negative errno: */
int (*get_unique_id)(struct gendisk *disk, u8 id[16],
enum blk_unique_id id_type);
struct module *owner;
const struct pr_ops *pr_ops;
/*
* Special callback for probing GPT entry at a given sector.
* Needed by Android devices, used by GPT scanner and MMC blk
* driver.
*/
int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
};
#ifdef CONFIG_COMPAT
extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t,
unsigned int, unsigned long);
#else
#define blkdev_compat_ptr_ioctl NULL
#endif
static inline void blk_wake_io_task(struct task_struct *waiter)
{
/*
* If we're polling, the task itself is doing the completions. For
* that case, we don't need to signal a wakeup, it's enough to just
* mark us as RUNNING.
*/
if (waiter == current)
__set_current_state(TASK_RUNNING);
else
wake_up_process(waiter);
}
unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
unsigned long start_time);
void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
unsigned int sectors, unsigned long start_time);
unsigned long bio_start_io_acct(struct bio *bio);
void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
struct block_device *orig_bdev);
/**
* bio_end_io_acct - end I/O accounting for bio based drivers
* @bio: bio to end account for
* @start_time: start time returned by bio_start_io_acct()
*/
static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
{
return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
}
int bdev_read_only(struct block_device *bdev);
int set_blocksize(struct file *file, int size);
int lookup_bdev(const char *pathname, dev_t *dev);
void blkdev_show(struct seq_file *seqf, off_t offset);
#define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
#define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */
#ifdef CONFIG_BLOCK
#define BLKDEV_MAJOR_MAX 512
#else
#define BLKDEV_MAJOR_MAX 0
#endif
struct blk_holder_ops {
void (*mark_dead)(struct block_device *bdev, bool surprise);
/*
* Sync the file system mounted on the block device.
*/
void (*sync)(struct block_device *bdev);
/*
* Freeze the file system mounted on the block device.
*/
int (*freeze)(struct block_device *bdev);
/*
* Thaw the file system mounted on the block device.
*/
int (*thaw)(struct block_device *bdev);
};
/*
* For filesystems using @fs_holder_ops, the @holder argument passed to
* helpers used to open and claim block devices via
* bd_prepare_to_claim() must point to a superblock.
*/
extern const struct blk_holder_ops fs_holder_ops;
/*
* Return the correct open flags for blkdev_get_by_* for super block flags
* as stored in sb->s_flags.
*/
#define sb_open_mode(flags) \
(BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \
(((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE))
struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder,
const struct blk_holder_ops *hops);
struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode,
void *holder, const struct blk_holder_ops *hops);
int bd_prepare_to_claim(struct block_device *bdev, void *holder,
const struct blk_holder_ops *hops);
void bd_abort_claiming(struct block_device *bdev, void *holder);
/* just for blk-cgroup, don't use elsewhere */
struct block_device *blkdev_get_no_open(dev_t dev);
void blkdev_put_no_open(struct block_device *bdev);
struct block_device *I_BDEV(struct inode *inode);
struct block_device *file_bdev(struct file *bdev_file);
bool disk_live(struct gendisk *disk);
unsigned int block_size(struct block_device *bdev);
#ifdef CONFIG_BLOCK
void invalidate_bdev(struct block_device *bdev);
int sync_blockdev(struct block_device *bdev);
int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
int sync_blockdev_nowait(struct block_device *bdev);
void sync_bdevs(bool wait);
void bdev_statx(struct path *, struct kstat *, u32);
void printk_all_partitions(void);
int __init early_lookup_bdev(const char *pathname, dev_t *dev);
#else
static inline void invalidate_bdev(struct block_device *bdev)
{
}
static inline int sync_blockdev(struct block_device *bdev)
{
return 0;
}
static inline int sync_blockdev_nowait(struct block_device *bdev)
{
return 0;
}
static inline void sync_bdevs(bool wait)
{
}
static inline void bdev_statx(struct path *path, struct kstat *stat,
u32 request_mask)
{
}
static inline void printk_all_partitions(void)
{
}
static inline int early_lookup_bdev(const char *pathname, dev_t *dev)
{
return -EINVAL;
}
#endif /* CONFIG_BLOCK */
int bdev_freeze(struct block_device *bdev);
int bdev_thaw(struct block_device *bdev);
void bdev_fput(struct file *bdev_file);
struct io_comp_batch {
struct request *req_list;
bool need_ts;
void (*complete)(struct io_comp_batch *);
};
static inline bool bdev_can_atomic_write(struct block_device *bdev)
{
struct request_queue *bd_queue = bdev->bd_queue;
struct queue_limits *limits = &bd_queue->limits;
if (!limits->atomic_write_unit_min)
return false;
if (bdev_is_partition(bdev)) {
sector_t bd_start_sect = bdev->bd_start_sect;
unsigned int alignment =
max(limits->atomic_write_unit_min,
limits->atomic_write_hw_boundary);
if (!IS_ALIGNED(bd_start_sect, alignment >> SECTOR_SHIFT))
return false;
}
return true;
}
#define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { }
#endif /* _LINUX_BLKDEV_H */