Contributors: 52
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
David S. Miller |
648 |
33.20% |
37 |
21.26% |
Linus Torvalds (pre-git) |
408 |
20.90% |
28 |
16.09% |
David Ahern |
216 |
11.07% |
14 |
8.05% |
Eric Dumazet |
91 |
4.66% |
17 |
9.77% |
Guillaume Nault |
68 |
3.48% |
4 |
2.30% |
Alexey Kuznetsov |
62 |
3.18% |
5 |
2.87% |
Denis V. Lunev |
55 |
2.82% |
7 |
4.02% |
Julian Anastasov |
43 |
2.20% |
5 |
2.87% |
Paolo Abeni |
41 |
2.10% |
2 |
1.15% |
Linus Torvalds |
37 |
1.90% |
1 |
0.57% |
Eric W. Biedermann |
25 |
1.28% |
2 |
1.15% |
Stefano Brivio |
20 |
1.02% |
2 |
1.15% |
Al Viro |
20 |
1.02% |
6 |
3.45% |
Tóth László Attila |
19 |
0.97% |
2 |
1.15% |
Venkat Yekkirala |
18 |
0.92% |
1 |
0.57% |
Nikolay Borisov |
16 |
0.82% |
1 |
0.57% |
Wei Wang |
13 |
0.67% |
1 |
0.57% |
Tom Herbert |
12 |
0.61% |
1 |
0.57% |
Lorenzo Colitti |
11 |
0.56% |
1 |
0.57% |
KOVACS Krisztian |
11 |
0.56% |
2 |
1.15% |
Peter Christensen |
9 |
0.46% |
1 |
0.57% |
Jakub Kiciński |
9 |
0.46% |
2 |
1.15% |
Nikolay Aleksandrov |
7 |
0.36% |
1 |
0.57% |
Hideaki Yoshifuji / 吉藤英明 |
7 |
0.36% |
2 |
1.15% |
Sabrina Dubroca |
6 |
0.31% |
1 |
0.57% |
Pavel Emelyanov |
6 |
0.31% |
1 |
0.57% |
Jamal Hadi Salim |
6 |
0.31% |
1 |
0.57% |
Xin Long |
6 |
0.31% |
1 |
0.57% |
Roland Dreier |
5 |
0.26% |
1 |
0.57% |
Andy Fleming |
5 |
0.26% |
1 |
0.57% |
elueck@de.ibm.com |
4 |
0.20% |
1 |
0.57% |
Robert Olsson |
4 |
0.20% |
1 |
0.57% |
Stephen Suryaputra |
4 |
0.20% |
1 |
0.57% |
Alexey Dobriyan |
4 |
0.20% |
1 |
0.57% |
John Fastabend |
4 |
0.20% |
1 |
0.57% |
Arnaldo Carvalho de Melo |
4 |
0.20% |
2 |
1.15% |
Andrew Morton |
3 |
0.15% |
1 |
0.57% |
Dipankar Sarma |
3 |
0.15% |
1 |
0.57% |
Paul Moore |
3 |
0.15% |
1 |
0.57% |
Kuniyuki Iwashima |
3 |
0.15% |
1 |
0.57% |
Wensong Zhang |
2 |
0.10% |
1 |
0.57% |
Thomas Gleixner |
2 |
0.10% |
1 |
0.57% |
Alexander Duyck |
2 |
0.10% |
1 |
0.57% |
Steffen Klassert |
2 |
0.10% |
1 |
0.57% |
Hans Schillstrom |
1 |
0.05% |
1 |
0.57% |
Pablo Neira Ayuso |
1 |
0.05% |
1 |
0.57% |
Philippe De Muyter |
1 |
0.05% |
1 |
0.57% |
OGAWA Hirofumi |
1 |
0.05% |
1 |
0.57% |
Tejun Heo |
1 |
0.05% |
1 |
0.57% |
Stephen Hemminger |
1 |
0.05% |
1 |
0.57% |
Daniel Lezcano |
1 |
0.05% |
1 |
0.57% |
Ulrich Weber |
1 |
0.05% |
1 |
0.57% |
Total |
1952 |
|
174 |
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Definitions for the IP router.
*
* Version: @(#)route.h 1.0.4 05/27/93
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Fixes:
* Alan Cox : Reformatted. Added ip_rt_local()
* Alan Cox : Support for TCP parameters.
* Alexey Kuznetsov: Major changes for new routing code.
* Mike McLagan : Routing by source
* Robert Olsson : Added rt_cache statistics
*/
#ifndef _ROUTE_H
#define _ROUTE_H
#include <net/dst.h>
#include <net/inetpeer.h>
#include <net/flow.h>
#include <net/inet_sock.h>
#include <net/ip_fib.h>
#include <net/arp.h>
#include <net/ndisc.h>
#include <linux/in_route.h>
#include <linux/rtnetlink.h>
#include <linux/rcupdate.h>
#include <linux/route.h>
#include <linux/ip.h>
#include <linux/cache.h>
#include <linux/security.h>
static inline __u8 ip_sock_rt_scope(const struct sock *sk)
{
if (sock_flag(sk, SOCK_LOCALROUTE))
return RT_SCOPE_LINK;
return RT_SCOPE_UNIVERSE;
}
static inline __u8 ip_sock_rt_tos(const struct sock *sk)
{
return RT_TOS(READ_ONCE(inet_sk(sk)->tos));
}
struct ip_tunnel_info;
struct fib_nh;
struct fib_info;
struct uncached_list;
struct rtable {
struct dst_entry dst;
int rt_genid;
unsigned int rt_flags;
__u16 rt_type;
__u8 rt_is_input;
__u8 rt_uses_gateway;
int rt_iif;
u8 rt_gw_family;
/* Info on neighbour */
union {
__be32 rt_gw4;
struct in6_addr rt_gw6;
};
/* Miscellaneous cached information */
u32 rt_mtu_locked:1,
rt_pmtu:31;
};
#define dst_rtable(_ptr) container_of_const(_ptr, struct rtable, dst)
/**
* skb_rtable - Returns the skb &rtable
* @skb: buffer
*/
static inline struct rtable *skb_rtable(const struct sk_buff *skb)
{
return dst_rtable(skb_dst(skb));
}
static inline bool rt_is_input_route(const struct rtable *rt)
{
return rt->rt_is_input != 0;
}
static inline bool rt_is_output_route(const struct rtable *rt)
{
return rt->rt_is_input == 0;
}
static inline __be32 rt_nexthop(const struct rtable *rt, __be32 daddr)
{
if (rt->rt_gw_family == AF_INET)
return rt->rt_gw4;
return daddr;
}
struct ip_rt_acct {
__u32 o_bytes;
__u32 o_packets;
__u32 i_bytes;
__u32 i_packets;
};
struct rt_cache_stat {
unsigned int in_slow_tot;
unsigned int in_slow_mc;
unsigned int in_no_route;
unsigned int in_brd;
unsigned int in_martian_dst;
unsigned int in_martian_src;
unsigned int out_slow_tot;
unsigned int out_slow_mc;
};
extern struct ip_rt_acct __percpu *ip_rt_acct;
struct in_device;
int ip_rt_init(void);
void rt_cache_flush(struct net *net);
void rt_flush_dev(struct net_device *dev);
struct rtable *ip_route_output_key_hash(struct net *net, struct flowi4 *flp,
const struct sk_buff *skb);
struct rtable *ip_route_output_key_hash_rcu(struct net *net, struct flowi4 *flp,
struct fib_result *res,
const struct sk_buff *skb);
static inline struct rtable *__ip_route_output_key(struct net *net,
struct flowi4 *flp)
{
return ip_route_output_key_hash(net, flp, NULL);
}
struct rtable *ip_route_output_flow(struct net *, struct flowi4 *flp,
const struct sock *sk);
struct dst_entry *ipv4_blackhole_route(struct net *net,
struct dst_entry *dst_orig);
static inline struct rtable *ip_route_output_key(struct net *net, struct flowi4 *flp)
{
return ip_route_output_flow(net, flp, NULL);
}
/* Simplistic IPv4 route lookup function.
* This is only suitable for some particular use cases: since the flowi4
* structure is only partially set, it may bypass some fib-rules.
*/
static inline struct rtable *ip_route_output(struct net *net, __be32 daddr,
__be32 saddr, u8 tos, int oif,
__u8 scope)
{
struct flowi4 fl4 = {
.flowi4_oif = oif,
.flowi4_tos = tos,
.flowi4_scope = scope,
.daddr = daddr,
.saddr = saddr,
};
return ip_route_output_key(net, &fl4);
}
static inline struct rtable *ip_route_output_ports(struct net *net, struct flowi4 *fl4,
const struct sock *sk,
__be32 daddr, __be32 saddr,
__be16 dport, __be16 sport,
__u8 proto, __u8 tos, int oif)
{
flowi4_init_output(fl4, oif, sk ? READ_ONCE(sk->sk_mark) : 0, tos,
sk ? ip_sock_rt_scope(sk) : RT_SCOPE_UNIVERSE,
proto, sk ? inet_sk_flowi_flags(sk) : 0,
daddr, saddr, dport, sport, sock_net_uid(net, sk));
if (sk)
security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
return ip_route_output_flow(net, fl4, sk);
}
static inline struct rtable *ip_route_output_gre(struct net *net, struct flowi4 *fl4,
__be32 daddr, __be32 saddr,
__be32 gre_key, __u8 tos, int oif)
{
memset(fl4, 0, sizeof(*fl4));
fl4->flowi4_oif = oif;
fl4->daddr = daddr;
fl4->saddr = saddr;
fl4->flowi4_tos = tos;
fl4->flowi4_proto = IPPROTO_GRE;
fl4->fl4_gre_key = gre_key;
return ip_route_output_key(net, fl4);
}
int ip_mc_validate_source(struct sk_buff *skb, __be32 daddr, __be32 saddr,
u8 tos, struct net_device *dev,
struct in_device *in_dev, u32 *itag);
int ip_route_input_noref(struct sk_buff *skb, __be32 dst, __be32 src,
u8 tos, struct net_device *devin);
int ip_route_use_hint(struct sk_buff *skb, __be32 dst, __be32 src,
u8 tos, struct net_device *devin,
const struct sk_buff *hint);
static inline int ip_route_input(struct sk_buff *skb, __be32 dst, __be32 src,
u8 tos, struct net_device *devin)
{
int err;
rcu_read_lock();
err = ip_route_input_noref(skb, dst, src, tos, devin);
if (!err) {
skb_dst_force(skb);
if (!skb_dst(skb))
err = -EINVAL;
}
rcu_read_unlock();
return err;
}
void ipv4_update_pmtu(struct sk_buff *skb, struct net *net, u32 mtu, int oif,
u8 protocol);
void ipv4_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, u32 mtu);
void ipv4_redirect(struct sk_buff *skb, struct net *net, int oif, u8 protocol);
void ipv4_sk_redirect(struct sk_buff *skb, struct sock *sk);
void ip_rt_send_redirect(struct sk_buff *skb);
unsigned int inet_addr_type(struct net *net, __be32 addr);
unsigned int inet_addr_type_table(struct net *net, __be32 addr, u32 tb_id);
unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev,
__be32 addr);
unsigned int inet_addr_type_dev_table(struct net *net,
const struct net_device *dev,
__be32 addr);
void ip_rt_multicast_event(struct in_device *);
int ip_rt_ioctl(struct net *, unsigned int cmd, struct rtentry *rt);
void ip_rt_get_source(u8 *src, struct sk_buff *skb, struct rtable *rt);
struct rtable *rt_dst_alloc(struct net_device *dev,
unsigned int flags, u16 type, bool noxfrm);
struct rtable *rt_dst_clone(struct net_device *dev, struct rtable *rt);
struct in_ifaddr;
void fib_add_ifaddr(struct in_ifaddr *);
void fib_del_ifaddr(struct in_ifaddr *, struct in_ifaddr *);
void fib_modify_prefix_metric(struct in_ifaddr *ifa, u32 new_metric);
void rt_add_uncached_list(struct rtable *rt);
void rt_del_uncached_list(struct rtable *rt);
int fib_dump_info_fnhe(struct sk_buff *skb, struct netlink_callback *cb,
u32 table_id, struct fib_info *fi,
int *fa_index, int fa_start, unsigned int flags);
static inline void ip_rt_put(struct rtable *rt)
{
/* dst_release() accepts a NULL parameter.
* We rely on dst being first structure in struct rtable
*/
BUILD_BUG_ON(offsetof(struct rtable, dst) != 0);
dst_release(&rt->dst);
}
#define IPTOS_RT_MASK (IPTOS_TOS_MASK & ~3)
extern const __u8 ip_tos2prio[16];
static inline char rt_tos2priority(u8 tos)
{
return ip_tos2prio[IPTOS_TOS(tos)>>1];
}
/* ip_route_connect() and ip_route_newports() work in tandem whilst
* binding a socket for a new outgoing connection.
*
* In order to use IPSEC properly, we must, in the end, have a
* route that was looked up using all available keys including source
* and destination ports.
*
* However, if a source port needs to be allocated (the user specified
* a wildcard source port) we need to obtain addressing information
* in order to perform that allocation.
*
* So ip_route_connect() looks up a route using wildcarded source and
* destination ports in the key, simply so that we can get a pair of
* addresses to use for port allocation.
*
* Later, once the ports are allocated, ip_route_newports() will make
* another route lookup if needed to make sure we catch any IPSEC
* rules keyed on the port information.
*
* The callers allocate the flow key on their stack, and must pass in
* the same flowi4 object to both the ip_route_connect() and the
* ip_route_newports() calls.
*/
static inline void ip_route_connect_init(struct flowi4 *fl4, __be32 dst,
__be32 src, int oif, u8 protocol,
__be16 sport, __be16 dport,
const struct sock *sk)
{
__u8 flow_flags = 0;
if (inet_test_bit(TRANSPARENT, sk))
flow_flags |= FLOWI_FLAG_ANYSRC;
flowi4_init_output(fl4, oif, READ_ONCE(sk->sk_mark), ip_sock_rt_tos(sk),
ip_sock_rt_scope(sk), protocol, flow_flags, dst,
src, dport, sport, sk->sk_uid);
}
static inline struct rtable *ip_route_connect(struct flowi4 *fl4, __be32 dst,
__be32 src, int oif, u8 protocol,
__be16 sport, __be16 dport,
const struct sock *sk)
{
struct net *net = sock_net(sk);
struct rtable *rt;
ip_route_connect_init(fl4, dst, src, oif, protocol, sport, dport, sk);
if (!dst || !src) {
rt = __ip_route_output_key(net, fl4);
if (IS_ERR(rt))
return rt;
ip_rt_put(rt);
flowi4_update_output(fl4, oif, fl4->daddr, fl4->saddr);
}
security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
return ip_route_output_flow(net, fl4, sk);
}
static inline struct rtable *ip_route_newports(struct flowi4 *fl4, struct rtable *rt,
__be16 orig_sport, __be16 orig_dport,
__be16 sport, __be16 dport,
const struct sock *sk)
{
if (sport != orig_sport || dport != orig_dport) {
fl4->fl4_dport = dport;
fl4->fl4_sport = sport;
ip_rt_put(rt);
flowi4_update_output(fl4, sk->sk_bound_dev_if, fl4->daddr,
fl4->saddr);
security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
return ip_route_output_flow(sock_net(sk), fl4, sk);
}
return rt;
}
static inline int inet_iif(const struct sk_buff *skb)
{
struct rtable *rt = skb_rtable(skb);
if (rt && rt->rt_iif)
return rt->rt_iif;
return skb->skb_iif;
}
static inline int ip4_dst_hoplimit(const struct dst_entry *dst)
{
int hoplimit = dst_metric_raw(dst, RTAX_HOPLIMIT);
struct net *net = dev_net(dst->dev);
if (hoplimit == 0)
hoplimit = READ_ONCE(net->ipv4.sysctl_ip_default_ttl);
return hoplimit;
}
static inline struct neighbour *ip_neigh_gw4(struct net_device *dev,
__be32 daddr)
{
struct neighbour *neigh;
neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)daddr);
if (unlikely(!neigh))
neigh = __neigh_create(&arp_tbl, &daddr, dev, false);
return neigh;
}
static inline struct neighbour *ip_neigh_for_gw(struct rtable *rt,
struct sk_buff *skb,
bool *is_v6gw)
{
struct net_device *dev = rt->dst.dev;
struct neighbour *neigh;
if (likely(rt->rt_gw_family == AF_INET)) {
neigh = ip_neigh_gw4(dev, rt->rt_gw4);
} else if (rt->rt_gw_family == AF_INET6) {
neigh = ip_neigh_gw6(dev, &rt->rt_gw6);
*is_v6gw = true;
} else {
neigh = ip_neigh_gw4(dev, ip_hdr(skb)->daddr);
}
return neigh;
}
#endif /* _ROUTE_H */