Contributors: 69
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Christoph Hellwig |
677 |
27.63% |
48 |
28.92% |
FUJITA Tomonori |
311 |
12.69% |
4 |
2.41% |
Marek Szyprowski |
255 |
10.41% |
11 |
6.63% |
Russell King |
133 |
5.43% |
3 |
1.81% |
David Brownell |
102 |
4.16% |
1 |
0.60% |
Catalin Marinas |
95 |
3.88% |
1 |
0.60% |
James Bottomley |
90 |
3.67% |
3 |
1.81% |
Alexey Kardashevskiy |
77 |
3.14% |
4 |
2.41% |
Dmitry Eremin-Solenikov |
76 |
3.10% |
1 |
0.60% |
Logan Gunthorpe |
76 |
3.10% |
4 |
2.41% |
Vladimir Murzin |
52 |
2.12% |
2 |
1.20% |
Nicolin Chen |
51 |
2.08% |
2 |
1.20% |
Tejun Heo |
38 |
1.55% |
1 |
0.60% |
Laura Abbott |
34 |
1.39% |
2 |
1.20% |
Alexander Lobakin |
31 |
1.27% |
2 |
1.20% |
Krzysztof Kozlowski |
28 |
1.14% |
1 |
0.60% |
Linus Torvalds (pre-git) |
26 |
1.06% |
8 |
4.82% |
Will Deacon |
18 |
0.73% |
2 |
1.20% |
Ohad Ben-Cohen |
14 |
0.57% |
1 |
0.60% |
Jason (Hui) Wang |
13 |
0.53% |
1 |
0.60% |
Joerg Roedel |
13 |
0.53% |
4 |
2.41% |
Jim Quinlan |
10 |
0.41% |
1 |
0.60% |
Niklas Söderlund |
10 |
0.41% |
1 |
0.60% |
Bart Van Assche |
10 |
0.41% |
3 |
1.81% |
Santosh Shilimkar |
9 |
0.37% |
1 |
0.60% |
David S. Miller |
9 |
0.37% |
2 |
1.20% |
Benjamin Herrenschmidt |
9 |
0.37% |
2 |
1.20% |
Robin Murphy |
9 |
0.37% |
2 |
1.20% |
John Garry |
9 |
0.37% |
1 |
0.60% |
Milton D. Miller II |
8 |
0.33% |
1 |
0.60% |
Chris Metcalf |
8 |
0.33% |
2 |
1.20% |
Valentin Longchamp |
8 |
0.33% |
1 |
0.60% |
Konrad Rzeszutek Wilk |
8 |
0.33% |
1 |
0.60% |
Max Filippov |
8 |
0.33% |
1 |
0.60% |
Björn Andersson |
8 |
0.33% |
1 |
0.60% |
Linus Torvalds |
7 |
0.29% |
2 |
1.20% |
Ganapatrao Kulkarni |
7 |
0.29% |
1 |
0.60% |
Andi Kleen |
7 |
0.29% |
1 |
0.60% |
Akinobu Mita |
6 |
0.24% |
1 |
0.60% |
Greg Kroah-Hartman |
6 |
0.24% |
4 |
2.41% |
Björn Helgaas |
6 |
0.24% |
1 |
0.60% |
JoonSoo Kim |
6 |
0.24% |
2 |
1.20% |
Geoff Levand |
5 |
0.20% |
1 |
0.60% |
Yoshihiro Shimoda |
5 |
0.20% |
1 |
0.60% |
Geert Uytterhoeven |
5 |
0.20% |
1 |
0.60% |
Lucas Stach |
5 |
0.20% |
1 |
0.60% |
David Woodhouse |
4 |
0.16% |
1 |
0.60% |
Ren Zhijie |
4 |
0.16% |
1 |
0.60% |
Arnd Bergmann |
4 |
0.16% |
2 |
1.20% |
Michael Ellerman |
4 |
0.16% |
1 |
0.60% |
Deepak Saxena |
4 |
0.16% |
1 |
0.60% |
Jiaxun Yang |
4 |
0.16% |
1 |
0.60% |
Anton Blanchard |
3 |
0.12% |
1 |
0.60% |
Mark Nelson |
3 |
0.12% |
1 |
0.60% |
Mark-PK Tsai |
2 |
0.08% |
1 |
0.60% |
Matthew Wilcox |
2 |
0.08% |
1 |
0.60% |
Steven J. Hill |
2 |
0.08% |
1 |
0.60% |
Paul Mackerras |
2 |
0.08% |
1 |
0.60% |
Ingo Molnar |
2 |
0.08% |
1 |
0.60% |
Arthur Kepner |
2 |
0.08% |
1 |
0.60% |
Rohit Vaswani |
2 |
0.08% |
1 |
0.60% |
Suren Baghdasaryan |
1 |
0.04% |
1 |
0.60% |
Mike Rapoport |
1 |
0.04% |
1 |
0.60% |
Becky Bruce |
1 |
0.04% |
1 |
0.60% |
Thierry Reding |
1 |
0.04% |
1 |
0.60% |
Aneesh Kumar K.V |
1 |
0.04% |
1 |
0.60% |
Andrzej Pietrasiewicz |
1 |
0.04% |
1 |
0.60% |
Rusty Russell |
1 |
0.04% |
1 |
0.60% |
Vitaly Andrianov |
1 |
0.04% |
1 |
0.60% |
Total |
2450 |
|
166 |
|
/* SPDX-License-Identifier: GPL-2.0 */
/*
* This header is for implementations of dma_map_ops and related code.
* It should not be included in drivers just using the DMA API.
*/
#ifndef _LINUX_DMA_MAP_OPS_H
#define _LINUX_DMA_MAP_OPS_H
#include <linux/dma-mapping.h>
#include <linux/pgtable.h>
#include <linux/slab.h>
struct cma;
struct iommu_ops;
/*
* Values for struct dma_map_ops.flags:
*
* DMA_F_PCI_P2PDMA_SUPPORTED: Indicates the dma_map_ops implementation can
* handle PCI P2PDMA pages in the map_sg/unmap_sg operation.
* DMA_F_CAN_SKIP_SYNC: DMA sync operations can be skipped if the device is
* coherent and it's not an SWIOTLB buffer.
*/
#define DMA_F_PCI_P2PDMA_SUPPORTED (1 << 0)
#define DMA_F_CAN_SKIP_SYNC (1 << 1)
struct dma_map_ops {
unsigned int flags;
void *(*alloc)(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp,
unsigned long attrs);
void (*free)(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle, unsigned long attrs);
struct page *(*alloc_pages_op)(struct device *dev, size_t size,
dma_addr_t *dma_handle, enum dma_data_direction dir,
gfp_t gfp);
void (*free_pages)(struct device *dev, size_t size, struct page *vaddr,
dma_addr_t dma_handle, enum dma_data_direction dir);
struct sg_table *(*alloc_noncontiguous)(struct device *dev, size_t size,
enum dma_data_direction dir, gfp_t gfp,
unsigned long attrs);
void (*free_noncontiguous)(struct device *dev, size_t size,
struct sg_table *sgt, enum dma_data_direction dir);
int (*mmap)(struct device *, struct vm_area_struct *,
void *, dma_addr_t, size_t, unsigned long attrs);
int (*get_sgtable)(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs);
dma_addr_t (*map_page)(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir, unsigned long attrs);
void (*unmap_page)(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction dir,
unsigned long attrs);
/*
* map_sg should return a negative error code on error. See
* dma_map_sgtable() for a list of appropriate error codes
* and their meanings.
*/
int (*map_sg)(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir, unsigned long attrs);
void (*unmap_sg)(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir, unsigned long attrs);
dma_addr_t (*map_resource)(struct device *dev, phys_addr_t phys_addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs);
void (*unmap_resource)(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction dir,
unsigned long attrs);
void (*sync_single_for_cpu)(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction dir);
void (*sync_single_for_device)(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction dir);
void (*sync_sg_for_cpu)(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir);
void (*sync_sg_for_device)(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir);
void (*cache_sync)(struct device *dev, void *vaddr, size_t size,
enum dma_data_direction direction);
int (*dma_supported)(struct device *dev, u64 mask);
u64 (*get_required_mask)(struct device *dev);
size_t (*max_mapping_size)(struct device *dev);
size_t (*opt_mapping_size)(void);
unsigned long (*get_merge_boundary)(struct device *dev);
};
#ifdef CONFIG_DMA_OPS
#include <asm/dma-mapping.h>
static inline const struct dma_map_ops *get_dma_ops(struct device *dev)
{
if (dev->dma_ops)
return dev->dma_ops;
return get_arch_dma_ops();
}
static inline void set_dma_ops(struct device *dev,
const struct dma_map_ops *dma_ops)
{
dev->dma_ops = dma_ops;
}
#else /* CONFIG_DMA_OPS */
static inline const struct dma_map_ops *get_dma_ops(struct device *dev)
{
return NULL;
}
static inline void set_dma_ops(struct device *dev,
const struct dma_map_ops *dma_ops)
{
}
#endif /* CONFIG_DMA_OPS */
#ifdef CONFIG_DMA_CMA
extern struct cma *dma_contiguous_default_area;
static inline struct cma *dev_get_cma_area(struct device *dev)
{
if (dev && dev->cma_area)
return dev->cma_area;
return dma_contiguous_default_area;
}
void dma_contiguous_reserve(phys_addr_t addr_limit);
int __init dma_contiguous_reserve_area(phys_addr_t size, phys_addr_t base,
phys_addr_t limit, struct cma **res_cma, bool fixed);
struct page *dma_alloc_from_contiguous(struct device *dev, size_t count,
unsigned int order, bool no_warn);
bool dma_release_from_contiguous(struct device *dev, struct page *pages,
int count);
struct page *dma_alloc_contiguous(struct device *dev, size_t size, gfp_t gfp);
void dma_free_contiguous(struct device *dev, struct page *page, size_t size);
void dma_contiguous_early_fixup(phys_addr_t base, unsigned long size);
#else /* CONFIG_DMA_CMA */
static inline struct cma *dev_get_cma_area(struct device *dev)
{
return NULL;
}
static inline void dma_contiguous_reserve(phys_addr_t limit)
{
}
static inline int dma_contiguous_reserve_area(phys_addr_t size,
phys_addr_t base, phys_addr_t limit, struct cma **res_cma,
bool fixed)
{
return -ENOSYS;
}
static inline struct page *dma_alloc_from_contiguous(struct device *dev,
size_t count, unsigned int order, bool no_warn)
{
return NULL;
}
static inline bool dma_release_from_contiguous(struct device *dev,
struct page *pages, int count)
{
return false;
}
/* Use fallback alloc() and free() when CONFIG_DMA_CMA=n */
static inline struct page *dma_alloc_contiguous(struct device *dev, size_t size,
gfp_t gfp)
{
return NULL;
}
static inline void dma_free_contiguous(struct device *dev, struct page *page,
size_t size)
{
__free_pages(page, get_order(size));
}
#endif /* CONFIG_DMA_CMA*/
#ifdef CONFIG_DMA_DECLARE_COHERENT
int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
dma_addr_t device_addr, size_t size);
void dma_release_coherent_memory(struct device *dev);
int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
dma_addr_t *dma_handle, void **ret);
int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr);
int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, size_t size, int *ret);
#else
static inline int dma_declare_coherent_memory(struct device *dev,
phys_addr_t phys_addr, dma_addr_t device_addr, size_t size)
{
return -ENOSYS;
}
#define dma_alloc_from_dev_coherent(dev, size, handle, ret) (0)
#define dma_release_from_dev_coherent(dev, order, vaddr) (0)
#define dma_mmap_from_dev_coherent(dev, vma, vaddr, order, ret) (0)
static inline void dma_release_coherent_memory(struct device *dev) { }
#endif /* CONFIG_DMA_DECLARE_COHERENT */
#ifdef CONFIG_DMA_GLOBAL_POOL
void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size,
dma_addr_t *dma_handle);
int dma_release_from_global_coherent(int order, void *vaddr);
int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *cpu_addr,
size_t size, int *ret);
int dma_init_global_coherent(phys_addr_t phys_addr, size_t size);
#else
static inline void *dma_alloc_from_global_coherent(struct device *dev,
ssize_t size, dma_addr_t *dma_handle)
{
return NULL;
}
static inline int dma_release_from_global_coherent(int order, void *vaddr)
{
return 0;
}
static inline int dma_mmap_from_global_coherent(struct vm_area_struct *vma,
void *cpu_addr, size_t size, int *ret)
{
return 0;
}
#endif /* CONFIG_DMA_GLOBAL_POOL */
/*
* This is the actual return value from the ->alloc_noncontiguous method.
* The users of the DMA API should only care about the sg_table, but to make
* the DMA-API internal vmaping and freeing easier we stash away the page
* array as well (except for the fallback case). This can go away any time,
* e.g. when a vmap-variant that takes a scatterlist comes along.
*/
struct dma_sgt_handle {
struct sg_table sgt;
struct page **pages;
};
#define sgt_handle(sgt) \
container_of((sgt), struct dma_sgt_handle, sgt)
int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs);
int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs);
struct page *dma_common_alloc_pages(struct device *dev, size_t size,
dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp);
void dma_common_free_pages(struct device *dev, size_t size, struct page *vaddr,
dma_addr_t dma_handle, enum dma_data_direction dir);
struct page **dma_common_find_pages(void *cpu_addr);
void *dma_common_contiguous_remap(struct page *page, size_t size, pgprot_t prot,
const void *caller);
void *dma_common_pages_remap(struct page **pages, size_t size, pgprot_t prot,
const void *caller);
void dma_common_free_remap(void *cpu_addr, size_t size);
struct page *dma_alloc_from_pool(struct device *dev, size_t size,
void **cpu_addr, gfp_t flags,
bool (*phys_addr_ok)(struct device *, phys_addr_t, size_t));
bool dma_free_from_pool(struct device *dev, void *start, size_t size);
int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
dma_addr_t dma_start, u64 size);
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
extern bool dma_default_coherent;
static inline bool dev_is_dma_coherent(struct device *dev)
{
return dev->dma_coherent;
}
#else
#define dma_default_coherent true
static inline bool dev_is_dma_coherent(struct device *dev)
{
return true;
}
#endif /* CONFIG_ARCH_HAS_DMA_COHERENCE_H */
static inline void dma_reset_need_sync(struct device *dev)
{
#ifdef CONFIG_DMA_NEED_SYNC
/* Reset it only once so that the function can be called on hotpath */
if (unlikely(dev->dma_skip_sync))
dev->dma_skip_sync = false;
#endif
}
/*
* Check whether potential kmalloc() buffers are safe for non-coherent DMA.
*/
static inline bool dma_kmalloc_safe(struct device *dev,
enum dma_data_direction dir)
{
/*
* If DMA bouncing of kmalloc() buffers is disabled, the kmalloc()
* caches have already been aligned to a DMA-safe size.
*/
if (!IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC))
return true;
/*
* kmalloc() buffers are DMA-safe irrespective of size if the device
* is coherent or the direction is DMA_TO_DEVICE (non-desctructive
* cache maintenance and benign cache line evictions).
*/
if (dev_is_dma_coherent(dev) || dir == DMA_TO_DEVICE)
return true;
return false;
}
/*
* Check whether the given size, assuming it is for a kmalloc()'ed buffer, is
* sufficiently aligned for non-coherent DMA.
*/
static inline bool dma_kmalloc_size_aligned(size_t size)
{
/*
* Larger kmalloc() sizes are guaranteed to be aligned to
* ARCH_DMA_MINALIGN.
*/
if (size >= 2 * ARCH_DMA_MINALIGN ||
IS_ALIGNED(kmalloc_size_roundup(size), dma_get_cache_alignment()))
return true;
return false;
}
/*
* Check whether the given object size may have originated from a kmalloc()
* buffer with a slab alignment below the DMA-safe alignment and needs
* bouncing for non-coherent DMA. The pointer alignment is not considered and
* in-structure DMA-safe offsets are the responsibility of the caller. Such
* code should use the static ARCH_DMA_MINALIGN for compiler annotations.
*
* The heuristics can have false positives, bouncing unnecessarily, though the
* buffers would be small. False negatives are theoretically possible if, for
* example, multiple small kmalloc() buffers are coalesced into a larger
* buffer that passes the alignment check. There are no such known constructs
* in the kernel.
*/
static inline bool dma_kmalloc_needs_bounce(struct device *dev, size_t size,
enum dma_data_direction dir)
{
return !dma_kmalloc_safe(dev, dir) && !dma_kmalloc_size_aligned(size);
}
void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t gfp, unsigned long attrs);
void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t dma_addr, unsigned long attrs);
#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
void arch_dma_set_mask(struct device *dev, u64 mask);
#else
#define arch_dma_set_mask(dev, mask) do { } while (0)
#endif
#ifdef CONFIG_MMU
/*
* Page protection so that devices that can't snoop CPU caches can use the
* memory coherently. We default to pgprot_noncached which is usually used
* for ioremap as a safe bet, but architectures can override this with less
* strict semantics if possible.
*/
#ifndef pgprot_dmacoherent
#define pgprot_dmacoherent(prot) pgprot_noncached(prot)
#endif
pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs);
#else
static inline pgprot_t dma_pgprot(struct device *dev, pgprot_t prot,
unsigned long attrs)
{
return prot; /* no protection bits supported without page tables */
}
#endif /* CONFIG_MMU */
#ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE
void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
enum dma_data_direction dir);
#else
static inline void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
enum dma_data_direction dir)
{
}
#endif /* ARCH_HAS_SYNC_DMA_FOR_DEVICE */
#ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU
void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
enum dma_data_direction dir);
#else
static inline void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
enum dma_data_direction dir)
{
}
#endif /* ARCH_HAS_SYNC_DMA_FOR_CPU */
#ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL
void arch_sync_dma_for_cpu_all(void);
#else
static inline void arch_sync_dma_for_cpu_all(void)
{
}
#endif /* CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL */
#ifdef CONFIG_ARCH_HAS_DMA_PREP_COHERENT
void arch_dma_prep_coherent(struct page *page, size_t size);
#else
static inline void arch_dma_prep_coherent(struct page *page, size_t size)
{
}
#endif /* CONFIG_ARCH_HAS_DMA_PREP_COHERENT */
#ifdef CONFIG_ARCH_HAS_DMA_MARK_CLEAN
void arch_dma_mark_clean(phys_addr_t paddr, size_t size);
#else
static inline void arch_dma_mark_clean(phys_addr_t paddr, size_t size)
{
}
#endif /* ARCH_HAS_DMA_MARK_CLEAN */
void *arch_dma_set_uncached(void *addr, size_t size);
void arch_dma_clear_uncached(void *addr, size_t size);
#ifdef CONFIG_ARCH_HAS_DMA_MAP_DIRECT
bool arch_dma_map_page_direct(struct device *dev, phys_addr_t addr);
bool arch_dma_unmap_page_direct(struct device *dev, dma_addr_t dma_handle);
bool arch_dma_map_sg_direct(struct device *dev, struct scatterlist *sg,
int nents);
bool arch_dma_unmap_sg_direct(struct device *dev, struct scatterlist *sg,
int nents);
#else
#define arch_dma_map_page_direct(d, a) (false)
#define arch_dma_unmap_page_direct(d, a) (false)
#define arch_dma_map_sg_direct(d, s, n) (false)
#define arch_dma_unmap_sg_direct(d, s, n) (false)
#endif
#ifdef CONFIG_ARCH_HAS_SETUP_DMA_OPS
void arch_setup_dma_ops(struct device *dev, bool coherent);
#else
static inline void arch_setup_dma_ops(struct device *dev, bool coherent)
{
}
#endif /* CONFIG_ARCH_HAS_SETUP_DMA_OPS */
#ifdef CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS
void arch_teardown_dma_ops(struct device *dev);
#else
static inline void arch_teardown_dma_ops(struct device *dev)
{
}
#endif /* CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS */
#ifdef CONFIG_DMA_API_DEBUG
void dma_debug_add_bus(const struct bus_type *bus);
void debug_dma_dump_mappings(struct device *dev);
#else
static inline void dma_debug_add_bus(const struct bus_type *bus)
{
}
static inline void debug_dma_dump_mappings(struct device *dev)
{
}
#endif /* CONFIG_DMA_API_DEBUG */
extern const struct dma_map_ops dma_dummy_ops;
enum pci_p2pdma_map_type {
/*
* PCI_P2PDMA_MAP_UNKNOWN: Used internally for indicating the mapping
* type hasn't been calculated yet. Functions that return this enum
* never return this value.
*/
PCI_P2PDMA_MAP_UNKNOWN = 0,
/*
* PCI_P2PDMA_MAP_NOT_SUPPORTED: Indicates the transaction will
* traverse the host bridge and the host bridge is not in the
* allowlist. DMA Mapping routines should return an error when
* this is returned.
*/
PCI_P2PDMA_MAP_NOT_SUPPORTED,
/*
* PCI_P2PDMA_BUS_ADDR: Indicates that two devices can talk to
* each other directly through a PCI switch and the transaction will
* not traverse the host bridge. Such a mapping should program
* the DMA engine with PCI bus addresses.
*/
PCI_P2PDMA_MAP_BUS_ADDR,
/*
* PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: Indicates two devices can talk
* to each other, but the transaction traverses a host bridge on the
* allowlist. In this case, a normal mapping either with CPU physical
* addresses (in the case of dma-direct) or IOVA addresses (in the
* case of IOMMUs) should be used to program the DMA engine.
*/
PCI_P2PDMA_MAP_THRU_HOST_BRIDGE,
};
struct pci_p2pdma_map_state {
struct dev_pagemap *pgmap;
int map;
u64 bus_off;
};
#ifdef CONFIG_PCI_P2PDMA
enum pci_p2pdma_map_type
pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev,
struct scatterlist *sg);
#else /* CONFIG_PCI_P2PDMA */
static inline enum pci_p2pdma_map_type
pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev,
struct scatterlist *sg)
{
return PCI_P2PDMA_MAP_NOT_SUPPORTED;
}
#endif /* CONFIG_PCI_P2PDMA */
#endif /* _LINUX_DMA_MAP_OPS_H */