Contributors: 120
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Andrea Arcangeli |
745 |
12.80% |
7 |
2.26% |
Matthew Wilcox |
351 |
6.03% |
10 |
3.23% |
Hugh Dickins |
320 |
5.50% |
12 |
3.87% |
Kirill A. Shutemov |
275 |
4.73% |
14 |
4.52% |
David Hildenbrand |
230 |
3.95% |
4 |
1.29% |
Jeremy Fitzhardinge |
224 |
3.85% |
11 |
3.55% |
Linus Torvalds (pre-git) |
223 |
3.83% |
28 |
9.03% |
Peter Zijlstra |
211 |
3.63% |
5 |
1.61% |
Toshi Kani |
211 |
3.63% |
5 |
1.61% |
Ryan Roberts |
145 |
2.49% |
6 |
1.94% |
Andrew Morton |
131 |
2.25% |
5 |
1.61% |
Pekka J Enberg |
129 |
2.22% |
1 |
0.32% |
Venkatesh Pallipadi |
127 |
2.18% |
4 |
1.29% |
Lance Yang |
125 |
2.15% |
1 |
0.32% |
Mike Rapoport |
121 |
2.08% |
5 |
1.61% |
Martin Schwidefsky |
115 |
1.98% |
5 |
1.61% |
Aneesh Kumar K.V |
113 |
1.94% |
15 |
4.84% |
Dan J Williams |
107 |
1.84% |
5 |
1.61% |
Vineet Gupta |
102 |
1.75% |
3 |
0.97% |
Steven Price |
83 |
1.43% |
2 |
0.65% |
Barry Song |
78 |
1.34% |
3 |
0.97% |
Nicholas Piggin |
75 |
1.29% |
4 |
1.29% |
Naoya Horiguchi |
65 |
1.12% |
3 |
0.97% |
David S. Miller |
63 |
1.08% |
3 |
0.97% |
Alexandre Ghiti |
61 |
1.05% |
1 |
0.32% |
Thomas Hellstrom |
59 |
1.01% |
2 |
0.65% |
Al Viro |
53 |
0.91% |
3 |
0.97% |
Christophe Leroy |
53 |
0.91% |
6 |
1.94% |
Andi Kleen |
50 |
0.86% |
2 |
0.65% |
Rick Edgecombe |
48 |
0.82% |
2 |
0.65% |
Linus Torvalds |
48 |
0.82% |
7 |
2.26% |
Vasily Gorbik |
48 |
0.82% |
1 |
0.32% |
Joerg Roedel |
47 |
0.81% |
1 |
0.32% |
Pavel Tatashin |
45 |
0.77% |
3 |
0.97% |
Gerald Schaefer |
38 |
0.65% |
5 |
1.61% |
Zachary Amsden |
31 |
0.53% |
2 |
0.65% |
Anton Blanchard |
28 |
0.48% |
3 |
0.97% |
Paul Mackerras |
28 |
0.48% |
1 |
0.32% |
Tom Lendacky |
28 |
0.48% |
2 |
0.65% |
Khalid Aziz |
28 |
0.48% |
1 |
0.32% |
tongtiangen |
27 |
0.46% |
1 |
0.32% |
Pavel Emelyanov |
24 |
0.41% |
1 |
0.32% |
Chintan Pandya |
24 |
0.41% |
1 |
0.32% |
Stanislaw Gruszka |
24 |
0.41% |
1 |
0.32% |
Thomas Bogendoerfer |
22 |
0.38% |
1 |
0.32% |
Daniel Axtens |
22 |
0.38% |
1 |
0.32% |
Matt Fleming |
21 |
0.36% |
1 |
0.32% |
Cyrill V. Gorcunov |
21 |
0.36% |
3 |
0.97% |
Juergen Gross |
21 |
0.36% |
2 |
0.65% |
Huacai Chen |
20 |
0.34% |
1 |
0.32% |
Yu Zhao |
19 |
0.33% |
2 |
0.65% |
Peter Xu |
18 |
0.31% |
3 |
0.97% |
Arnd Bergmann |
18 |
0.31% |
1 |
0.32% |
Chris Zankel |
18 |
0.31% |
1 |
0.32% |
Anshuman Khandual |
18 |
0.31% |
5 |
1.61% |
Nadav Amit |
17 |
0.29% |
3 |
0.97% |
Greg Ungerer |
17 |
0.29% |
1 |
0.32% |
David Gibson |
16 |
0.27% |
2 |
0.65% |
Rik Van Riel |
16 |
0.27% |
3 |
0.97% |
Ingo Molnar |
16 |
0.27% |
3 |
0.97% |
Suresh B. Siddha |
16 |
0.27% |
1 |
0.32% |
Kumar Gala |
16 |
0.27% |
1 |
0.32% |
Will Deacon |
15 |
0.26% |
1 |
0.32% |
Ralf Baechle |
15 |
0.26% |
5 |
1.61% |
Bang Li |
14 |
0.24% |
2 |
0.65% |
Shaohua Li |
14 |
0.24% |
1 |
0.32% |
David Mosberger-Tang |
14 |
0.24% |
1 |
0.32% |
Nanyong Sun |
14 |
0.24% |
1 |
0.32% |
Catalin Marinas |
14 |
0.24% |
2 |
0.65% |
Mel Gorman |
13 |
0.22% |
1 |
0.32% |
David Woodhouse |
12 |
0.21% |
1 |
0.32% |
H. Peter Anvin |
11 |
0.19% |
2 |
0.65% |
Bibo Mao |
11 |
0.19% |
1 |
0.32% |
Becky Bruce |
10 |
0.17% |
1 |
0.32% |
Konstantin Weitz |
10 |
0.17% |
1 |
0.32% |
Håvard Skinnemoen |
9 |
0.15% |
1 |
0.32% |
Palmer Dabbelt |
9 |
0.15% |
1 |
0.32% |
Konstantin Khlebnikov |
8 |
0.14% |
1 |
0.32% |
Paul Mundt |
8 |
0.14% |
1 |
0.32% |
Kinsey Ho |
7 |
0.12% |
2 |
0.65% |
Max Filippov |
7 |
0.12% |
2 |
0.65% |
Suren Baghdasaryan |
6 |
0.10% |
1 |
0.32% |
Thomas Gleixner |
6 |
0.10% |
1 |
0.32% |
Luke Yang |
6 |
0.10% |
1 |
0.32% |
Zi Yan |
6 |
0.10% |
1 |
0.32% |
Guan Xuetao |
5 |
0.09% |
1 |
0.32% |
Alan Cox |
5 |
0.09% |
1 |
0.32% |
Steve Capper |
5 |
0.09% |
1 |
0.32% |
Chris Metcalf |
4 |
0.07% |
1 |
0.32% |
Jonathan Marek |
4 |
0.07% |
1 |
0.32% |
Andy Whitcroft |
4 |
0.07% |
1 |
0.32% |
Jeff Dike |
4 |
0.07% |
1 |
0.32% |
Paul Gortmaker |
3 |
0.05% |
1 |
0.32% |
Li kunyu |
3 |
0.05% |
1 |
0.32% |
Ma Wupeng |
3 |
0.05% |
1 |
0.32% |
Ben Hutchings |
3 |
0.05% |
1 |
0.32% |
Tim Schmielau |
3 |
0.05% |
1 |
0.32% |
Bhaskar Chowdhury |
3 |
0.05% |
1 |
0.32% |
Richard Kuo |
3 |
0.05% |
1 |
0.32% |
Tejun Heo |
3 |
0.05% |
2 |
0.65% |
Yinghai Lu |
3 |
0.05% |
1 |
0.32% |
Takashi Iwai |
3 |
0.05% |
1 |
0.32% |
Nadia Yvette Chambers |
2 |
0.03% |
1 |
0.32% |
Borislav Petkov |
2 |
0.03% |
1 |
0.32% |
Arun K S |
2 |
0.03% |
1 |
0.32% |
Randy Dunlap |
2 |
0.03% |
1 |
0.32% |
Christoph Lameter |
2 |
0.03% |
1 |
0.32% |
Keith Owens |
2 |
0.03% |
1 |
0.32% |
Jan Beulich |
2 |
0.03% |
1 |
0.32% |
Kenneth W Chen |
2 |
0.03% |
1 |
0.32% |
Russell King |
2 |
0.03% |
1 |
0.32% |
Jiri Kosina |
1 |
0.02% |
1 |
0.32% |
Christoph Hellwig |
1 |
0.02% |
1 |
0.32% |
Kamezawa Hiroyuki |
1 |
0.02% |
1 |
0.32% |
Vladimir Murzin |
1 |
0.02% |
1 |
0.32% |
Greg Kroah-Hartman |
1 |
0.02% |
1 |
0.32% |
zhang songyi |
1 |
0.02% |
1 |
0.32% |
Luis R. Rodriguez |
1 |
0.02% |
1 |
0.32% |
Paolo 'Blaisorblade' Giarrusso |
1 |
0.02% |
1 |
0.32% |
Liu Shixin |
1 |
0.02% |
1 |
0.32% |
Total |
5820 |
|
310 |
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_PGTABLE_H
#define _LINUX_PGTABLE_H
#include <linux/pfn.h>
#include <asm/pgtable.h>
#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
#define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT)
#ifndef __ASSEMBLY__
#ifdef CONFIG_MMU
#include <linux/mm_types.h>
#include <linux/bug.h>
#include <linux/errno.h>
#include <asm-generic/pgtable_uffd.h>
#include <linux/page_table_check.h>
#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
#endif
/*
* On almost all architectures and configurations, 0 can be used as the
* upper ceiling to free_pgtables(): on many architectures it has the same
* effect as using TASK_SIZE. However, there is one configuration which
* must impose a more careful limit, to avoid freeing kernel pgtables.
*/
#ifndef USER_PGTABLES_CEILING
#define USER_PGTABLES_CEILING 0UL
#endif
/*
* This defines the first usable user address. Platforms
* can override its value with custom FIRST_USER_ADDRESS
* defined in their respective <asm/pgtable.h>.
*/
#ifndef FIRST_USER_ADDRESS
#define FIRST_USER_ADDRESS 0UL
#endif
/*
* This defines the generic helper for accessing PMD page
* table page. Although platforms can still override this
* via their respective <asm/pgtable.h>.
*/
#ifndef pmd_pgtable
#define pmd_pgtable(pmd) pmd_page(pmd)
#endif
#define pmd_folio(pmd) page_folio(pmd_page(pmd))
/*
* A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
*
* The pXx_index() functions return the index of the entry in the page
* table page which would control the given virtual address
*
* As these functions may be used by the same code for different levels of
* the page table folding, they are always available, regardless of
* CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
* because in such cases PTRS_PER_PxD equals 1.
*/
static inline unsigned long pte_index(unsigned long address)
{
return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
}
#ifndef pmd_index
static inline unsigned long pmd_index(unsigned long address)
{
return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
}
#define pmd_index pmd_index
#endif
#ifndef pud_index
static inline unsigned long pud_index(unsigned long address)
{
return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
}
#define pud_index pud_index
#endif
#ifndef pgd_index
/* Must be a compile-time constant, so implement it as a macro */
#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
#endif
#ifndef pte_offset_kernel
static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
{
return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
}
#define pte_offset_kernel pte_offset_kernel
#endif
#ifdef CONFIG_HIGHPTE
#define __pte_map(pmd, address) \
((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
#define pte_unmap(pte) do { \
kunmap_local((pte)); \
rcu_read_unlock(); \
} while (0)
#else
static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
{
return pte_offset_kernel(pmd, address);
}
static inline void pte_unmap(pte_t *pte)
{
rcu_read_unlock();
}
#endif
void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
/* Find an entry in the second-level page table.. */
#ifndef pmd_offset
static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
{
return pud_pgtable(*pud) + pmd_index(address);
}
#define pmd_offset pmd_offset
#endif
#ifndef pud_offset
static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
{
return p4d_pgtable(*p4d) + pud_index(address);
}
#define pud_offset pud_offset
#endif
static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
{
return (pgd + pgd_index(address));
};
/*
* a shortcut to get a pgd_t in a given mm
*/
#ifndef pgd_offset
#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
#endif
/*
* a shortcut which implies the use of the kernel's pgd, instead
* of a process's
*/
#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
/*
* In many cases it is known that a virtual address is mapped at PMD or PTE
* level, so instead of traversing all the page table levels, we can get a
* pointer to the PMD entry in user or kernel page table or translate a virtual
* address to the pointer in the PTE in the kernel page tables with simple
* helpers.
*/
static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
{
return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
}
static inline pmd_t *pmd_off_k(unsigned long va)
{
return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
}
static inline pte_t *virt_to_kpte(unsigned long vaddr)
{
pmd_t *pmd = pmd_off_k(vaddr);
return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
}
#ifndef pmd_young
static inline int pmd_young(pmd_t pmd)
{
return 0;
}
#endif
#ifndef pmd_dirty
static inline int pmd_dirty(pmd_t pmd)
{
return 0;
}
#endif
/*
* A facility to provide lazy MMU batching. This allows PTE updates and
* page invalidations to be delayed until a call to leave lazy MMU mode
* is issued. Some architectures may benefit from doing this, and it is
* beneficial for both shadow and direct mode hypervisors, which may batch
* the PTE updates which happen during this window. Note that using this
* interface requires that read hazards be removed from the code. A read
* hazard could result in the direct mode hypervisor case, since the actual
* write to the page tables may not yet have taken place, so reads though
* a raw PTE pointer after it has been modified are not guaranteed to be
* up to date. This mode can only be entered and left under the protection of
* the page table locks for all page tables which may be modified. In the UP
* case, this is required so that preemption is disabled, and in the SMP case,
* it must synchronize the delayed page table writes properly on other CPUs.
*/
#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
#define arch_enter_lazy_mmu_mode() do {} while (0)
#define arch_leave_lazy_mmu_mode() do {} while (0)
#define arch_flush_lazy_mmu_mode() do {} while (0)
#endif
#ifndef pte_batch_hint
/**
* pte_batch_hint - Number of pages that can be added to batch without scanning.
* @ptep: Page table pointer for the entry.
* @pte: Page table entry.
*
* Some architectures know that a set of contiguous ptes all map the same
* contiguous memory with the same permissions. In this case, it can provide a
* hint to aid pte batching without the core code needing to scan every pte.
*
* An architecture implementation may ignore the PTE accessed state. Further,
* the dirty state must apply atomically to all the PTEs described by the hint.
*
* May be overridden by the architecture, else pte_batch_hint is always 1.
*/
static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
{
return 1;
}
#endif
#ifndef pte_advance_pfn
static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
{
return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
}
#endif
#define pte_next_pfn(pte) pte_advance_pfn(pte, 1)
#ifndef set_ptes
/**
* set_ptes - Map consecutive pages to a contiguous range of addresses.
* @mm: Address space to map the pages into.
* @addr: Address to map the first page at.
* @ptep: Page table pointer for the first entry.
* @pte: Page table entry for the first page.
* @nr: Number of pages to map.
*
* When nr==1, initial state of pte may be present or not present, and new state
* may be present or not present. When nr>1, initial state of all ptes must be
* not present, and new state must be present.
*
* May be overridden by the architecture, or the architecture can define
* set_pte() and PFN_PTE_SHIFT.
*
* Context: The caller holds the page table lock. The pages all belong
* to the same folio. The PTEs are all in the same PMD.
*/
static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte, unsigned int nr)
{
page_table_check_ptes_set(mm, ptep, pte, nr);
arch_enter_lazy_mmu_mode();
for (;;) {
set_pte(ptep, pte);
if (--nr == 0)
break;
ptep++;
pte = pte_next_pfn(pte);
}
arch_leave_lazy_mmu_mode();
}
#endif
#define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
extern int ptep_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep,
pte_t entry, int dirty);
#endif
#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
pmd_t entry, int dirty);
extern int pudp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pud_t *pudp,
pud_t entry, int dirty);
#else
static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
pmd_t entry, int dirty)
{
BUILD_BUG();
return 0;
}
static inline int pudp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pud_t *pudp,
pud_t entry, int dirty)
{
BUILD_BUG();
return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif
#ifndef ptep_get
static inline pte_t ptep_get(pte_t *ptep)
{
return READ_ONCE(*ptep);
}
#endif
#ifndef pmdp_get
static inline pmd_t pmdp_get(pmd_t *pmdp)
{
return READ_ONCE(*pmdp);
}
#endif
#ifndef pudp_get
static inline pud_t pudp_get(pud_t *pudp)
{
return READ_ONCE(*pudp);
}
#endif
#ifndef p4dp_get
static inline p4d_t p4dp_get(p4d_t *p4dp)
{
return READ_ONCE(*p4dp);
}
#endif
#ifndef pgdp_get
static inline pgd_t pgdp_get(pgd_t *pgdp)
{
return READ_ONCE(*pgdp);
}
#endif
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address,
pte_t *ptep)
{
pte_t pte = ptep_get(ptep);
int r = 1;
if (!pte_young(pte))
r = 0;
else
set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
return r;
}
#endif
#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp)
{
pmd_t pmd = *pmdp;
int r = 1;
if (!pmd_young(pmd))
r = 0;
else
set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
return r;
}
#else
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp)
{
BUILD_BUG();
return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
#endif
#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
int ptep_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep);
#endif
#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#else
/*
* Despite relevant to THP only, this API is called from generic rmap code
* under PageTransHuge(), hence needs a dummy implementation for !THP
*/
static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp)
{
BUILD_BUG();
return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif
#ifndef arch_has_hw_nonleaf_pmd_young
/*
* Return whether the accessed bit in non-leaf PMD entries is supported on the
* local CPU.
*/
static inline bool arch_has_hw_nonleaf_pmd_young(void)
{
return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
}
#endif
#ifndef arch_has_hw_pte_young
/*
* Return whether the accessed bit is supported on the local CPU.
*
* This stub assumes accessing through an old PTE triggers a page fault.
* Architectures that automatically set the access bit should overwrite it.
*/
static inline bool arch_has_hw_pte_young(void)
{
return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
}
#endif
#ifndef arch_check_zapped_pte
static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
pte_t pte)
{
}
#endif
#ifndef arch_check_zapped_pmd
static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
pmd_t pmd)
{
}
#endif
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long address,
pte_t *ptep)
{
pte_t pte = ptep_get(ptep);
pte_clear(mm, address, ptep);
page_table_check_pte_clear(mm, pte);
return pte;
}
#endif
#ifndef clear_young_dirty_ptes
/**
* clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the
* same folio as old/clean.
* @mm: Address space the pages are mapped into.
* @addr: Address the first page is mapped at.
* @ptep: Page table pointer for the first entry.
* @nr: Number of entries to mark old/clean.
* @flags: Flags to modify the PTE batch semantics.
*
* May be overridden by the architecture; otherwise, implemented by
* get_and_clear/modify/set for each pte in the range.
*
* Note that PTE bits in the PTE range besides the PFN can differ. For example,
* some PTEs might be write-protected.
*
* Context: The caller holds the page table lock. The PTEs map consecutive
* pages that belong to the same folio. The PTEs are all in the same PMD.
*/
static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep,
unsigned int nr, cydp_t flags)
{
pte_t pte;
for (;;) {
if (flags == CYDP_CLEAR_YOUNG)
ptep_test_and_clear_young(vma, addr, ptep);
else {
pte = ptep_get_and_clear(vma->vm_mm, addr, ptep);
if (flags & CYDP_CLEAR_YOUNG)
pte = pte_mkold(pte);
if (flags & CYDP_CLEAR_DIRTY)
pte = pte_mkclean(pte);
set_pte_at(vma->vm_mm, addr, ptep, pte);
}
if (--nr == 0)
break;
ptep++;
addr += PAGE_SIZE;
}
}
#endif
static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
ptep_get_and_clear(mm, addr, ptep);
}
#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
/*
* For walking the pagetables without holding any locks. Some architectures
* (eg x86-32 PAE) cannot load the entries atomically without using expensive
* instructions. We are guaranteed that a PTE will only either go from not
* present to present, or present to not present -- it will not switch to a
* completely different present page without a TLB flush inbetween; which we
* are blocking by holding interrupts off.
*
* Setting ptes from not present to present goes:
*
* ptep->pte_high = h;
* smp_wmb();
* ptep->pte_low = l;
*
* And present to not present goes:
*
* ptep->pte_low = 0;
* smp_wmb();
* ptep->pte_high = 0;
*
* We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
* We load pte_high *after* loading pte_low, which ensures we don't see an older
* value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
* picked up a changed pte high. We might have gotten rubbish values from
* pte_low and pte_high, but we are guaranteed that pte_low will not have the
* present bit set *unless* it is 'l'. Because get_user_pages_fast() only
* operates on present ptes we're safe.
*/
static inline pte_t ptep_get_lockless(pte_t *ptep)
{
pte_t pte;
do {
pte.pte_low = ptep->pte_low;
smp_rmb();
pte.pte_high = ptep->pte_high;
smp_rmb();
} while (unlikely(pte.pte_low != ptep->pte_low));
return pte;
}
#define ptep_get_lockless ptep_get_lockless
#if CONFIG_PGTABLE_LEVELS > 2
static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
{
pmd_t pmd;
do {
pmd.pmd_low = pmdp->pmd_low;
smp_rmb();
pmd.pmd_high = pmdp->pmd_high;
smp_rmb();
} while (unlikely(pmd.pmd_low != pmdp->pmd_low));
return pmd;
}
#define pmdp_get_lockless pmdp_get_lockless
#define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
#endif /* CONFIG_PGTABLE_LEVELS > 2 */
#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
/*
* We require that the PTE can be read atomically.
*/
#ifndef ptep_get_lockless
static inline pte_t ptep_get_lockless(pte_t *ptep)
{
return ptep_get(ptep);
}
#endif
#ifndef pmdp_get_lockless
static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
{
return pmdp_get(pmdp);
}
static inline void pmdp_get_lockless_sync(void)
{
}
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
unsigned long address,
pmd_t *pmdp)
{
pmd_t pmd = *pmdp;
pmd_clear(pmdp);
page_table_check_pmd_clear(mm, pmd);
return pmd;
}
#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
unsigned long address,
pud_t *pudp)
{
pud_t pud = *pudp;
pud_clear(pudp);
page_table_check_pud_clear(mm, pud);
return pud;
}
#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
int full)
{
return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
}
#endif
#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
unsigned long address, pud_t *pudp,
int full)
{
return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
}
#endif
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
unsigned long address, pte_t *ptep,
int full)
{
return ptep_get_and_clear(mm, address, ptep);
}
#endif
#ifndef get_and_clear_full_ptes
/**
* get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of
* the same folio, collecting dirty/accessed bits.
* @mm: Address space the pages are mapped into.
* @addr: Address the first page is mapped at.
* @ptep: Page table pointer for the first entry.
* @nr: Number of entries to clear.
* @full: Whether we are clearing a full mm.
*
* May be overridden by the architecture; otherwise, implemented as a simple
* loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the
* returned PTE.
*
* Note that PTE bits in the PTE range besides the PFN can differ. For example,
* some PTEs might be write-protected.
*
* Context: The caller holds the page table lock. The PTEs map consecutive
* pages that belong to the same folio. The PTEs are all in the same PMD.
*/
static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
unsigned long addr, pte_t *ptep, unsigned int nr, int full)
{
pte_t pte, tmp_pte;
pte = ptep_get_and_clear_full(mm, addr, ptep, full);
while (--nr) {
ptep++;
addr += PAGE_SIZE;
tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full);
if (pte_dirty(tmp_pte))
pte = pte_mkdirty(pte);
if (pte_young(tmp_pte))
pte = pte_mkyoung(pte);
}
return pte;
}
#endif
#ifndef clear_full_ptes
/**
* clear_full_ptes - Clear present PTEs that map consecutive pages of the same
* folio.
* @mm: Address space the pages are mapped into.
* @addr: Address the first page is mapped at.
* @ptep: Page table pointer for the first entry.
* @nr: Number of entries to clear.
* @full: Whether we are clearing a full mm.
*
* May be overridden by the architecture; otherwise, implemented as a simple
* loop over ptep_get_and_clear_full().
*
* Note that PTE bits in the PTE range besides the PFN can differ. For example,
* some PTEs might be write-protected.
*
* Context: The caller holds the page table lock. The PTEs map consecutive
* pages that belong to the same folio. The PTEs are all in the same PMD.
*/
static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, unsigned int nr, int full)
{
for (;;) {
ptep_get_and_clear_full(mm, addr, ptep, full);
if (--nr == 0)
break;
ptep++;
addr += PAGE_SIZE;
}
}
#endif
/*
* If two threads concurrently fault at the same page, the thread that
* won the race updates the PTE and its local TLB/Cache. The other thread
* gives up, simply does nothing, and continues; on architectures where
* software can update TLB, local TLB can be updated here to avoid next page
* fault. This function updates TLB only, do nothing with cache or others.
* It is the difference with function update_mmu_cache.
*/
#ifndef update_mmu_tlb_range
static inline void update_mmu_tlb_range(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep, unsigned int nr)
{
}
#endif
static inline void update_mmu_tlb(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep)
{
update_mmu_tlb_range(vma, address, ptep, 1);
}
/*
* Some architectures may be able to avoid expensive synchronization
* primitives when modifications are made to PTE's which are already
* not present, or in the process of an address space destruction.
*/
#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
static inline void pte_clear_not_present_full(struct mm_struct *mm,
unsigned long address,
pte_t *ptep,
int full)
{
pte_clear(mm, address, ptep);
}
#endif
#ifndef clear_not_present_full_ptes
/**
* clear_not_present_full_ptes - Clear multiple not present PTEs which are
* consecutive in the pgtable.
* @mm: Address space the ptes represent.
* @addr: Address of the first pte.
* @ptep: Page table pointer for the first entry.
* @nr: Number of entries to clear.
* @full: Whether we are clearing a full mm.
*
* May be overridden by the architecture; otherwise, implemented as a simple
* loop over pte_clear_not_present_full().
*
* Context: The caller holds the page table lock. The PTEs are all not present.
* The PTEs are all in the same PMD.
*/
static inline void clear_not_present_full_ptes(struct mm_struct *mm,
unsigned long addr, pte_t *ptep, unsigned int nr, int full)
{
for (;;) {
pte_clear_not_present_full(mm, addr, ptep, full);
if (--nr == 0)
break;
ptep++;
addr += PAGE_SIZE;
}
}
#endif
#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
unsigned long address,
pte_t *ptep);
#endif
#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp);
extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
unsigned long address,
pud_t *pudp);
#endif
#ifndef pte_mkwrite
static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
{
return pte_mkwrite_novma(pte);
}
#endif
#if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
{
return pmd_mkwrite_novma(pmd);
}
#endif
#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
struct mm_struct;
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
{
pte_t old_pte = ptep_get(ptep);
set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
}
#endif
#ifndef wrprotect_ptes
/**
* wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same
* folio.
* @mm: Address space the pages are mapped into.
* @addr: Address the first page is mapped at.
* @ptep: Page table pointer for the first entry.
* @nr: Number of entries to write-protect.
*
* May be overridden by the architecture; otherwise, implemented as a simple
* loop over ptep_set_wrprotect().
*
* Note that PTE bits in the PTE range besides the PFN can differ. For example,
* some PTEs might be write-protected.
*
* Context: The caller holds the page table lock. The PTEs map consecutive
* pages that belong to the same folio. The PTEs are all in the same PMD.
*/
static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, unsigned int nr)
{
for (;;) {
ptep_set_wrprotect(mm, addr, ptep);
if (--nr == 0)
break;
ptep++;
addr += PAGE_SIZE;
}
}
#endif
/*
* On some architectures hardware does not set page access bit when accessing
* memory page, it is responsibility of software setting this bit. It brings
* out extra page fault penalty to track page access bit. For optimization page
* access bit can be set during all page fault flow on these arches.
* To be differentiate with macro pte_mkyoung, this macro is used on platforms
* where software maintains page access bit.
*/
#ifndef pte_sw_mkyoung
static inline pte_t pte_sw_mkyoung(pte_t pte)
{
return pte;
}
#define pte_sw_mkyoung pte_sw_mkyoung
#endif
#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
pmd_t old_pmd = *pmdp;
set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
}
#else
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
BUILD_BUG();
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif
#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline void pudp_set_wrprotect(struct mm_struct *mm,
unsigned long address, pud_t *pudp)
{
pud_t old_pud = *pudp;
set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
}
#else
static inline void pudp_set_wrprotect(struct mm_struct *mm,
unsigned long address, pud_t *pudp)
{
BUILD_BUG();
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
#endif
#ifndef pmdp_collapse_flush
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#else
static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp)
{
BUILD_BUG();
return *pmdp;
}
#define pmdp_collapse_flush pmdp_collapse_flush
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif
#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
pgtable_t pgtable);
#endif
#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
#endif
#ifndef arch_needs_pgtable_deposit
#define arch_needs_pgtable_deposit() (false)
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
* This is an implementation of pmdp_establish() that is only suitable for an
* architecture that doesn't have hardware dirty/accessed bits. In this case we
* can't race with CPU which sets these bits and non-atomic approach is fine.
*/
static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp, pmd_t pmd)
{
pmd_t old_pmd = *pmdp;
set_pmd_at(vma->vm_mm, address, pmdp, pmd);
return old_pmd;
}
#endif
#ifndef __HAVE_ARCH_PMDP_INVALIDATE
extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp);
#endif
#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
/*
* pmdp_invalidate_ad() invalidates the PMD while changing a transparent
* hugepage mapping in the page tables. This function is similar to
* pmdp_invalidate(), but should only be used if the access and dirty bits would
* not be cleared by the software in the new PMD value. The function ensures
* that hardware changes of the access and dirty bits updates would not be lost.
*
* Doing so can allow in certain architectures to avoid a TLB flush in most
* cases. Yet, another TLB flush might be necessary later if the PMD update
* itself requires such flush (e.g., if protection was set to be stricter). Yet,
* even when a TLB flush is needed because of the update, the caller may be able
* to batch these TLB flushing operations, so fewer TLB flush operations are
* needed.
*/
extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#endif
#ifndef __HAVE_ARCH_PTE_SAME
static inline int pte_same(pte_t pte_a, pte_t pte_b)
{
return pte_val(pte_a) == pte_val(pte_b);
}
#endif
#ifndef __HAVE_ARCH_PTE_UNUSED
/*
* Some architectures provide facilities to virtualization guests
* so that they can flag allocated pages as unused. This allows the
* host to transparently reclaim unused pages. This function returns
* whether the pte's page is unused.
*/
static inline int pte_unused(pte_t pte)
{
return 0;
}
#endif
#ifndef pte_access_permitted
#define pte_access_permitted(pte, write) \
(pte_present(pte) && (!(write) || pte_write(pte)))
#endif
#ifndef pmd_access_permitted
#define pmd_access_permitted(pmd, write) \
(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
#endif
#ifndef pud_access_permitted
#define pud_access_permitted(pud, write) \
(pud_present(pud) && (!(write) || pud_write(pud)))
#endif
#ifndef p4d_access_permitted
#define p4d_access_permitted(p4d, write) \
(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
#endif
#ifndef pgd_access_permitted
#define pgd_access_permitted(pgd, write) \
(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
#endif
#ifndef __HAVE_ARCH_PMD_SAME
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
return pmd_val(pmd_a) == pmd_val(pmd_b);
}
#endif
#ifndef pud_same
static inline int pud_same(pud_t pud_a, pud_t pud_b)
{
return pud_val(pud_a) == pud_val(pud_b);
}
#define pud_same pud_same
#endif
#ifndef __HAVE_ARCH_P4D_SAME
static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
{
return p4d_val(p4d_a) == p4d_val(p4d_b);
}
#endif
#ifndef __HAVE_ARCH_PGD_SAME
static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
{
return pgd_val(pgd_a) == pgd_val(pgd_b);
}
#endif
/*
* Use set_p*_safe(), and elide TLB flushing, when confident that *no*
* TLB flush will be required as a result of the "set". For example, use
* in scenarios where it is known ahead of time that the routine is
* setting non-present entries, or re-setting an existing entry to the
* same value. Otherwise, use the typical "set" helpers and flush the
* TLB.
*/
#define set_pte_safe(ptep, pte) \
({ \
WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
set_pte(ptep, pte); \
})
#define set_pmd_safe(pmdp, pmd) \
({ \
WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
set_pmd(pmdp, pmd); \
})
#define set_pud_safe(pudp, pud) \
({ \
WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
set_pud(pudp, pud); \
})
#define set_p4d_safe(p4dp, p4d) \
({ \
WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
set_p4d(p4dp, p4d); \
})
#define set_pgd_safe(pgdp, pgd) \
({ \
WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
set_pgd(pgdp, pgd); \
})
#ifndef __HAVE_ARCH_DO_SWAP_PAGE
static inline void arch_do_swap_page_nr(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long addr,
pte_t pte, pte_t oldpte,
int nr)
{
}
#else
/*
* Some architectures support metadata associated with a page. When a
* page is being swapped out, this metadata must be saved so it can be
* restored when the page is swapped back in. SPARC M7 and newer
* processors support an ADI (Application Data Integrity) tag for the
* page as metadata for the page. arch_do_swap_page() can restore this
* metadata when a page is swapped back in.
*/
static inline void arch_do_swap_page_nr(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long addr,
pte_t pte, pte_t oldpte,
int nr)
{
for (int i = 0; i < nr; i++) {
arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE,
pte_advance_pfn(pte, i),
pte_advance_pfn(oldpte, i));
}
}
#endif
#ifndef __HAVE_ARCH_UNMAP_ONE
/*
* Some architectures support metadata associated with a page. When a
* page is being swapped out, this metadata must be saved so it can be
* restored when the page is swapped back in. SPARC M7 and newer
* processors support an ADI (Application Data Integrity) tag for the
* page as metadata for the page. arch_unmap_one() can save this
* metadata on a swap-out of a page.
*/
static inline int arch_unmap_one(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long addr,
pte_t orig_pte)
{
return 0;
}
#endif
/*
* Allow architectures to preserve additional metadata associated with
* swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
* prototypes must be defined in the arch-specific asm/pgtable.h file.
*/
#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
static inline int arch_prepare_to_swap(struct folio *folio)
{
return 0;
}
#endif
#ifndef __HAVE_ARCH_SWAP_INVALIDATE
static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
{
}
static inline void arch_swap_invalidate_area(int type)
{
}
#endif
#ifndef __HAVE_ARCH_SWAP_RESTORE
static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
{
}
#endif
#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
#endif
#ifndef __HAVE_ARCH_MOVE_PTE
#define move_pte(pte, old_addr, new_addr) (pte)
#endif
#ifndef pte_accessible
# define pte_accessible(mm, pte) ((void)(pte), 1)
#endif
#ifndef flush_tlb_fix_spurious_fault
#define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
#endif
/*
* When walking page tables, get the address of the next boundary,
* or the end address of the range if that comes earlier. Although no
* vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
*/
#define pgd_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
(__boundary - 1 < (end) - 1)? __boundary: (end); \
})
#ifndef p4d_addr_end
#define p4d_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
(__boundary - 1 < (end) - 1)? __boundary: (end); \
})
#endif
#ifndef pud_addr_end
#define pud_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
(__boundary - 1 < (end) - 1)? __boundary: (end); \
})
#endif
#ifndef pmd_addr_end
#define pmd_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
(__boundary - 1 < (end) - 1)? __boundary: (end); \
})
#endif
/*
* When walking page tables, we usually want to skip any p?d_none entries;
* and any p?d_bad entries - reporting the error before resetting to none.
* Do the tests inline, but report and clear the bad entry in mm/memory.c.
*/
void pgd_clear_bad(pgd_t *);
#ifndef __PAGETABLE_P4D_FOLDED
void p4d_clear_bad(p4d_t *);
#else
#define p4d_clear_bad(p4d) do { } while (0)
#endif
#ifndef __PAGETABLE_PUD_FOLDED
void pud_clear_bad(pud_t *);
#else
#define pud_clear_bad(p4d) do { } while (0)
#endif
void pmd_clear_bad(pmd_t *);
static inline int pgd_none_or_clear_bad(pgd_t *pgd)
{
if (pgd_none(*pgd))
return 1;
if (unlikely(pgd_bad(*pgd))) {
pgd_clear_bad(pgd);
return 1;
}
return 0;
}
static inline int p4d_none_or_clear_bad(p4d_t *p4d)
{
if (p4d_none(*p4d))
return 1;
if (unlikely(p4d_bad(*p4d))) {
p4d_clear_bad(p4d);
return 1;
}
return 0;
}
static inline int pud_none_or_clear_bad(pud_t *pud)
{
if (pud_none(*pud))
return 1;
if (unlikely(pud_bad(*pud))) {
pud_clear_bad(pud);
return 1;
}
return 0;
}
static inline int pmd_none_or_clear_bad(pmd_t *pmd)
{
if (pmd_none(*pmd))
return 1;
if (unlikely(pmd_bad(*pmd))) {
pmd_clear_bad(pmd);
return 1;
}
return 0;
}
static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
unsigned long addr,
pte_t *ptep)
{
/*
* Get the current pte state, but zero it out to make it
* non-present, preventing the hardware from asynchronously
* updating it.
*/
return ptep_get_and_clear(vma->vm_mm, addr, ptep);
}
static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
unsigned long addr,
pte_t *ptep, pte_t pte)
{
/*
* The pte is non-present, so there's no hardware state to
* preserve.
*/
set_pte_at(vma->vm_mm, addr, ptep, pte);
}
#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
/*
* Start a pte protection read-modify-write transaction, which
* protects against asynchronous hardware modifications to the pte.
* The intention is not to prevent the hardware from making pte
* updates, but to prevent any updates it may make from being lost.
*
* This does not protect against other software modifications of the
* pte; the appropriate pte lock must be held over the transaction.
*
* Note that this interface is intended to be batchable, meaning that
* ptep_modify_prot_commit may not actually update the pte, but merely
* queue the update to be done at some later time. The update must be
* actually committed before the pte lock is released, however.
*/
static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
unsigned long addr,
pte_t *ptep)
{
return __ptep_modify_prot_start(vma, addr, ptep);
}
/*
* Commit an update to a pte, leaving any hardware-controlled bits in
* the PTE unmodified.
*/
static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
unsigned long addr,
pte_t *ptep, pte_t old_pte, pte_t pte)
{
__ptep_modify_prot_commit(vma, addr, ptep, pte);
}
#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
#endif /* CONFIG_MMU */
/*
* No-op macros that just return the current protection value. Defined here
* because these macros can be used even if CONFIG_MMU is not defined.
*/
#ifndef pgprot_nx
#define pgprot_nx(prot) (prot)
#endif
#ifndef pgprot_noncached
#define pgprot_noncached(prot) (prot)
#endif
#ifndef pgprot_writecombine
#define pgprot_writecombine pgprot_noncached
#endif
#ifndef pgprot_writethrough
#define pgprot_writethrough pgprot_noncached
#endif
#ifndef pgprot_device
#define pgprot_device pgprot_noncached
#endif
#ifndef pgprot_mhp
#define pgprot_mhp(prot) (prot)
#endif
#ifdef CONFIG_MMU
#ifndef pgprot_modify
#define pgprot_modify pgprot_modify
static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
{
if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
newprot = pgprot_noncached(newprot);
if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
newprot = pgprot_writecombine(newprot);
if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
newprot = pgprot_device(newprot);
return newprot;
}
#endif
#endif /* CONFIG_MMU */
#ifndef pgprot_encrypted
#define pgprot_encrypted(prot) (prot)
#endif
#ifndef pgprot_decrypted
#define pgprot_decrypted(prot) (prot)
#endif
/*
* A facility to provide batching of the reload of page tables and
* other process state with the actual context switch code for
* paravirtualized guests. By convention, only one of the batched
* update (lazy) modes (CPU, MMU) should be active at any given time,
* entry should never be nested, and entry and exits should always be
* paired. This is for sanity of maintaining and reasoning about the
* kernel code. In this case, the exit (end of the context switch) is
* in architecture-specific code, and so doesn't need a generic
* definition.
*/
#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
#define arch_start_context_switch(prev) do {} while (0)
#endif
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
{
return pmd;
}
static inline int pmd_swp_soft_dirty(pmd_t pmd)
{
return 0;
}
static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
{
return pmd;
}
#endif
#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
static inline int pte_soft_dirty(pte_t pte)
{
return 0;
}
static inline int pmd_soft_dirty(pmd_t pmd)
{
return 0;
}
static inline pte_t pte_mksoft_dirty(pte_t pte)
{
return pte;
}
static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
{
return pmd;
}
static inline pte_t pte_clear_soft_dirty(pte_t pte)
{
return pte;
}
static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
{
return pmd;
}
static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
{
return pte;
}
static inline int pte_swp_soft_dirty(pte_t pte)
{
return 0;
}
static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
{
return pte;
}
static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
{
return pmd;
}
static inline int pmd_swp_soft_dirty(pmd_t pmd)
{
return 0;
}
static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
{
return pmd;
}
#endif
#ifndef __HAVE_PFNMAP_TRACKING
/*
* Interfaces that can be used by architecture code to keep track of
* memory type of pfn mappings specified by the remap_pfn_range,
* vmf_insert_pfn.
*/
/*
* track_pfn_remap is called when a _new_ pfn mapping is being established
* by remap_pfn_range() for physical range indicated by pfn and size.
*/
static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
unsigned long pfn, unsigned long addr,
unsigned long size)
{
return 0;
}
/*
* track_pfn_insert is called when a _new_ single pfn is established
* by vmf_insert_pfn().
*/
static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
pfn_t pfn)
{
}
/*
* track_pfn_copy is called when vma that is covering the pfnmap gets
* copied through copy_page_range().
*/
static inline int track_pfn_copy(struct vm_area_struct *vma)
{
return 0;
}
/*
* untrack_pfn is called while unmapping a pfnmap for a region.
* untrack can be called for a specific region indicated by pfn and size or
* can be for the entire vma (in which case pfn, size are zero).
*/
static inline void untrack_pfn(struct vm_area_struct *vma,
unsigned long pfn, unsigned long size,
bool mm_wr_locked)
{
}
/*
* untrack_pfn_clear is called while mremapping a pfnmap for a new region
* or fails to copy pgtable during duplicate vm area.
*/
static inline void untrack_pfn_clear(struct vm_area_struct *vma)
{
}
#else
extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
unsigned long pfn, unsigned long addr,
unsigned long size);
extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
pfn_t pfn);
extern int track_pfn_copy(struct vm_area_struct *vma);
extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
unsigned long size, bool mm_wr_locked);
extern void untrack_pfn_clear(struct vm_area_struct *vma);
#endif
#ifdef CONFIG_MMU
#ifdef __HAVE_COLOR_ZERO_PAGE
static inline int is_zero_pfn(unsigned long pfn)
{
extern unsigned long zero_pfn;
unsigned long offset_from_zero_pfn = pfn - zero_pfn;
return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
}
#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
#else
static inline int is_zero_pfn(unsigned long pfn)
{
extern unsigned long zero_pfn;
return pfn == zero_pfn;
}
static inline unsigned long my_zero_pfn(unsigned long addr)
{
extern unsigned long zero_pfn;
return zero_pfn;
}
#endif
#else
static inline int is_zero_pfn(unsigned long pfn)
{
return 0;
}
static inline unsigned long my_zero_pfn(unsigned long addr)
{
return 0;
}
#endif /* CONFIG_MMU */
#ifdef CONFIG_MMU
#ifndef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_trans_huge(pmd_t pmd)
{
return 0;
}
#ifndef pmd_write
static inline int pmd_write(pmd_t pmd)
{
BUG();
return 0;
}
#endif /* pmd_write */
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#ifndef pud_write
static inline int pud_write(pud_t pud)
{
BUG();
return 0;
}
#endif /* pud_write */
#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
static inline int pmd_devmap(pmd_t pmd)
{
return 0;
}
static inline int pud_devmap(pud_t pud)
{
return 0;
}
static inline int pgd_devmap(pgd_t pgd)
{
return 0;
}
#endif
#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
!defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
static inline int pud_trans_huge(pud_t pud)
{
return 0;
}
#endif
static inline int pud_trans_unstable(pud_t *pud)
{
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
pud_t pudval = READ_ONCE(*pud);
if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
return 1;
if (unlikely(pud_bad(pudval))) {
pud_clear_bad(pud);
return 1;
}
#endif
return 0;
}
#ifndef CONFIG_NUMA_BALANCING
/*
* In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
* perfectly valid to indicate "no" in that case, which is why our default
* implementation defaults to "always no".
*
* In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
* page protection due to NUMA hinting. NUMA hinting faults only apply in
* accessible VMAs.
*
* So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
* looking at the VMA accessibility is sufficient.
*/
static inline int pte_protnone(pte_t pte)
{
return 0;
}
static inline int pmd_protnone(pmd_t pmd)
{
return 0;
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_MMU */
#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
#ifndef __PAGETABLE_P4D_FOLDED
int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
void p4d_clear_huge(p4d_t *p4d);
#else
static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
{
return 0;
}
static inline void p4d_clear_huge(p4d_t *p4d) { }
#endif /* !__PAGETABLE_P4D_FOLDED */
int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
int pud_clear_huge(pud_t *pud);
int pmd_clear_huge(pmd_t *pmd);
int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
int pud_free_pmd_page(pud_t *pud, unsigned long addr);
int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
{
return 0;
}
static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
{
return 0;
}
static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
{
return 0;
}
static inline void p4d_clear_huge(p4d_t *p4d) { }
static inline int pud_clear_huge(pud_t *pud)
{
return 0;
}
static inline int pmd_clear_huge(pmd_t *pmd)
{
return 0;
}
static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
{
return 0;
}
static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
{
return 0;
}
static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
{
return 0;
}
#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
* ARCHes with special requirements for evicting THP backing TLB entries can
* implement this. Otherwise also, it can help optimize normal TLB flush in
* THP regime. Stock flush_tlb_range() typically has optimization to nuke the
* entire TLB if flush span is greater than a threshold, which will
* likely be true for a single huge page. Thus a single THP flush will
* invalidate the entire TLB which is not desirable.
* e.g. see arch/arc: flush_pmd_tlb_range
*/
#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
#else
#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
#endif
#endif
struct file;
int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t *vma_prot);
#ifndef CONFIG_X86_ESPFIX64
static inline void init_espfix_bsp(void) { }
#endif
extern void __init pgtable_cache_init(void);
#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
{
return true;
}
static inline bool arch_has_pfn_modify_check(void)
{
return false;
}
#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
/*
* Architecture PAGE_KERNEL_* fallbacks
*
* Some architectures don't define certain PAGE_KERNEL_* flags. This is either
* because they really don't support them, or the port needs to be updated to
* reflect the required functionality. Below are a set of relatively safe
* fallbacks, as best effort, which we can count on in lieu of the architectures
* not defining them on their own yet.
*/
#ifndef PAGE_KERNEL_RO
# define PAGE_KERNEL_RO PAGE_KERNEL
#endif
#ifndef PAGE_KERNEL_EXEC
# define PAGE_KERNEL_EXEC PAGE_KERNEL
#endif
/*
* Page Table Modification bits for pgtbl_mod_mask.
*
* These are used by the p?d_alloc_track*() set of functions an in the generic
* vmalloc/ioremap code to track at which page-table levels entries have been
* modified. Based on that the code can better decide when vmalloc and ioremap
* mapping changes need to be synchronized to other page-tables in the system.
*/
#define __PGTBL_PGD_MODIFIED 0
#define __PGTBL_P4D_MODIFIED 1
#define __PGTBL_PUD_MODIFIED 2
#define __PGTBL_PMD_MODIFIED 3
#define __PGTBL_PTE_MODIFIED 4
#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
/* Page-Table Modification Mask */
typedef unsigned int pgtbl_mod_mask;
#endif /* !__ASSEMBLY__ */
#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
#ifdef CONFIG_PHYS_ADDR_T_64BIT
/*
* ZSMALLOC needs to know the highest PFN on 32-bit architectures
* with physical address space extension, but falls back to
* BITS_PER_LONG otherwise.
*/
#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
#else
#define MAX_POSSIBLE_PHYSMEM_BITS 32
#endif
#endif
#ifndef has_transparent_hugepage
#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
#endif
#ifndef has_transparent_pud_hugepage
#define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
#endif
/*
* On some architectures it depends on the mm if the p4d/pud or pmd
* layer of the page table hierarchy is folded or not.
*/
#ifndef mm_p4d_folded
#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
#endif
#ifndef mm_pud_folded
#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
#endif
#ifndef mm_pmd_folded
#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
#endif
#ifndef p4d_offset_lockless
#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
#endif
#ifndef pud_offset_lockless
#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
#endif
#ifndef pmd_offset_lockless
#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
#endif
/*
* pXd_leaf() is the API to check whether a pgtable entry is a huge page
* mapping. It should work globally across all archs, without any
* dependency on CONFIG_* options. For architectures that do not support
* huge mappings on specific levels, below fallbacks will be used.
*
* A leaf pgtable entry should always imply the following:
*
* - It is a "present" entry. IOW, before using this API, please check it
* with pXd_present() first. NOTE: it may not always mean the "present
* bit" is set. For example, PROT_NONE entries are always "present".
*
* - It should _never_ be a swap entry of any type. Above "present" check
* should have guarded this, but let's be crystal clear on this.
*
* - It should contain a huge PFN, which points to a huge page larger than
* PAGE_SIZE of the platform. The PFN format isn't important here.
*
* - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(),
* pXd_devmap(), or hugetlb mappings).
*/
#ifndef pgd_leaf
#define pgd_leaf(x) false
#endif
#ifndef p4d_leaf
#define p4d_leaf(x) false
#endif
#ifndef pud_leaf
#define pud_leaf(x) false
#endif
#ifndef pmd_leaf
#define pmd_leaf(x) false
#endif
#ifndef pgd_leaf_size
#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
#endif
#ifndef p4d_leaf_size
#define p4d_leaf_size(x) P4D_SIZE
#endif
#ifndef pud_leaf_size
#define pud_leaf_size(x) PUD_SIZE
#endif
#ifndef pmd_leaf_size
#define pmd_leaf_size(x) PMD_SIZE
#endif
#ifndef __pte_leaf_size
#ifndef pte_leaf_size
#define pte_leaf_size(x) PAGE_SIZE
#endif
#define __pte_leaf_size(x,y) pte_leaf_size(y)
#endif
/*
* We always define pmd_pfn for all archs as it's used in lots of generic
* code. Now it happens too for pud_pfn (and can happen for larger
* mappings too in the future; we're not there yet). Instead of defining
* it for all archs (like pmd_pfn), provide a fallback.
*
* Note that returning 0 here means any arch that didn't define this can
* get severely wrong when it hits a real pud leaf. It's arch's
* responsibility to properly define it when a huge pud is possible.
*/
#ifndef pud_pfn
#define pud_pfn(x) 0
#endif
/*
* Some architectures have MMUs that are configurable or selectable at boot
* time. These lead to variable PTRS_PER_x. For statically allocated arrays it
* helps to have a static maximum value.
*/
#ifndef MAX_PTRS_PER_PTE
#define MAX_PTRS_PER_PTE PTRS_PER_PTE
#endif
#ifndef MAX_PTRS_PER_PMD
#define MAX_PTRS_PER_PMD PTRS_PER_PMD
#endif
#ifndef MAX_PTRS_PER_PUD
#define MAX_PTRS_PER_PUD PTRS_PER_PUD
#endif
#ifndef MAX_PTRS_PER_P4D
#define MAX_PTRS_PER_P4D PTRS_PER_P4D
#endif
/* description of effects of mapping type and prot in current implementation.
* this is due to the limited x86 page protection hardware. The expected
* behavior is in parens:
*
* map_type prot
* PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
* MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
* w: (no) no w: (no) no w: (yes) yes w: (no) no
* x: (no) no x: (no) yes x: (no) yes x: (yes) yes
*
* MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
* w: (no) no w: (no) no w: (copy) copy w: (no) no
* x: (no) no x: (no) yes x: (no) yes x: (yes) yes
*
* On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
* MAP_PRIVATE (with Enhanced PAN supported):
* r: (no) no
* w: (no) no
* x: (yes) yes
*/
#define DECLARE_VM_GET_PAGE_PROT \
pgprot_t vm_get_page_prot(unsigned long vm_flags) \
{ \
return protection_map[vm_flags & \
(VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
} \
EXPORT_SYMBOL(vm_get_page_prot);
#endif /* _LINUX_PGTABLE_H */