Contributors: 11
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Yasuyuki Kozakai |
304 |
39.58% |
1 |
4.35% |
Patrick McHardy |
285 |
37.11% |
8 |
34.78% |
Linus Torvalds (pre-git) |
140 |
18.23% |
3 |
13.04% |
Jan Engelhardt |
17 |
2.21% |
3 |
13.04% |
Florian Westphal |
5 |
0.65% |
1 |
4.35% |
Eric Dumazet |
5 |
0.65% |
1 |
4.35% |
Rusty Russell |
4 |
0.52% |
1 |
4.35% |
Harvey Harrison |
4 |
0.52% |
2 |
8.70% |
Pablo Neira Ayuso |
2 |
0.26% |
1 |
4.35% |
Al Viro |
1 |
0.13% |
1 |
4.35% |
Greg Kroah-Hartman |
1 |
0.13% |
1 |
4.35% |
Total |
768 |
|
23 |
|
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Definitions and Declarations for tuple.
*
* 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
* - generalize L3 protocol dependent part.
*
* Derived from include/linux/netfiter_ipv4/ip_conntrack_tuple.h
*/
#ifndef _NF_CONNTRACK_TUPLE_H
#define _NF_CONNTRACK_TUPLE_H
#include <linux/netfilter/x_tables.h>
#include <linux/netfilter/nf_conntrack_tuple_common.h>
#include <linux/list_nulls.h>
/* A `tuple' is a structure containing the information to uniquely
identify a connection. ie. if two packets have the same tuple, they
are in the same connection; if not, they are not.
We divide the structure along "manipulatable" and
"non-manipulatable" lines, for the benefit of the NAT code.
*/
#define NF_CT_TUPLE_L3SIZE ARRAY_SIZE(((union nf_inet_addr *)NULL)->all)
/* The manipulable part of the tuple. */
struct nf_conntrack_man {
union nf_inet_addr u3;
union nf_conntrack_man_proto u;
/* Layer 3 protocol */
u_int16_t l3num;
};
/* This contains the information to distinguish a connection. */
struct nf_conntrack_tuple {
struct nf_conntrack_man src;
/* These are the parts of the tuple which are fixed. */
struct {
union nf_inet_addr u3;
union {
/* Add other protocols here. */
__be16 all;
struct {
__be16 port;
} tcp;
struct {
__be16 port;
} udp;
struct {
u_int8_t type, code;
} icmp;
struct {
__be16 port;
} dccp;
struct {
__be16 port;
} sctp;
struct {
__be16 key;
} gre;
} u;
/* The protocol. */
u_int8_t protonum;
/* The direction must be ignored for the tuplehash */
struct { } __nfct_hash_offsetend;
/* The direction (for tuplehash) */
u_int8_t dir;
} dst;
};
struct nf_conntrack_tuple_mask {
struct {
union nf_inet_addr u3;
union nf_conntrack_man_proto u;
} src;
};
static inline void nf_ct_dump_tuple_ip(const struct nf_conntrack_tuple *t)
{
#ifdef DEBUG
printk("tuple %p: %u %pI4:%hu -> %pI4:%hu\n",
t, t->dst.protonum,
&t->src.u3.ip, ntohs(t->src.u.all),
&t->dst.u3.ip, ntohs(t->dst.u.all));
#endif
}
static inline void nf_ct_dump_tuple_ipv6(const struct nf_conntrack_tuple *t)
{
#ifdef DEBUG
printk("tuple %p: %u %pI6 %hu -> %pI6 %hu\n",
t, t->dst.protonum,
t->src.u3.all, ntohs(t->src.u.all),
t->dst.u3.all, ntohs(t->dst.u.all));
#endif
}
static inline void nf_ct_dump_tuple(const struct nf_conntrack_tuple *t)
{
switch (t->src.l3num) {
case AF_INET:
nf_ct_dump_tuple_ip(t);
break;
case AF_INET6:
nf_ct_dump_tuple_ipv6(t);
break;
}
}
/* If we're the first tuple, it's the original dir. */
#define NF_CT_DIRECTION(h) \
((enum ip_conntrack_dir)(h)->tuple.dst.dir)
/* Connections have two entries in the hash table: one for each way */
struct nf_conntrack_tuple_hash {
struct hlist_nulls_node hnnode;
struct nf_conntrack_tuple tuple;
};
static inline bool __nf_ct_tuple_src_equal(const struct nf_conntrack_tuple *t1,
const struct nf_conntrack_tuple *t2)
{
return (nf_inet_addr_cmp(&t1->src.u3, &t2->src.u3) &&
t1->src.u.all == t2->src.u.all &&
t1->src.l3num == t2->src.l3num);
}
static inline bool __nf_ct_tuple_dst_equal(const struct nf_conntrack_tuple *t1,
const struct nf_conntrack_tuple *t2)
{
return (nf_inet_addr_cmp(&t1->dst.u3, &t2->dst.u3) &&
t1->dst.u.all == t2->dst.u.all &&
t1->dst.protonum == t2->dst.protonum);
}
static inline bool nf_ct_tuple_equal(const struct nf_conntrack_tuple *t1,
const struct nf_conntrack_tuple *t2)
{
return __nf_ct_tuple_src_equal(t1, t2) &&
__nf_ct_tuple_dst_equal(t1, t2);
}
static inline bool
nf_ct_tuple_mask_equal(const struct nf_conntrack_tuple_mask *m1,
const struct nf_conntrack_tuple_mask *m2)
{
return (nf_inet_addr_cmp(&m1->src.u3, &m2->src.u3) &&
m1->src.u.all == m2->src.u.all);
}
static inline bool
nf_ct_tuple_src_mask_cmp(const struct nf_conntrack_tuple *t1,
const struct nf_conntrack_tuple *t2,
const struct nf_conntrack_tuple_mask *mask)
{
int count;
for (count = 0; count < NF_CT_TUPLE_L3SIZE; count++) {
if ((t1->src.u3.all[count] ^ t2->src.u3.all[count]) &
mask->src.u3.all[count])
return false;
}
if ((t1->src.u.all ^ t2->src.u.all) & mask->src.u.all)
return false;
if (t1->src.l3num != t2->src.l3num ||
t1->dst.protonum != t2->dst.protonum)
return false;
return true;
}
static inline bool
nf_ct_tuple_mask_cmp(const struct nf_conntrack_tuple *t,
const struct nf_conntrack_tuple *tuple,
const struct nf_conntrack_tuple_mask *mask)
{
return nf_ct_tuple_src_mask_cmp(t, tuple, mask) &&
__nf_ct_tuple_dst_equal(t, tuple);
}
#endif /* _NF_CONNTRACK_TUPLE_H */