Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
J. German Rivera | 891 | 49.25% | 14 | 25.00% |
Tudor Laurentiu | 402 | 22.22% | 6 | 10.71% |
Ioana Radulescu | 191 | 10.56% | 2 | 3.57% |
Ioana Ciornei | 168 | 9.29% | 8 | 14.29% |
Diana Craciun | 43 | 2.38% | 7 | 12.50% |
Nipun Gupta | 38 | 2.10% | 2 | 3.57% |
Bogdan Purcareata | 20 | 1.11% | 3 | 5.36% |
Bharat Bhushan | 19 | 1.05% | 4 | 7.14% |
Andrei Botila | 11 | 0.61% | 1 | 1.79% |
Horia Geantă | 9 | 0.50% | 1 | 1.79% |
Lu Baolu | 4 | 0.22% | 1 | 1.79% |
Thomas Gleixner | 4 | 0.22% | 1 | 1.79% |
Stuart Yoder | 4 | 0.22% | 2 | 3.57% |
Krzysztof Kozlowski | 2 | 0.11% | 1 | 1.79% |
Greg Kroah-Hartman | 1 | 0.06% | 1 | 1.79% |
Shiva Kerdel | 1 | 0.06% | 1 | 1.79% |
Uwe Kleine-König | 1 | 0.06% | 1 | 1.79% |
Total | 1809 | 56 |
/* SPDX-License-Identifier: GPL-2.0 */ /* * Freescale Management Complex (MC) bus public interface * * Copyright (C) 2014-2016 Freescale Semiconductor, Inc. * Copyright 2019-2020 NXP * Author: German Rivera <German.Rivera@freescale.com> * */ #ifndef _FSL_MC_H_ #define _FSL_MC_H_ #include <linux/device.h> #include <linux/mod_devicetable.h> #include <linux/interrupt.h> #include <uapi/linux/fsl_mc.h> #define FSL_MC_VENDOR_FREESCALE 0x1957 struct irq_domain; struct msi_domain_info; struct fsl_mc_device; struct fsl_mc_io; /** * struct fsl_mc_driver - MC object device driver object * @driver: Generic device driver * @match_id_table: table of supported device matching Ids * @probe: Function called when a device is added * @remove: Function called when a device is removed * @shutdown: Function called at shutdown time to quiesce the device * @suspend: Function called when a device is stopped * @resume: Function called when a device is resumed * @driver_managed_dma: Device driver doesn't use kernel DMA API for DMA. * For most device drivers, no need to care about this flag * as long as all DMAs are handled through the kernel DMA API. * For some special ones, for example VFIO drivers, they know * how to manage the DMA themselves and set this flag so that * the IOMMU layer will allow them to setup and manage their * own I/O address space. * * Generic DPAA device driver object for device drivers that are registered * with a DPRC bus. This structure is to be embedded in each device-specific * driver structure. */ struct fsl_mc_driver { struct device_driver driver; const struct fsl_mc_device_id *match_id_table; int (*probe)(struct fsl_mc_device *dev); void (*remove)(struct fsl_mc_device *dev); void (*shutdown)(struct fsl_mc_device *dev); int (*suspend)(struct fsl_mc_device *dev, pm_message_t state); int (*resume)(struct fsl_mc_device *dev); bool driver_managed_dma; }; #define to_fsl_mc_driver(_drv) \ container_of_const(_drv, struct fsl_mc_driver, driver) /** * enum fsl_mc_pool_type - Types of allocatable MC bus resources * * Entries in these enum are used as indices in the array of resource * pools of an fsl_mc_bus object. */ enum fsl_mc_pool_type { FSL_MC_POOL_DPMCP = 0x0, /* corresponds to "dpmcp" in the MC */ FSL_MC_POOL_DPBP, /* corresponds to "dpbp" in the MC */ FSL_MC_POOL_DPCON, /* corresponds to "dpcon" in the MC */ FSL_MC_POOL_IRQ, /* * NOTE: New resource pool types must be added before this entry */ FSL_MC_NUM_POOL_TYPES }; /** * struct fsl_mc_resource - MC generic resource * @type: type of resource * @id: unique MC resource Id within the resources of the same type * @data: pointer to resource-specific data if the resource is currently * allocated, or NULL if the resource is not currently allocated. * @parent_pool: pointer to the parent resource pool from which this * resource is allocated from. * @node: Node in the free list of the corresponding resource pool * * NOTE: This structure is to be embedded as a field of specific * MC resource structures. */ struct fsl_mc_resource { enum fsl_mc_pool_type type; s32 id; void *data; struct fsl_mc_resource_pool *parent_pool; struct list_head node; }; /** * struct fsl_mc_device_irq - MC object device message-based interrupt * @virq: Linux virtual interrupt number * @mc_dev: MC object device that owns this interrupt * @dev_irq_index: device-relative IRQ index * @resource: MC generic resource associated with the interrupt */ struct fsl_mc_device_irq { unsigned int virq; struct fsl_mc_device *mc_dev; u8 dev_irq_index; struct fsl_mc_resource resource; }; #define to_fsl_mc_irq(_mc_resource) \ container_of(_mc_resource, struct fsl_mc_device_irq, resource) /* Opened state - Indicates that an object is open by at least one owner */ #define FSL_MC_OBJ_STATE_OPEN 0x00000001 /* Plugged state - Indicates that the object is plugged */ #define FSL_MC_OBJ_STATE_PLUGGED 0x00000002 /** * Shareability flag - Object flag indicating no memory shareability. * the object generates memory accesses that are non coherent with other * masters; * user is responsible for proper memory handling through IOMMU configuration. */ #define FSL_MC_OBJ_FLAG_NO_MEM_SHAREABILITY 0x0001 /** * struct fsl_mc_obj_desc - Object descriptor * @type: Type of object: NULL terminated string * @id: ID of logical object resource * @vendor: Object vendor identifier * @ver_major: Major version number * @ver_minor: Minor version number * @irq_count: Number of interrupts supported by the object * @region_count: Number of mappable regions supported by the object * @state: Object state: combination of FSL_MC_OBJ_STATE_ states * @label: Object label: NULL terminated string * @flags: Object's flags */ struct fsl_mc_obj_desc { char type[16]; int id; u16 vendor; u16 ver_major; u16 ver_minor; u8 irq_count; u8 region_count; u32 state; char label[16]; u16 flags; }; /** * Bit masks for a MC object device (struct fsl_mc_device) flags */ #define FSL_MC_IS_DPRC 0x0001 /* Region flags */ /* Indicates that region can be mapped as cacheable */ #define FSL_MC_REGION_CACHEABLE 0x00000001 /* Indicates that region can be mapped as shareable */ #define FSL_MC_REGION_SHAREABLE 0x00000002 /** * struct fsl_mc_device - MC object device object * @dev: Linux driver model device object * @dma_mask: Default DMA mask * @flags: MC object device flags * @icid: Isolation context ID for the device * @mc_handle: MC handle for the corresponding MC object opened * @mc_io: Pointer to MC IO object assigned to this device or * NULL if none. * @obj_desc: MC description of the DPAA device * @regions: pointer to array of MMIO region entries * @irqs: pointer to array of pointers to interrupts allocated to this device * @resource: generic resource associated with this MC object device, if any. * @driver_override: driver name to force a match; do not set directly, * because core frees it; use driver_set_override() to * set or clear it. * * Generic device object for MC object devices that are "attached" to a * MC bus. * * NOTES: * - For a non-DPRC object its icid is the same as its parent DPRC's icid. * - The SMMU notifier callback gets invoked after device_add() has been * called for an MC object device, but before the device-specific probe * callback gets called. * - DP_OBJ_DPRC objects are the only MC objects that have built-in MC * portals. For all other MC objects, their device drivers are responsible for * allocating MC portals for them by calling fsl_mc_portal_allocate(). * - Some types of MC objects (e.g., DP_OBJ_DPBP, DP_OBJ_DPCON) are * treated as resources that can be allocated/deallocated from the * corresponding resource pool in the object's parent DPRC, using the * fsl_mc_object_allocate()/fsl_mc_object_free() functions. These MC objects * are known as "allocatable" objects. For them, the corresponding * fsl_mc_device's 'resource' points to the associated resource object. * For MC objects that are not allocatable (e.g., DP_OBJ_DPRC, DP_OBJ_DPNI), * 'resource' is NULL. */ struct fsl_mc_device { struct device dev; u64 dma_mask; u16 flags; u32 icid; u16 mc_handle; struct fsl_mc_io *mc_io; struct fsl_mc_obj_desc obj_desc; struct resource *regions; struct fsl_mc_device_irq **irqs; struct fsl_mc_resource *resource; struct device_link *consumer_link; const char *driver_override; }; #define to_fsl_mc_device(_dev) \ container_of(_dev, struct fsl_mc_device, dev) struct mc_cmd_header { u8 src_id; u8 flags_hw; u8 status; u8 flags_sw; __le16 token; __le16 cmd_id; }; enum mc_cmd_status { MC_CMD_STATUS_OK = 0x0, /* Completed successfully */ MC_CMD_STATUS_READY = 0x1, /* Ready to be processed */ MC_CMD_STATUS_AUTH_ERR = 0x3, /* Authentication error */ MC_CMD_STATUS_NO_PRIVILEGE = 0x4, /* No privilege */ MC_CMD_STATUS_DMA_ERR = 0x5, /* DMA or I/O error */ MC_CMD_STATUS_CONFIG_ERR = 0x6, /* Configuration error */ MC_CMD_STATUS_TIMEOUT = 0x7, /* Operation timed out */ MC_CMD_STATUS_NO_RESOURCE = 0x8, /* No resources */ MC_CMD_STATUS_NO_MEMORY = 0x9, /* No memory available */ MC_CMD_STATUS_BUSY = 0xA, /* Device is busy */ MC_CMD_STATUS_UNSUPPORTED_OP = 0xB, /* Unsupported operation */ MC_CMD_STATUS_INVALID_STATE = 0xC /* Invalid state */ }; /* * MC command flags */ /* High priority flag */ #define MC_CMD_FLAG_PRI 0x80 /* Command completion flag */ #define MC_CMD_FLAG_INTR_DIS 0x01 static inline __le64 mc_encode_cmd_header(u16 cmd_id, u32 cmd_flags, u16 token) { __le64 header = 0; struct mc_cmd_header *hdr = (struct mc_cmd_header *)&header; hdr->cmd_id = cpu_to_le16(cmd_id); hdr->token = cpu_to_le16(token); hdr->status = MC_CMD_STATUS_READY; if (cmd_flags & MC_CMD_FLAG_PRI) hdr->flags_hw = MC_CMD_FLAG_PRI; if (cmd_flags & MC_CMD_FLAG_INTR_DIS) hdr->flags_sw = MC_CMD_FLAG_INTR_DIS; return header; } static inline u16 mc_cmd_hdr_read_token(struct fsl_mc_command *cmd) { struct mc_cmd_header *hdr = (struct mc_cmd_header *)&cmd->header; u16 token = le16_to_cpu(hdr->token); return token; } struct mc_rsp_create { __le32 object_id; }; struct mc_rsp_api_ver { __le16 major_ver; __le16 minor_ver; }; static inline u32 mc_cmd_read_object_id(struct fsl_mc_command *cmd) { struct mc_rsp_create *rsp_params; rsp_params = (struct mc_rsp_create *)cmd->params; return le32_to_cpu(rsp_params->object_id); } static inline void mc_cmd_read_api_version(struct fsl_mc_command *cmd, u16 *major_ver, u16 *minor_ver) { struct mc_rsp_api_ver *rsp_params; rsp_params = (struct mc_rsp_api_ver *)cmd->params; *major_ver = le16_to_cpu(rsp_params->major_ver); *minor_ver = le16_to_cpu(rsp_params->minor_ver); } /** * Bit masks for a MC I/O object (struct fsl_mc_io) flags */ #define FSL_MC_IO_ATOMIC_CONTEXT_PORTAL 0x0001 /** * struct fsl_mc_io - MC I/O object to be passed-in to mc_send_command() * @dev: device associated with this Mc I/O object * @flags: flags for mc_send_command() * @portal_size: MC command portal size in bytes * @portal_phys_addr: MC command portal physical address * @portal_virt_addr: MC command portal virtual address * @dpmcp_dev: pointer to the DPMCP device associated with the MC portal. * * Fields are only meaningful if the FSL_MC_IO_ATOMIC_CONTEXT_PORTAL flag is not * set: * @mutex: Mutex to serialize mc_send_command() calls that use the same MC * portal, if the fsl_mc_io object was created with the * FSL_MC_IO_ATOMIC_CONTEXT_PORTAL flag off. mc_send_command() calls for this * fsl_mc_io object must be made only from non-atomic context. * * Fields are only meaningful if the FSL_MC_IO_ATOMIC_CONTEXT_PORTAL flag is * set: * @spinlock: Spinlock to serialize mc_send_command() calls that use the same MC * portal, if the fsl_mc_io object was created with the * FSL_MC_IO_ATOMIC_CONTEXT_PORTAL flag on. mc_send_command() calls for this * fsl_mc_io object can be made from atomic or non-atomic context. */ struct fsl_mc_io { struct device *dev; u16 flags; u32 portal_size; phys_addr_t portal_phys_addr; void __iomem *portal_virt_addr; struct fsl_mc_device *dpmcp_dev; union { /* * This field is only meaningful if the * FSL_MC_IO_ATOMIC_CONTEXT_PORTAL flag is not set */ struct mutex mutex; /* serializes mc_send_command() */ /* * This field is only meaningful if the * FSL_MC_IO_ATOMIC_CONTEXT_PORTAL flag is set */ raw_spinlock_t spinlock; /* serializes mc_send_command() */ }; }; int mc_send_command(struct fsl_mc_io *mc_io, struct fsl_mc_command *cmd); #ifdef CONFIG_FSL_MC_BUS #define dev_is_fsl_mc(_dev) ((_dev)->bus == &fsl_mc_bus_type) #else /* If fsl-mc bus is not present device cannot belong to fsl-mc bus */ #define dev_is_fsl_mc(_dev) (0) #endif /* Macro to check if a device is a container device */ #define fsl_mc_is_cont_dev(_dev) (to_fsl_mc_device(_dev)->flags & \ FSL_MC_IS_DPRC) /* Macro to get the container device of a MC device */ #define fsl_mc_cont_dev(_dev) (fsl_mc_is_cont_dev(_dev) ? \ (_dev) : (_dev)->parent) /* * module_fsl_mc_driver() - Helper macro for drivers that don't do * anything special in module init/exit. This eliminates a lot of * boilerplate. Each module may only use this macro once, and * calling it replaces module_init() and module_exit() */ #define module_fsl_mc_driver(__fsl_mc_driver) \ module_driver(__fsl_mc_driver, fsl_mc_driver_register, \ fsl_mc_driver_unregister) /* * Macro to avoid include chaining to get THIS_MODULE */ #define fsl_mc_driver_register(drv) \ __fsl_mc_driver_register(drv, THIS_MODULE) int __must_check __fsl_mc_driver_register(struct fsl_mc_driver *fsl_mc_driver, struct module *owner); void fsl_mc_driver_unregister(struct fsl_mc_driver *driver); /** * struct fsl_mc_version * @major: Major version number: incremented on API compatibility changes * @minor: Minor version number: incremented on API additions (that are * backward compatible); reset when major version is incremented * @revision: Internal revision number: incremented on implementation changes * and/or bug fixes that have no impact on API */ struct fsl_mc_version { u32 major; u32 minor; u32 revision; }; struct fsl_mc_version *fsl_mc_get_version(void); int __must_check fsl_mc_portal_allocate(struct fsl_mc_device *mc_dev, u16 mc_io_flags, struct fsl_mc_io **new_mc_io); void fsl_mc_portal_free(struct fsl_mc_io *mc_io); int fsl_mc_portal_reset(struct fsl_mc_io *mc_io); int __must_check fsl_mc_object_allocate(struct fsl_mc_device *mc_dev, enum fsl_mc_pool_type pool_type, struct fsl_mc_device **new_mc_adev); void fsl_mc_object_free(struct fsl_mc_device *mc_adev); struct irq_domain *fsl_mc_msi_create_irq_domain(struct fwnode_handle *fwnode, struct msi_domain_info *info, struct irq_domain *parent); int __must_check fsl_mc_allocate_irqs(struct fsl_mc_device *mc_dev); void fsl_mc_free_irqs(struct fsl_mc_device *mc_dev); struct fsl_mc_device *fsl_mc_get_endpoint(struct fsl_mc_device *mc_dev, u16 if_id); extern struct bus_type fsl_mc_bus_type; extern struct device_type fsl_mc_bus_dprc_type; extern struct device_type fsl_mc_bus_dpni_type; extern struct device_type fsl_mc_bus_dpio_type; extern struct device_type fsl_mc_bus_dpsw_type; extern struct device_type fsl_mc_bus_dpbp_type; extern struct device_type fsl_mc_bus_dpcon_type; extern struct device_type fsl_mc_bus_dpmcp_type; extern struct device_type fsl_mc_bus_dpmac_type; extern struct device_type fsl_mc_bus_dprtc_type; extern struct device_type fsl_mc_bus_dpseci_type; extern struct device_type fsl_mc_bus_dpdmux_type; extern struct device_type fsl_mc_bus_dpdcei_type; extern struct device_type fsl_mc_bus_dpaiop_type; extern struct device_type fsl_mc_bus_dpci_type; extern struct device_type fsl_mc_bus_dpdmai_type; static inline bool is_fsl_mc_bus_dprc(const struct fsl_mc_device *mc_dev) { return mc_dev->dev.type == &fsl_mc_bus_dprc_type; } static inline bool is_fsl_mc_bus_dpni(const struct fsl_mc_device *mc_dev) { return mc_dev->dev.type == &fsl_mc_bus_dpni_type; } static inline bool is_fsl_mc_bus_dpio(const struct fsl_mc_device *mc_dev) { return mc_dev->dev.type == &fsl_mc_bus_dpio_type; } static inline bool is_fsl_mc_bus_dpsw(const struct fsl_mc_device *mc_dev) { return mc_dev->dev.type == &fsl_mc_bus_dpsw_type; } static inline bool is_fsl_mc_bus_dpdmux(const struct fsl_mc_device *mc_dev) { return mc_dev->dev.type == &fsl_mc_bus_dpdmux_type; } static inline bool is_fsl_mc_bus_dpbp(const struct fsl_mc_device *mc_dev) { return mc_dev->dev.type == &fsl_mc_bus_dpbp_type; } static inline bool is_fsl_mc_bus_dpcon(const struct fsl_mc_device *mc_dev) { return mc_dev->dev.type == &fsl_mc_bus_dpcon_type; } static inline bool is_fsl_mc_bus_dpmcp(const struct fsl_mc_device *mc_dev) { return mc_dev->dev.type == &fsl_mc_bus_dpmcp_type; } static inline bool is_fsl_mc_bus_dpmac(const struct fsl_mc_device *mc_dev) { return mc_dev->dev.type == &fsl_mc_bus_dpmac_type; } static inline bool is_fsl_mc_bus_dprtc(const struct fsl_mc_device *mc_dev) { return mc_dev->dev.type == &fsl_mc_bus_dprtc_type; } static inline bool is_fsl_mc_bus_dpseci(const struct fsl_mc_device *mc_dev) { return mc_dev->dev.type == &fsl_mc_bus_dpseci_type; } static inline bool is_fsl_mc_bus_dpdcei(const struct fsl_mc_device *mc_dev) { return mc_dev->dev.type == &fsl_mc_bus_dpdcei_type; } static inline bool is_fsl_mc_bus_dpaiop(const struct fsl_mc_device *mc_dev) { return mc_dev->dev.type == &fsl_mc_bus_dpaiop_type; } static inline bool is_fsl_mc_bus_dpci(const struct fsl_mc_device *mc_dev) { return mc_dev->dev.type == &fsl_mc_bus_dpci_type; } static inline bool is_fsl_mc_bus_dpdmai(const struct fsl_mc_device *mc_dev) { return mc_dev->dev.type == &fsl_mc_bus_dpdmai_type; } #define DPRC_RESET_OPTION_NON_RECURSIVE 0x00000001 int dprc_reset_container(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token, int child_container_id, u32 options); int dprc_scan_container(struct fsl_mc_device *mc_bus_dev, bool alloc_interrupts); void dprc_remove_devices(struct fsl_mc_device *mc_bus_dev, struct fsl_mc_obj_desc *obj_desc_array, int num_child_objects_in_mc); int dprc_cleanup(struct fsl_mc_device *mc_dev); int dprc_setup(struct fsl_mc_device *mc_dev); /** * Maximum number of total IRQs that can be pre-allocated for an MC bus' * IRQ pool */ #define FSL_MC_IRQ_POOL_MAX_TOTAL_IRQS 256 int fsl_mc_populate_irq_pool(struct fsl_mc_device *mc_bus_dev, unsigned int irq_count); void fsl_mc_cleanup_irq_pool(struct fsl_mc_device *mc_bus_dev); /* * Data Path Buffer Pool (DPBP) API * Contains initialization APIs and runtime control APIs for DPBP */ int dpbp_open(struct fsl_mc_io *mc_io, u32 cmd_flags, int dpbp_id, u16 *token); int dpbp_close(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token); int dpbp_enable(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token); int dpbp_disable(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token); int dpbp_reset(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token); /** * struct dpbp_attr - Structure representing DPBP attributes * @id: DPBP object ID * @bpid: Hardware buffer pool ID; should be used as an argument in * acquire/release operations on buffers */ struct dpbp_attr { int id; u16 bpid; }; int dpbp_get_attributes(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token, struct dpbp_attr *attr); /* Data Path Concentrator (DPCON) API * Contains initialization APIs and runtime control APIs for DPCON */ /** * Use it to disable notifications; see dpcon_set_notification() */ #define DPCON_INVALID_DPIO_ID (int)(-1) int dpcon_open(struct fsl_mc_io *mc_io, u32 cmd_flags, int dpcon_id, u16 *token); int dpcon_close(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token); int dpcon_enable(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token); int dpcon_disable(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token); int dpcon_reset(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token); int fsl_mc_obj_open(struct fsl_mc_io *mc_io, u32 cmd_flags, int obj_id, char *obj_type, u16 *token); int fsl_mc_obj_close(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token); int fsl_mc_obj_reset(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token); /** * struct dpcon_attr - Structure representing DPCON attributes * @id: DPCON object ID * @qbman_ch_id: Channel ID to be used by dequeue operation * @num_priorities: Number of priorities for the DPCON channel (1-8) */ struct dpcon_attr { int id; u16 qbman_ch_id; u8 num_priorities; }; int dpcon_get_attributes(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token, struct dpcon_attr *attr); /** * struct dpcon_notification_cfg - Structure representing notification params * @dpio_id: DPIO object ID; must be configured with a notification channel; * to disable notifications set it to 'DPCON_INVALID_DPIO_ID'; * @priority: Priority selection within the DPIO channel; valid values * are 0-7, depending on the number of priorities in that channel * @user_ctx: User context value provided with each CDAN message */ struct dpcon_notification_cfg { int dpio_id; u8 priority; u64 user_ctx; }; int dpcon_set_notification(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token, struct dpcon_notification_cfg *cfg); #endif /* _FSL_MC_H_ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1