Contributors: 19
Author Tokens Token Proportion Commits Commit Proportion
John Stultz 305 55.66% 6 19.35%
Shailabh Nagar 49 8.94% 1 3.23%
Andrew Morton 46 8.39% 1 3.23%
Thomas Gleixner 41 7.48% 6 19.35%
Andi Kleen 26 4.74% 1 3.23%
Lukas Hannen 20 3.65% 1 3.23%
Baolin Wang 13 2.37% 1 3.23%
Jeremy Fitzhardinge 12 2.19% 2 6.45%
Ingo Molnar 8 1.46% 1 3.23%
Deepa Dinamani 5 0.91% 2 6.45%
Vladimir Oltean 5 0.91% 1 3.23%
Zeng Tao 4 0.73% 1 3.23%
Vegard Nossum 4 0.73% 1 3.23%
Vincenzo Frascino 3 0.55% 1 3.23%
Xunlei Pang 3 0.55% 1 3.23%
Roman Zippel 1 0.18% 1 3.23%
Greg Kroah-Hartman 1 0.18% 1 3.23%
David Howells 1 0.18% 1 3.23%
Rolf Eike Beer 1 0.18% 1 3.23%
Total 548 31


/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_TIME64_H
#define _LINUX_TIME64_H

#include <linux/math64.h>
#include <vdso/time64.h>

typedef __s64 time64_t;
typedef __u64 timeu64_t;

#include <uapi/linux/time.h>

struct timespec64 {
	time64_t	tv_sec;			/* seconds */
	long		tv_nsec;		/* nanoseconds */
};

struct itimerspec64 {
	struct timespec64 it_interval;
	struct timespec64 it_value;
};

/* Parameters used to convert the timespec values: */
#define PSEC_PER_NSEC			1000L

/* Located here for timespec[64]_valid_strict */
#define TIME64_MAX			((s64)~((u64)1 << 63))
#define TIME64_MIN			(-TIME64_MAX - 1)

#define KTIME_MAX			((s64)~((u64)1 << 63))
#define KTIME_MIN			(-KTIME_MAX - 1)
#define KTIME_SEC_MAX			(KTIME_MAX / NSEC_PER_SEC)
#define KTIME_SEC_MIN			(KTIME_MIN / NSEC_PER_SEC)

/*
 * Limits for settimeofday():
 *
 * To prevent setting the time close to the wraparound point time setting
 * is limited so a reasonable uptime can be accomodated. Uptime of 30 years
 * should be really sufficient, which means the cutoff is 2232. At that
 * point the cutoff is just a small part of the larger problem.
 */
#define TIME_UPTIME_SEC_MAX		(30LL * 365 * 24 *3600)
#define TIME_SETTOD_SEC_MAX		(KTIME_SEC_MAX - TIME_UPTIME_SEC_MAX)

static inline int timespec64_equal(const struct timespec64 *a,
				   const struct timespec64 *b)
{
	return (a->tv_sec == b->tv_sec) && (a->tv_nsec == b->tv_nsec);
}

/*
 * lhs < rhs:  return <0
 * lhs == rhs: return 0
 * lhs > rhs:  return >0
 */
static inline int timespec64_compare(const struct timespec64 *lhs, const struct timespec64 *rhs)
{
	if (lhs->tv_sec < rhs->tv_sec)
		return -1;
	if (lhs->tv_sec > rhs->tv_sec)
		return 1;
	return lhs->tv_nsec - rhs->tv_nsec;
}

extern void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec);

static inline struct timespec64 timespec64_add(struct timespec64 lhs,
						struct timespec64 rhs)
{
	struct timespec64 ts_delta;
	set_normalized_timespec64(&ts_delta, lhs.tv_sec + rhs.tv_sec,
				lhs.tv_nsec + rhs.tv_nsec);
	return ts_delta;
}

/*
 * sub = lhs - rhs, in normalized form
 */
static inline struct timespec64 timespec64_sub(struct timespec64 lhs,
						struct timespec64 rhs)
{
	struct timespec64 ts_delta;
	set_normalized_timespec64(&ts_delta, lhs.tv_sec - rhs.tv_sec,
				lhs.tv_nsec - rhs.tv_nsec);
	return ts_delta;
}

/*
 * Returns true if the timespec64 is norm, false if denorm:
 */
static inline bool timespec64_valid(const struct timespec64 *ts)
{
	/* Dates before 1970 are bogus */
	if (ts->tv_sec < 0)
		return false;
	/* Can't have more nanoseconds then a second */
	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return false;
	return true;
}

static inline bool timespec64_valid_strict(const struct timespec64 *ts)
{
	if (!timespec64_valid(ts))
		return false;
	/* Disallow values that could overflow ktime_t */
	if ((unsigned long long)ts->tv_sec >= KTIME_SEC_MAX)
		return false;
	return true;
}

static inline bool timespec64_valid_settod(const struct timespec64 *ts)
{
	if (!timespec64_valid(ts))
		return false;
	/* Disallow values which cause overflow issues vs. CLOCK_REALTIME */
	if ((unsigned long long)ts->tv_sec >= TIME_SETTOD_SEC_MAX)
		return false;
	return true;
}

/**
 * timespec64_to_ns - Convert timespec64 to nanoseconds
 * @ts:		pointer to the timespec64 variable to be converted
 *
 * Returns the scalar nanosecond representation of the timespec64
 * parameter.
 */
static inline s64 timespec64_to_ns(const struct timespec64 *ts)
{
	/* Prevent multiplication overflow / underflow */
	if (ts->tv_sec >= KTIME_SEC_MAX)
		return KTIME_MAX;

	if (ts->tv_sec <= KTIME_SEC_MIN)
		return KTIME_MIN;

	return ((s64) ts->tv_sec * NSEC_PER_SEC) + ts->tv_nsec;
}

/**
 * ns_to_timespec64 - Convert nanoseconds to timespec64
 * @nsec:	the nanoseconds value to be converted
 *
 * Returns the timespec64 representation of the nsec parameter.
 */
extern struct timespec64 ns_to_timespec64(s64 nsec);

/**
 * timespec64_add_ns - Adds nanoseconds to a timespec64
 * @a:		pointer to timespec64 to be incremented
 * @ns:		unsigned nanoseconds value to be added
 *
 * This must always be inlined because its used from the x86-64 vdso,
 * which cannot call other kernel functions.
 */
static __always_inline void timespec64_add_ns(struct timespec64 *a, u64 ns)
{
	a->tv_sec += __iter_div_u64_rem(a->tv_nsec + ns, NSEC_PER_SEC, &ns);
	a->tv_nsec = ns;
}

/*
 * timespec64_add_safe assumes both values are positive and checks for
 * overflow. It will return TIME64_MAX in case of overflow.
 */
extern struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
					 const struct timespec64 rhs);

#endif /* _LINUX_TIME64_H */