Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Masami Hiramatsu | 7108 | 59.79% | 97 | 38.34% |
Ananth N. Mavinakayanahalli | 985 | 8.29% | 10 | 3.95% |
Srinivasa D S | 487 | 4.10% | 3 | 1.19% |
Prasanna S. Panchamukhi | 460 | 3.87% | 8 | 3.16% |
Jessica Yu | 289 | 2.43% | 2 | 0.79% |
Peter Zijlstra | 263 | 2.21% | 6 | 2.37% |
Adrian Hunter | 247 | 2.08% | 2 | 0.79% |
Hien Nguyen | 233 | 1.96% | 2 | 0.79% |
Heiko Carstens | 184 | 1.55% | 4 | 1.58% |
Naveen N. Rao | 142 | 1.19% | 7 | 2.77% |
Linus Torvalds (pre-git) | 132 | 1.11% | 6 | 2.37% |
wuqiang | 130 | 1.09% | 1 | 0.40% |
Thomas Gleixner | 125 | 1.05% | 4 | 1.58% |
Mike Rapoport | 122 | 1.03% | 2 | 0.79% |
Anil S Keshavamurthy | 121 | 1.02% | 8 | 3.16% |
Bibo Mao | 75 | 0.63% | 3 | 1.19% |
Mathieu Desnoyers | 46 | 0.39% | 1 | 0.40% |
nixiaoming | 46 | 0.39% | 1 | 0.40% |
Christoph Hellwig | 46 | 0.39% | 6 | 2.37% |
Rusty Russell | 44 | 0.37% | 4 | 1.58% |
Adrian Bunk | 42 | 0.35% | 1 | 0.40% |
Punit Agrawal | 42 | 0.35% | 4 | 1.58% |
Song Muchun | 36 | 0.30% | 2 | 0.79% |
Zheng Yejian | 35 | 0.29% | 1 | 0.40% |
Jiri Olsa | 33 | 0.28% | 3 | 1.19% |
Ingo Molnar | 27 | 0.23% | 3 | 1.19% |
Eric Dumazet | 25 | 0.21% | 1 | 0.40% |
Andrea Righi | 21 | 0.18% | 1 | 0.40% |
Abhishek Sagar | 21 | 0.18% | 1 | 0.40% |
Tejun Heo | 21 | 0.18% | 1 | 0.40% |
Wang ShaoBo | 19 | 0.16% | 1 | 0.40% |
Li Huafei | 18 | 0.15% | 2 | 0.79% |
Jason Baron | 15 | 0.13% | 3 | 1.19% |
Li Qiang | 14 | 0.12% | 1 | 0.40% |
Kees Cook | 14 | 0.12% | 2 | 0.79% |
Christophe Leroy | 14 | 0.12% | 1 | 0.40% |
Alexander Shishkin | 13 | 0.11% | 1 | 0.40% |
Wang Nan | 12 | 0.10% | 2 | 0.79% |
Stephen Brennan | 11 | 0.09% | 1 | 0.40% |
Steven Rostedt | 10 | 0.08% | 2 | 0.79% |
Kefeng Wang | 10 | 0.08% | 1 | 0.40% |
Christoph Lameter | 10 | 0.08% | 1 | 0.40% |
Jiang Liu | 9 | 0.08% | 1 | 0.40% |
Arnd Bergmann | 9 | 0.08% | 2 | 0.79% |
JP Kobryn | 8 | 0.07% | 1 | 0.40% |
Prashanth Nageshappa | 7 | 0.06% | 1 | 0.40% |
Andrew Lutomirski | 7 | 0.06% | 1 | 0.40% |
Kuniyuki Iwashima | 7 | 0.06% | 1 | 0.40% |
Jeff Dike | 6 | 0.05% | 1 | 0.40% |
Pekka Paalanen | 6 | 0.05% | 1 | 0.40% |
Cédric Le Goater | 5 | 0.04% | 1 | 0.40% |
Randy Dunlap | 5 | 0.04% | 1 | 0.40% |
Hideaki Yoshifuji / 吉藤英明 | 5 | 0.04% | 1 | 0.40% |
Adam Zabrocki | 5 | 0.04% | 1 | 0.40% |
Aaron Tomlin | 5 | 0.04% | 1 | 0.40% |
Li zeming | 4 | 0.03% | 1 | 0.40% |
Paul E. McKenney | 4 | 0.03% | 1 | 0.40% |
Rusty Lynch | 4 | 0.03% | 1 | 0.40% |
Viktor Malik | 4 | 0.03% | 1 | 0.40% |
Petr Mladek | 4 | 0.03% | 1 | 0.40% |
Linus Torvalds | 4 | 0.03% | 2 | 0.79% |
Alan Cox | 3 | 0.03% | 1 | 0.40% |
Alexey Dobriyan | 3 | 0.03% | 2 | 0.79% |
ruanjinjie | 3 | 0.03% | 1 | 0.40% |
Christian Ehrhardt | 3 | 0.03% | 1 | 0.40% |
Chen Zhongjin | 3 | 0.03% | 1 | 0.40% |
Helge Deller | 2 | 0.02% | 1 | 0.40% |
James Morris | 2 | 0.02% | 1 | 0.40% |
Eric W. Biedermann | 2 | 0.02% | 2 | 0.79% |
Joel Granados | 2 | 0.02% | 2 | 0.79% |
Thomas Richter | 2 | 0.02% | 1 | 0.40% |
Matteo Croce | 2 | 0.02% | 1 | 0.40% |
Joe Mario | 1 | 0.01% | 1 | 0.40% |
Namhyung Kim | 1 | 0.01% | 1 | 0.40% |
Barry Song | 1 | 0.01% | 1 | 0.40% |
Daniel Guilak | 1 | 0.01% | 1 | 0.40% |
Paul Gortmaker | 1 | 0.01% | 1 | 0.40% |
Total | 11888 | 253 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Kernel Probes (KProbes) * * Copyright (C) IBM Corporation, 2002, 2004 * * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel * Probes initial implementation (includes suggestions from * Rusty Russell). * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with * hlists and exceptions notifier as suggested by Andi Kleen. * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes * interface to access function arguments. * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes * exceptions notifier to be first on the priority list. * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi * <prasanna@in.ibm.com> added function-return probes. */ #define pr_fmt(fmt) "kprobes: " fmt #include <linux/kprobes.h> #include <linux/hash.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/stddef.h> #include <linux/export.h> #include <linux/kallsyms.h> #include <linux/freezer.h> #include <linux/seq_file.h> #include <linux/debugfs.h> #include <linux/sysctl.h> #include <linux/kdebug.h> #include <linux/memory.h> #include <linux/ftrace.h> #include <linux/cpu.h> #include <linux/jump_label.h> #include <linux/static_call.h> #include <linux/perf_event.h> #include <linux/execmem.h> #include <asm/sections.h> #include <asm/cacheflush.h> #include <asm/errno.h> #include <linux/uaccess.h> #define KPROBE_HASH_BITS 6 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL) #define kprobe_sysctls_init() do { } while (0) #endif static int kprobes_initialized; /* kprobe_table can be accessed by * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held. * Or * - RCU hlist traversal under disabling preempt (breakpoint handlers) */ static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; /* NOTE: change this value only with 'kprobe_mutex' held */ static bool kprobes_all_disarmed; /* This protects 'kprobe_table' and 'optimizing_list' */ static DEFINE_MUTEX(kprobe_mutex); static DEFINE_PER_CPU(struct kprobe *, kprobe_instance); kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, unsigned int __unused) { return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); } /* * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where * kprobes can not probe. */ static LIST_HEAD(kprobe_blacklist); #ifdef __ARCH_WANT_KPROBES_INSN_SLOT /* * 'kprobe::ainsn.insn' points to the copy of the instruction to be * single-stepped. x86_64, POWER4 and above have no-exec support and * stepping on the instruction on a vmalloced/kmalloced/data page * is a recipe for disaster */ struct kprobe_insn_page { struct list_head list; kprobe_opcode_t *insns; /* Page of instruction slots */ struct kprobe_insn_cache *cache; int nused; int ngarbage; char slot_used[]; }; #define KPROBE_INSN_PAGE_SIZE(slots) \ (offsetof(struct kprobe_insn_page, slot_used) + \ (sizeof(char) * (slots))) static int slots_per_page(struct kprobe_insn_cache *c) { return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); } enum kprobe_slot_state { SLOT_CLEAN = 0, SLOT_DIRTY = 1, SLOT_USED = 2, }; void __weak *alloc_insn_page(void) { /* * Use execmem_alloc() so this page is within +/- 2GB of where the * kernel image and loaded module images reside. This is required * for most of the architectures. * (e.g. x86-64 needs this to handle the %rip-relative fixups.) */ return execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE); } static void free_insn_page(void *page) { execmem_free(page); } struct kprobe_insn_cache kprobe_insn_slots = { .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), .alloc = alloc_insn_page, .free = free_insn_page, .sym = KPROBE_INSN_PAGE_SYM, .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), .insn_size = MAX_INSN_SIZE, .nr_garbage = 0, }; static int collect_garbage_slots(struct kprobe_insn_cache *c); /** * __get_insn_slot() - Find a slot on an executable page for an instruction. * We allocate an executable page if there's no room on existing ones. */ kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) { struct kprobe_insn_page *kip; kprobe_opcode_t *slot = NULL; /* Since the slot array is not protected by rcu, we need a mutex */ mutex_lock(&c->mutex); retry: rcu_read_lock(); list_for_each_entry_rcu(kip, &c->pages, list) { if (kip->nused < slots_per_page(c)) { int i; for (i = 0; i < slots_per_page(c); i++) { if (kip->slot_used[i] == SLOT_CLEAN) { kip->slot_used[i] = SLOT_USED; kip->nused++; slot = kip->insns + (i * c->insn_size); rcu_read_unlock(); goto out; } } /* kip->nused is broken. Fix it. */ kip->nused = slots_per_page(c); WARN_ON(1); } } rcu_read_unlock(); /* If there are any garbage slots, collect it and try again. */ if (c->nr_garbage && collect_garbage_slots(c) == 0) goto retry; /* All out of space. Need to allocate a new page. */ kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); if (!kip) goto out; kip->insns = c->alloc(); if (!kip->insns) { kfree(kip); goto out; } INIT_LIST_HEAD(&kip->list); memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); kip->slot_used[0] = SLOT_USED; kip->nused = 1; kip->ngarbage = 0; kip->cache = c; list_add_rcu(&kip->list, &c->pages); slot = kip->insns; /* Record the perf ksymbol register event after adding the page */ perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, PAGE_SIZE, false, c->sym); out: mutex_unlock(&c->mutex); return slot; } /* Return true if all garbages are collected, otherwise false. */ static bool collect_one_slot(struct kprobe_insn_page *kip, int idx) { kip->slot_used[idx] = SLOT_CLEAN; kip->nused--; if (kip->nused == 0) { /* * Page is no longer in use. Free it unless * it's the last one. We keep the last one * so as not to have to set it up again the * next time somebody inserts a probe. */ if (!list_is_singular(&kip->list)) { /* * Record perf ksymbol unregister event before removing * the page. */ perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, PAGE_SIZE, true, kip->cache->sym); list_del_rcu(&kip->list); synchronize_rcu(); kip->cache->free(kip->insns); kfree(kip); } return true; } return false; } static int collect_garbage_slots(struct kprobe_insn_cache *c) { struct kprobe_insn_page *kip, *next; /* Ensure no-one is interrupted on the garbages */ synchronize_rcu(); list_for_each_entry_safe(kip, next, &c->pages, list) { int i; if (kip->ngarbage == 0) continue; kip->ngarbage = 0; /* we will collect all garbages */ for (i = 0; i < slots_per_page(c); i++) { if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) break; } } c->nr_garbage = 0; return 0; } void __free_insn_slot(struct kprobe_insn_cache *c, kprobe_opcode_t *slot, int dirty) { struct kprobe_insn_page *kip; long idx; mutex_lock(&c->mutex); rcu_read_lock(); list_for_each_entry_rcu(kip, &c->pages, list) { idx = ((long)slot - (long)kip->insns) / (c->insn_size * sizeof(kprobe_opcode_t)); if (idx >= 0 && idx < slots_per_page(c)) goto out; } /* Could not find this slot. */ WARN_ON(1); kip = NULL; out: rcu_read_unlock(); /* Mark and sweep: this may sleep */ if (kip) { /* Check double free */ WARN_ON(kip->slot_used[idx] != SLOT_USED); if (dirty) { kip->slot_used[idx] = SLOT_DIRTY; kip->ngarbage++; if (++c->nr_garbage > slots_per_page(c)) collect_garbage_slots(c); } else { collect_one_slot(kip, idx); } } mutex_unlock(&c->mutex); } /* * Check given address is on the page of kprobe instruction slots. * This will be used for checking whether the address on a stack * is on a text area or not. */ bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) { struct kprobe_insn_page *kip; bool ret = false; rcu_read_lock(); list_for_each_entry_rcu(kip, &c->pages, list) { if (addr >= (unsigned long)kip->insns && addr < (unsigned long)kip->insns + PAGE_SIZE) { ret = true; break; } } rcu_read_unlock(); return ret; } int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, unsigned long *value, char *type, char *sym) { struct kprobe_insn_page *kip; int ret = -ERANGE; rcu_read_lock(); list_for_each_entry_rcu(kip, &c->pages, list) { if ((*symnum)--) continue; strscpy(sym, c->sym, KSYM_NAME_LEN); *type = 't'; *value = (unsigned long)kip->insns; ret = 0; break; } rcu_read_unlock(); return ret; } #ifdef CONFIG_OPTPROBES void __weak *alloc_optinsn_page(void) { return alloc_insn_page(); } void __weak free_optinsn_page(void *page) { free_insn_page(page); } /* For optimized_kprobe buffer */ struct kprobe_insn_cache kprobe_optinsn_slots = { .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), .alloc = alloc_optinsn_page, .free = free_optinsn_page, .sym = KPROBE_OPTINSN_PAGE_SYM, .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), /* .insn_size is initialized later */ .nr_garbage = 0, }; #endif #endif /* We have preemption disabled.. so it is safe to use __ versions */ static inline void set_kprobe_instance(struct kprobe *kp) { __this_cpu_write(kprobe_instance, kp); } static inline void reset_kprobe_instance(void) { __this_cpu_write(kprobe_instance, NULL); } /* * This routine is called either: * - under the 'kprobe_mutex' - during kprobe_[un]register(). * OR * - with preemption disabled - from architecture specific code. */ struct kprobe *get_kprobe(void *addr) { struct hlist_head *head; struct kprobe *p; head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; hlist_for_each_entry_rcu(p, head, hlist, lockdep_is_held(&kprobe_mutex)) { if (p->addr == addr) return p; } return NULL; } NOKPROBE_SYMBOL(get_kprobe); static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); /* Return true if 'p' is an aggregator */ static inline bool kprobe_aggrprobe(struct kprobe *p) { return p->pre_handler == aggr_pre_handler; } /* Return true if 'p' is unused */ static inline bool kprobe_unused(struct kprobe *p) { return kprobe_aggrprobe(p) && kprobe_disabled(p) && list_empty(&p->list); } /* Keep all fields in the kprobe consistent. */ static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) { memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); } #ifdef CONFIG_OPTPROBES /* NOTE: This is protected by 'kprobe_mutex'. */ static bool kprobes_allow_optimization; /* * Call all 'kprobe::pre_handler' on the list, but ignores its return value. * This must be called from arch-dep optimized caller. */ void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) { struct kprobe *kp; list_for_each_entry_rcu(kp, &p->list, list) { if (kp->pre_handler && likely(!kprobe_disabled(kp))) { set_kprobe_instance(kp); kp->pre_handler(kp, regs); } reset_kprobe_instance(); } } NOKPROBE_SYMBOL(opt_pre_handler); /* Free optimized instructions and optimized_kprobe */ static void free_aggr_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = container_of(p, struct optimized_kprobe, kp); arch_remove_optimized_kprobe(op); arch_remove_kprobe(p); kfree(op); } /* Return true if the kprobe is ready for optimization. */ static inline int kprobe_optready(struct kprobe *p) { struct optimized_kprobe *op; if (kprobe_aggrprobe(p)) { op = container_of(p, struct optimized_kprobe, kp); return arch_prepared_optinsn(&op->optinsn); } return 0; } /* Return true if the kprobe is disarmed. Note: p must be on hash list */ bool kprobe_disarmed(struct kprobe *p) { struct optimized_kprobe *op; /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ if (!kprobe_aggrprobe(p)) return kprobe_disabled(p); op = container_of(p, struct optimized_kprobe, kp); return kprobe_disabled(p) && list_empty(&op->list); } /* Return true if the probe is queued on (un)optimizing lists */ static bool kprobe_queued(struct kprobe *p) { struct optimized_kprobe *op; if (kprobe_aggrprobe(p)) { op = container_of(p, struct optimized_kprobe, kp); if (!list_empty(&op->list)) return true; } return false; } /* * Return an optimized kprobe whose optimizing code replaces * instructions including 'addr' (exclude breakpoint). */ static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr) { int i; struct kprobe *p = NULL; struct optimized_kprobe *op; /* Don't check i == 0, since that is a breakpoint case. */ for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++) p = get_kprobe(addr - i); if (p && kprobe_optready(p)) { op = container_of(p, struct optimized_kprobe, kp); if (arch_within_optimized_kprobe(op, addr)) return p; } return NULL; } /* Optimization staging list, protected by 'kprobe_mutex' */ static LIST_HEAD(optimizing_list); static LIST_HEAD(unoptimizing_list); static LIST_HEAD(freeing_list); static void kprobe_optimizer(struct work_struct *work); static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); #define OPTIMIZE_DELAY 5 /* * Optimize (replace a breakpoint with a jump) kprobes listed on * 'optimizing_list'. */ static void do_optimize_kprobes(void) { lockdep_assert_held(&text_mutex); /* * The optimization/unoptimization refers 'online_cpus' via * stop_machine() and cpu-hotplug modifies the 'online_cpus'. * And same time, 'text_mutex' will be held in cpu-hotplug and here. * This combination can cause a deadlock (cpu-hotplug tries to lock * 'text_mutex' but stop_machine() can not be done because * the 'online_cpus' has been changed) * To avoid this deadlock, caller must have locked cpu-hotplug * for preventing cpu-hotplug outside of 'text_mutex' locking. */ lockdep_assert_cpus_held(); /* Optimization never be done when disarmed */ if (kprobes_all_disarmed || !kprobes_allow_optimization || list_empty(&optimizing_list)) return; arch_optimize_kprobes(&optimizing_list); } /* * Unoptimize (replace a jump with a breakpoint and remove the breakpoint * if need) kprobes listed on 'unoptimizing_list'. */ static void do_unoptimize_kprobes(void) { struct optimized_kprobe *op, *tmp; lockdep_assert_held(&text_mutex); /* See comment in do_optimize_kprobes() */ lockdep_assert_cpus_held(); if (!list_empty(&unoptimizing_list)) arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); /* Loop on 'freeing_list' for disarming and removing from kprobe hash list */ list_for_each_entry_safe(op, tmp, &freeing_list, list) { /* Switching from detour code to origin */ op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; /* Disarm probes if marked disabled and not gone */ if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp)) arch_disarm_kprobe(&op->kp); if (kprobe_unused(&op->kp)) { /* * Remove unused probes from hash list. After waiting * for synchronization, these probes are reclaimed. * (reclaiming is done by do_free_cleaned_kprobes().) */ hlist_del_rcu(&op->kp.hlist); } else list_del_init(&op->list); } } /* Reclaim all kprobes on the 'freeing_list' */ static void do_free_cleaned_kprobes(void) { struct optimized_kprobe *op, *tmp; list_for_each_entry_safe(op, tmp, &freeing_list, list) { list_del_init(&op->list); if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { /* * This must not happen, but if there is a kprobe * still in use, keep it on kprobes hash list. */ continue; } free_aggr_kprobe(&op->kp); } } /* Start optimizer after OPTIMIZE_DELAY passed */ static void kick_kprobe_optimizer(void) { schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); } /* Kprobe jump optimizer */ static void kprobe_optimizer(struct work_struct *work) { mutex_lock(&kprobe_mutex); cpus_read_lock(); mutex_lock(&text_mutex); /* * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) * kprobes before waiting for quiesence period. */ do_unoptimize_kprobes(); /* * Step 2: Wait for quiesence period to ensure all potentially * preempted tasks to have normally scheduled. Because optprobe * may modify multiple instructions, there is a chance that Nth * instruction is preempted. In that case, such tasks can return * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. * Note that on non-preemptive kernel, this is transparently converted * to synchronoze_sched() to wait for all interrupts to have completed. */ synchronize_rcu_tasks(); /* Step 3: Optimize kprobes after quiesence period */ do_optimize_kprobes(); /* Step 4: Free cleaned kprobes after quiesence period */ do_free_cleaned_kprobes(); mutex_unlock(&text_mutex); cpus_read_unlock(); /* Step 5: Kick optimizer again if needed */ if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) kick_kprobe_optimizer(); mutex_unlock(&kprobe_mutex); } /* Wait for completing optimization and unoptimization */ void wait_for_kprobe_optimizer(void) { mutex_lock(&kprobe_mutex); while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { mutex_unlock(&kprobe_mutex); /* This will also make 'optimizing_work' execute immmediately */ flush_delayed_work(&optimizing_work); /* 'optimizing_work' might not have been queued yet, relax */ cpu_relax(); mutex_lock(&kprobe_mutex); } mutex_unlock(&kprobe_mutex); } bool optprobe_queued_unopt(struct optimized_kprobe *op) { struct optimized_kprobe *_op; list_for_each_entry(_op, &unoptimizing_list, list) { if (op == _op) return true; } return false; } /* Optimize kprobe if p is ready to be optimized */ static void optimize_kprobe(struct kprobe *p) { struct optimized_kprobe *op; /* Check if the kprobe is disabled or not ready for optimization. */ if (!kprobe_optready(p) || !kprobes_allow_optimization || (kprobe_disabled(p) || kprobes_all_disarmed)) return; /* kprobes with 'post_handler' can not be optimized */ if (p->post_handler) return; op = container_of(p, struct optimized_kprobe, kp); /* Check there is no other kprobes at the optimized instructions */ if (arch_check_optimized_kprobe(op) < 0) return; /* Check if it is already optimized. */ if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) { if (optprobe_queued_unopt(op)) { /* This is under unoptimizing. Just dequeue the probe */ list_del_init(&op->list); } return; } op->kp.flags |= KPROBE_FLAG_OPTIMIZED; /* * On the 'unoptimizing_list' and 'optimizing_list', * 'op' must have OPTIMIZED flag */ if (WARN_ON_ONCE(!list_empty(&op->list))) return; list_add(&op->list, &optimizing_list); kick_kprobe_optimizer(); } /* Short cut to direct unoptimizing */ static void force_unoptimize_kprobe(struct optimized_kprobe *op) { lockdep_assert_cpus_held(); arch_unoptimize_kprobe(op); op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; } /* Unoptimize a kprobe if p is optimized */ static void unoptimize_kprobe(struct kprobe *p, bool force) { struct optimized_kprobe *op; if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) return; /* This is not an optprobe nor optimized */ op = container_of(p, struct optimized_kprobe, kp); if (!kprobe_optimized(p)) return; if (!list_empty(&op->list)) { if (optprobe_queued_unopt(op)) { /* Queued in unoptimizing queue */ if (force) { /* * Forcibly unoptimize the kprobe here, and queue it * in the freeing list for release afterwards. */ force_unoptimize_kprobe(op); list_move(&op->list, &freeing_list); } } else { /* Dequeue from the optimizing queue */ list_del_init(&op->list); op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; } return; } /* Optimized kprobe case */ if (force) { /* Forcibly update the code: this is a special case */ force_unoptimize_kprobe(op); } else { list_add(&op->list, &unoptimizing_list); kick_kprobe_optimizer(); } } /* Cancel unoptimizing for reusing */ static int reuse_unused_kprobe(struct kprobe *ap) { struct optimized_kprobe *op; /* * Unused kprobe MUST be on the way of delayed unoptimizing (means * there is still a relative jump) and disabled. */ op = container_of(ap, struct optimized_kprobe, kp); WARN_ON_ONCE(list_empty(&op->list)); /* Enable the probe again */ ap->flags &= ~KPROBE_FLAG_DISABLED; /* Optimize it again. (remove from 'op->list') */ if (!kprobe_optready(ap)) return -EINVAL; optimize_kprobe(ap); return 0; } /* Remove optimized instructions */ static void kill_optimized_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = container_of(p, struct optimized_kprobe, kp); if (!list_empty(&op->list)) /* Dequeue from the (un)optimization queue */ list_del_init(&op->list); op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; if (kprobe_unused(p)) { /* * Unused kprobe is on unoptimizing or freeing list. We move it * to freeing_list and let the kprobe_optimizer() remove it from * the kprobe hash list and free it. */ if (optprobe_queued_unopt(op)) list_move(&op->list, &freeing_list); } /* Don't touch the code, because it is already freed. */ arch_remove_optimized_kprobe(op); } static inline void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) { if (!kprobe_ftrace(p)) arch_prepare_optimized_kprobe(op, p); } /* Try to prepare optimized instructions */ static void prepare_optimized_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = container_of(p, struct optimized_kprobe, kp); __prepare_optimized_kprobe(op, p); } /* Allocate new optimized_kprobe and try to prepare optimized instructions. */ static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); if (!op) return NULL; INIT_LIST_HEAD(&op->list); op->kp.addr = p->addr; __prepare_optimized_kprobe(op, p); return &op->kp; } static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); /* * Prepare an optimized_kprobe and optimize it. * NOTE: 'p' must be a normal registered kprobe. */ static void try_to_optimize_kprobe(struct kprobe *p) { struct kprobe *ap; struct optimized_kprobe *op; /* Impossible to optimize ftrace-based kprobe. */ if (kprobe_ftrace(p)) return; /* For preparing optimization, jump_label_text_reserved() is called. */ cpus_read_lock(); jump_label_lock(); mutex_lock(&text_mutex); ap = alloc_aggr_kprobe(p); if (!ap) goto out; op = container_of(ap, struct optimized_kprobe, kp); if (!arch_prepared_optinsn(&op->optinsn)) { /* If failed to setup optimizing, fallback to kprobe. */ arch_remove_optimized_kprobe(op); kfree(op); goto out; } init_aggr_kprobe(ap, p); optimize_kprobe(ap); /* This just kicks optimizer thread. */ out: mutex_unlock(&text_mutex); jump_label_unlock(); cpus_read_unlock(); } static void optimize_all_kprobes(void) { struct hlist_head *head; struct kprobe *p; unsigned int i; mutex_lock(&kprobe_mutex); /* If optimization is already allowed, just return. */ if (kprobes_allow_optimization) goto out; cpus_read_lock(); kprobes_allow_optimization = true; for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry(p, head, hlist) if (!kprobe_disabled(p)) optimize_kprobe(p); } cpus_read_unlock(); pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n"); out: mutex_unlock(&kprobe_mutex); } #ifdef CONFIG_SYSCTL static void unoptimize_all_kprobes(void) { struct hlist_head *head; struct kprobe *p; unsigned int i; mutex_lock(&kprobe_mutex); /* If optimization is already prohibited, just return. */ if (!kprobes_allow_optimization) { mutex_unlock(&kprobe_mutex); return; } cpus_read_lock(); kprobes_allow_optimization = false; for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry(p, head, hlist) { if (!kprobe_disabled(p)) unoptimize_kprobe(p, false); } } cpus_read_unlock(); mutex_unlock(&kprobe_mutex); /* Wait for unoptimizing completion. */ wait_for_kprobe_optimizer(); pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n"); } static DEFINE_MUTEX(kprobe_sysctl_mutex); static int sysctl_kprobes_optimization; static int proc_kprobes_optimization_handler(const struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos) { int ret; mutex_lock(&kprobe_sysctl_mutex); sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; ret = proc_dointvec_minmax(table, write, buffer, length, ppos); if (sysctl_kprobes_optimization) optimize_all_kprobes(); else unoptimize_all_kprobes(); mutex_unlock(&kprobe_sysctl_mutex); return ret; } static struct ctl_table kprobe_sysctls[] = { { .procname = "kprobes-optimization", .data = &sysctl_kprobes_optimization, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_kprobes_optimization_handler, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, }; static void __init kprobe_sysctls_init(void) { register_sysctl_init("debug", kprobe_sysctls); } #endif /* CONFIG_SYSCTL */ /* Put a breakpoint for a probe. */ static void __arm_kprobe(struct kprobe *p) { struct kprobe *_p; lockdep_assert_held(&text_mutex); /* Find the overlapping optimized kprobes. */ _p = get_optimized_kprobe(p->addr); if (unlikely(_p)) /* Fallback to unoptimized kprobe */ unoptimize_kprobe(_p, true); arch_arm_kprobe(p); optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ } /* Remove the breakpoint of a probe. */ static void __disarm_kprobe(struct kprobe *p, bool reopt) { struct kprobe *_p; lockdep_assert_held(&text_mutex); /* Try to unoptimize */ unoptimize_kprobe(p, kprobes_all_disarmed); if (!kprobe_queued(p)) { arch_disarm_kprobe(p); /* If another kprobe was blocked, re-optimize it. */ _p = get_optimized_kprobe(p->addr); if (unlikely(_p) && reopt) optimize_kprobe(_p); } /* * TODO: Since unoptimization and real disarming will be done by * the worker thread, we can not check whether another probe are * unoptimized because of this probe here. It should be re-optimized * by the worker thread. */ } #else /* !CONFIG_OPTPROBES */ #define optimize_kprobe(p) do {} while (0) #define unoptimize_kprobe(p, f) do {} while (0) #define kill_optimized_kprobe(p) do {} while (0) #define prepare_optimized_kprobe(p) do {} while (0) #define try_to_optimize_kprobe(p) do {} while (0) #define __arm_kprobe(p) arch_arm_kprobe(p) #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) #define kprobe_disarmed(p) kprobe_disabled(p) #define wait_for_kprobe_optimizer() do {} while (0) static int reuse_unused_kprobe(struct kprobe *ap) { /* * If the optimized kprobe is NOT supported, the aggr kprobe is * released at the same time that the last aggregated kprobe is * unregistered. * Thus there should be no chance to reuse unused kprobe. */ WARN_ON_ONCE(1); return -EINVAL; } static void free_aggr_kprobe(struct kprobe *p) { arch_remove_kprobe(p); kfree(p); } static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) { return kzalloc(sizeof(struct kprobe), GFP_KERNEL); } #endif /* CONFIG_OPTPROBES */ #ifdef CONFIG_KPROBES_ON_FTRACE static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { .func = kprobe_ftrace_handler, .flags = FTRACE_OPS_FL_SAVE_REGS, }; static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { .func = kprobe_ftrace_handler, .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, }; static int kprobe_ipmodify_enabled; static int kprobe_ftrace_enabled; bool kprobe_ftrace_disabled; static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, int *cnt) { int ret; lockdep_assert_held(&kprobe_mutex); ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret)) return ret; if (*cnt == 0) { ret = register_ftrace_function(ops); if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret)) goto err_ftrace; } (*cnt)++; return ret; err_ftrace: /* * At this point, sinec ops is not registered, we should be sefe from * registering empty filter. */ ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); return ret; } static int arm_kprobe_ftrace(struct kprobe *p) { bool ipmodify = (p->post_handler != NULL); return __arm_kprobe_ftrace(p, ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); } static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, int *cnt) { int ret; lockdep_assert_held(&kprobe_mutex); if (*cnt == 1) { ret = unregister_ftrace_function(ops); if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret)) return ret; } (*cnt)--; ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n", p->addr, ret); return ret; } static int disarm_kprobe_ftrace(struct kprobe *p) { bool ipmodify = (p->post_handler != NULL); return __disarm_kprobe_ftrace(p, ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); } void kprobe_ftrace_kill(void) { kprobe_ftrace_disabled = true; } #else /* !CONFIG_KPROBES_ON_FTRACE */ static inline int arm_kprobe_ftrace(struct kprobe *p) { return -ENODEV; } static inline int disarm_kprobe_ftrace(struct kprobe *p) { return -ENODEV; } #endif static int prepare_kprobe(struct kprobe *p) { /* Must ensure p->addr is really on ftrace */ if (kprobe_ftrace(p)) return arch_prepare_kprobe_ftrace(p); return arch_prepare_kprobe(p); } static int arm_kprobe(struct kprobe *kp) { if (unlikely(kprobe_ftrace(kp))) return arm_kprobe_ftrace(kp); cpus_read_lock(); mutex_lock(&text_mutex); __arm_kprobe(kp); mutex_unlock(&text_mutex); cpus_read_unlock(); return 0; } static int disarm_kprobe(struct kprobe *kp, bool reopt) { if (unlikely(kprobe_ftrace(kp))) return disarm_kprobe_ftrace(kp); cpus_read_lock(); mutex_lock(&text_mutex); __disarm_kprobe(kp, reopt); mutex_unlock(&text_mutex); cpus_read_unlock(); return 0; } /* * Aggregate handlers for multiple kprobes support - these handlers * take care of invoking the individual kprobe handlers on p->list */ static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) { struct kprobe *kp; list_for_each_entry_rcu(kp, &p->list, list) { if (kp->pre_handler && likely(!kprobe_disabled(kp))) { set_kprobe_instance(kp); if (kp->pre_handler(kp, regs)) return 1; } reset_kprobe_instance(); } return 0; } NOKPROBE_SYMBOL(aggr_pre_handler); static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, unsigned long flags) { struct kprobe *kp; list_for_each_entry_rcu(kp, &p->list, list) { if (kp->post_handler && likely(!kprobe_disabled(kp))) { set_kprobe_instance(kp); kp->post_handler(kp, regs, flags); reset_kprobe_instance(); } } } NOKPROBE_SYMBOL(aggr_post_handler); /* Walks the list and increments 'nmissed' if 'p' has child probes. */ void kprobes_inc_nmissed_count(struct kprobe *p) { struct kprobe *kp; if (!kprobe_aggrprobe(p)) { p->nmissed++; } else { list_for_each_entry_rcu(kp, &p->list, list) kp->nmissed++; } } NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); static struct kprobe kprobe_busy = { .addr = (void *) get_kprobe, }; void kprobe_busy_begin(void) { struct kprobe_ctlblk *kcb; preempt_disable(); __this_cpu_write(current_kprobe, &kprobe_busy); kcb = get_kprobe_ctlblk(); kcb->kprobe_status = KPROBE_HIT_ACTIVE; } void kprobe_busy_end(void) { __this_cpu_write(current_kprobe, NULL); preempt_enable(); } /* Add the new probe to 'ap->list'. */ static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) { if (p->post_handler) unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ list_add_rcu(&p->list, &ap->list); if (p->post_handler && !ap->post_handler) ap->post_handler = aggr_post_handler; return 0; } /* * Fill in the required fields of the aggregator kprobe. Replace the * earlier kprobe in the hlist with the aggregator kprobe. */ static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) { /* Copy the insn slot of 'p' to 'ap'. */ copy_kprobe(p, ap); flush_insn_slot(ap); ap->addr = p->addr; ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; ap->pre_handler = aggr_pre_handler; /* We don't care the kprobe which has gone. */ if (p->post_handler && !kprobe_gone(p)) ap->post_handler = aggr_post_handler; INIT_LIST_HEAD(&ap->list); INIT_HLIST_NODE(&ap->hlist); list_add_rcu(&p->list, &ap->list); hlist_replace_rcu(&p->hlist, &ap->hlist); } /* * This registers the second or subsequent kprobe at the same address. */ static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) { int ret = 0; struct kprobe *ap = orig_p; cpus_read_lock(); /* For preparing optimization, jump_label_text_reserved() is called */ jump_label_lock(); mutex_lock(&text_mutex); if (!kprobe_aggrprobe(orig_p)) { /* If 'orig_p' is not an 'aggr_kprobe', create new one. */ ap = alloc_aggr_kprobe(orig_p); if (!ap) { ret = -ENOMEM; goto out; } init_aggr_kprobe(ap, orig_p); } else if (kprobe_unused(ap)) { /* This probe is going to die. Rescue it */ ret = reuse_unused_kprobe(ap); if (ret) goto out; } if (kprobe_gone(ap)) { /* * Attempting to insert new probe at the same location that * had a probe in the module vaddr area which already * freed. So, the instruction slot has already been * released. We need a new slot for the new probe. */ ret = arch_prepare_kprobe(ap); if (ret) /* * Even if fail to allocate new slot, don't need to * free the 'ap'. It will be used next time, or * freed by unregister_kprobe(). */ goto out; /* Prepare optimized instructions if possible. */ prepare_optimized_kprobe(ap); /* * Clear gone flag to prevent allocating new slot again, and * set disabled flag because it is not armed yet. */ ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) | KPROBE_FLAG_DISABLED; } /* Copy the insn slot of 'p' to 'ap'. */ copy_kprobe(ap, p); ret = add_new_kprobe(ap, p); out: mutex_unlock(&text_mutex); jump_label_unlock(); cpus_read_unlock(); if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { ap->flags &= ~KPROBE_FLAG_DISABLED; if (!kprobes_all_disarmed) { /* Arm the breakpoint again. */ ret = arm_kprobe(ap); if (ret) { ap->flags |= KPROBE_FLAG_DISABLED; list_del_rcu(&p->list); synchronize_rcu(); } } } return ret; } bool __weak arch_within_kprobe_blacklist(unsigned long addr) { /* The '__kprobes' functions and entry code must not be probed. */ return addr >= (unsigned long)__kprobes_text_start && addr < (unsigned long)__kprobes_text_end; } static bool __within_kprobe_blacklist(unsigned long addr) { struct kprobe_blacklist_entry *ent; if (arch_within_kprobe_blacklist(addr)) return true; /* * If 'kprobe_blacklist' is defined, check the address and * reject any probe registration in the prohibited area. */ list_for_each_entry(ent, &kprobe_blacklist, list) { if (addr >= ent->start_addr && addr < ent->end_addr) return true; } return false; } bool within_kprobe_blacklist(unsigned long addr) { char symname[KSYM_NAME_LEN], *p; if (__within_kprobe_blacklist(addr)) return true; /* Check if the address is on a suffixed-symbol */ if (!lookup_symbol_name(addr, symname)) { p = strchr(symname, '.'); if (!p) return false; *p = '\0'; addr = (unsigned long)kprobe_lookup_name(symname, 0); if (addr) return __within_kprobe_blacklist(addr); } return false; } /* * arch_adjust_kprobe_addr - adjust the address * @addr: symbol base address * @offset: offset within the symbol * @on_func_entry: was this @addr+@offset on the function entry * * Typically returns @addr + @offset, except for special cases where the * function might be prefixed by a CFI landing pad, in that case any offset * inside the landing pad is mapped to the first 'real' instruction of the * symbol. * * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C * instruction at +0. */ kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset, bool *on_func_entry) { *on_func_entry = !offset; return (kprobe_opcode_t *)(addr + offset); } /* * If 'symbol_name' is specified, look it up and add the 'offset' * to it. This way, we can specify a relative address to a symbol. * This returns encoded errors if it fails to look up symbol or invalid * combination of parameters. */ static kprobe_opcode_t * _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name, unsigned long offset, bool *on_func_entry) { if ((symbol_name && addr) || (!symbol_name && !addr)) goto invalid; if (symbol_name) { /* * Input: @sym + @offset * Output: @addr + @offset * * NOTE: kprobe_lookup_name() does *NOT* fold the offset * argument into it's output! */ addr = kprobe_lookup_name(symbol_name, offset); if (!addr) return ERR_PTR(-ENOENT); } /* * So here we have @addr + @offset, displace it into a new * @addr' + @offset' where @addr' is the symbol start address. */ addr = (void *)addr + offset; if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset)) return ERR_PTR(-ENOENT); addr = (void *)addr - offset; /* * Then ask the architecture to re-combine them, taking care of * magical function entry details while telling us if this was indeed * at the start of the function. */ addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry); if (addr) return addr; invalid: return ERR_PTR(-EINVAL); } static kprobe_opcode_t *kprobe_addr(struct kprobe *p) { bool on_func_entry; return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry); } /* * Check the 'p' is valid and return the aggregator kprobe * at the same address. */ static struct kprobe *__get_valid_kprobe(struct kprobe *p) { struct kprobe *ap, *list_p; lockdep_assert_held(&kprobe_mutex); ap = get_kprobe(p->addr); if (unlikely(!ap)) return NULL; if (p != ap) { list_for_each_entry(list_p, &ap->list, list) if (list_p == p) /* kprobe p is a valid probe */ goto valid; return NULL; } valid: return ap; } /* * Warn and return error if the kprobe is being re-registered since * there must be a software bug. */ static inline int warn_kprobe_rereg(struct kprobe *p) { int ret = 0; mutex_lock(&kprobe_mutex); if (WARN_ON_ONCE(__get_valid_kprobe(p))) ret = -EINVAL; mutex_unlock(&kprobe_mutex); return ret; } static int check_ftrace_location(struct kprobe *p) { unsigned long addr = (unsigned long)p->addr; if (ftrace_location(addr) == addr) { #ifdef CONFIG_KPROBES_ON_FTRACE p->flags |= KPROBE_FLAG_FTRACE; #else /* !CONFIG_KPROBES_ON_FTRACE */ return -EINVAL; #endif } return 0; } static bool is_cfi_preamble_symbol(unsigned long addr) { char symbuf[KSYM_NAME_LEN]; if (lookup_symbol_name(addr, symbuf)) return false; return str_has_prefix(symbuf, "__cfi_") || str_has_prefix(symbuf, "__pfx_"); } static int check_kprobe_address_safe(struct kprobe *p, struct module **probed_mod) { int ret; ret = check_ftrace_location(p); if (ret) return ret; jump_label_lock(); preempt_disable(); /* Ensure the address is in a text area, and find a module if exists. */ *probed_mod = NULL; if (!core_kernel_text((unsigned long) p->addr)) { *probed_mod = __module_text_address((unsigned long) p->addr); if (!(*probed_mod)) { ret = -EINVAL; goto out; } } /* Ensure it is not in reserved area. */ if (in_gate_area_no_mm((unsigned long) p->addr) || within_kprobe_blacklist((unsigned long) p->addr) || jump_label_text_reserved(p->addr, p->addr) || static_call_text_reserved(p->addr, p->addr) || find_bug((unsigned long)p->addr) || is_cfi_preamble_symbol((unsigned long)p->addr)) { ret = -EINVAL; goto out; } /* Get module refcount and reject __init functions for loaded modules. */ if (IS_ENABLED(CONFIG_MODULES) && *probed_mod) { /* * We must hold a refcount of the probed module while updating * its code to prohibit unexpected unloading. */ if (unlikely(!try_module_get(*probed_mod))) { ret = -ENOENT; goto out; } /* * If the module freed '.init.text', we couldn't insert * kprobes in there. */ if (within_module_init((unsigned long)p->addr, *probed_mod) && !module_is_coming(*probed_mod)) { module_put(*probed_mod); *probed_mod = NULL; ret = -ENOENT; } } out: preempt_enable(); jump_label_unlock(); return ret; } int register_kprobe(struct kprobe *p) { int ret; struct kprobe *old_p; struct module *probed_mod; kprobe_opcode_t *addr; bool on_func_entry; /* Adjust probe address from symbol */ addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry); if (IS_ERR(addr)) return PTR_ERR(addr); p->addr = addr; ret = warn_kprobe_rereg(p); if (ret) return ret; /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ p->flags &= KPROBE_FLAG_DISABLED; p->nmissed = 0; INIT_LIST_HEAD(&p->list); ret = check_kprobe_address_safe(p, &probed_mod); if (ret) return ret; mutex_lock(&kprobe_mutex); if (on_func_entry) p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY; old_p = get_kprobe(p->addr); if (old_p) { /* Since this may unoptimize 'old_p', locking 'text_mutex'. */ ret = register_aggr_kprobe(old_p, p); goto out; } cpus_read_lock(); /* Prevent text modification */ mutex_lock(&text_mutex); ret = prepare_kprobe(p); mutex_unlock(&text_mutex); cpus_read_unlock(); if (ret) goto out; INIT_HLIST_NODE(&p->hlist); hlist_add_head_rcu(&p->hlist, &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); if (!kprobes_all_disarmed && !kprobe_disabled(p)) { ret = arm_kprobe(p); if (ret) { hlist_del_rcu(&p->hlist); synchronize_rcu(); goto out; } } /* Try to optimize kprobe */ try_to_optimize_kprobe(p); out: mutex_unlock(&kprobe_mutex); if (probed_mod) module_put(probed_mod); return ret; } EXPORT_SYMBOL_GPL(register_kprobe); /* Check if all probes on the 'ap' are disabled. */ static bool aggr_kprobe_disabled(struct kprobe *ap) { struct kprobe *kp; lockdep_assert_held(&kprobe_mutex); list_for_each_entry(kp, &ap->list, list) if (!kprobe_disabled(kp)) /* * Since there is an active probe on the list, * we can't disable this 'ap'. */ return false; return true; } static struct kprobe *__disable_kprobe(struct kprobe *p) { struct kprobe *orig_p; int ret; lockdep_assert_held(&kprobe_mutex); /* Get an original kprobe for return */ orig_p = __get_valid_kprobe(p); if (unlikely(orig_p == NULL)) return ERR_PTR(-EINVAL); if (!kprobe_disabled(p)) { /* Disable probe if it is a child probe */ if (p != orig_p) p->flags |= KPROBE_FLAG_DISABLED; /* Try to disarm and disable this/parent probe */ if (p == orig_p || aggr_kprobe_disabled(orig_p)) { /* * Don't be lazy here. Even if 'kprobes_all_disarmed' * is false, 'orig_p' might not have been armed yet. * Note arm_all_kprobes() __tries__ to arm all kprobes * on the best effort basis. */ if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) { ret = disarm_kprobe(orig_p, true); if (ret) { p->flags &= ~KPROBE_FLAG_DISABLED; return ERR_PTR(ret); } } orig_p->flags |= KPROBE_FLAG_DISABLED; } } return orig_p; } /* * Unregister a kprobe without a scheduler synchronization. */ static int __unregister_kprobe_top(struct kprobe *p) { struct kprobe *ap, *list_p; /* Disable kprobe. This will disarm it if needed. */ ap = __disable_kprobe(p); if (IS_ERR(ap)) return PTR_ERR(ap); if (ap == p) /* * This probe is an independent(and non-optimized) kprobe * (not an aggrprobe). Remove from the hash list. */ goto disarmed; /* Following process expects this probe is an aggrprobe */ WARN_ON(!kprobe_aggrprobe(ap)); if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) /* * !disarmed could be happen if the probe is under delayed * unoptimizing. */ goto disarmed; else { /* If disabling probe has special handlers, update aggrprobe */ if (p->post_handler && !kprobe_gone(p)) { list_for_each_entry(list_p, &ap->list, list) { if ((list_p != p) && (list_p->post_handler)) goto noclean; } /* * For the kprobe-on-ftrace case, we keep the * post_handler setting to identify this aggrprobe * armed with kprobe_ipmodify_ops. */ if (!kprobe_ftrace(ap)) ap->post_handler = NULL; } noclean: /* * Remove from the aggrprobe: this path will do nothing in * __unregister_kprobe_bottom(). */ list_del_rcu(&p->list); if (!kprobe_disabled(ap) && !kprobes_all_disarmed) /* * Try to optimize this probe again, because post * handler may have been changed. */ optimize_kprobe(ap); } return 0; disarmed: hlist_del_rcu(&ap->hlist); return 0; } static void __unregister_kprobe_bottom(struct kprobe *p) { struct kprobe *ap; if (list_empty(&p->list)) /* This is an independent kprobe */ arch_remove_kprobe(p); else if (list_is_singular(&p->list)) { /* This is the last child of an aggrprobe */ ap = list_entry(p->list.next, struct kprobe, list); list_del(&p->list); free_aggr_kprobe(ap); } /* Otherwise, do nothing. */ } int register_kprobes(struct kprobe **kps, int num) { int i, ret = 0; if (num <= 0) return -EINVAL; for (i = 0; i < num; i++) { ret = register_kprobe(kps[i]); if (ret < 0) { if (i > 0) unregister_kprobes(kps, i); break; } } return ret; } EXPORT_SYMBOL_GPL(register_kprobes); void unregister_kprobe(struct kprobe *p) { unregister_kprobes(&p, 1); } EXPORT_SYMBOL_GPL(unregister_kprobe); void unregister_kprobes(struct kprobe **kps, int num) { int i; if (num <= 0) return; mutex_lock(&kprobe_mutex); for (i = 0; i < num; i++) if (__unregister_kprobe_top(kps[i]) < 0) kps[i]->addr = NULL; mutex_unlock(&kprobe_mutex); synchronize_rcu(); for (i = 0; i < num; i++) if (kps[i]->addr) __unregister_kprobe_bottom(kps[i]); } EXPORT_SYMBOL_GPL(unregister_kprobes); int __weak kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) { return NOTIFY_DONE; } NOKPROBE_SYMBOL(kprobe_exceptions_notify); static struct notifier_block kprobe_exceptions_nb = { .notifier_call = kprobe_exceptions_notify, .priority = 0x7fffffff /* we need to be notified first */ }; #ifdef CONFIG_KRETPROBES #if !defined(CONFIG_KRETPROBE_ON_RETHOOK) /* callbacks for objpool of kretprobe instances */ static int kretprobe_init_inst(void *nod, void *context) { struct kretprobe_instance *ri = nod; ri->rph = context; return 0; } static int kretprobe_fini_pool(struct objpool_head *head, void *context) { kfree(context); return 0; } static void free_rp_inst_rcu(struct rcu_head *head) { struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu); struct kretprobe_holder *rph = ri->rph; objpool_drop(ri, &rph->pool); } NOKPROBE_SYMBOL(free_rp_inst_rcu); static void recycle_rp_inst(struct kretprobe_instance *ri) { struct kretprobe *rp = get_kretprobe(ri); if (likely(rp)) objpool_push(ri, &rp->rph->pool); else call_rcu(&ri->rcu, free_rp_inst_rcu); } NOKPROBE_SYMBOL(recycle_rp_inst); /* * This function is called from delayed_put_task_struct() when a task is * dead and cleaned up to recycle any kretprobe instances associated with * this task. These left over instances represent probed functions that * have been called but will never return. */ void kprobe_flush_task(struct task_struct *tk) { struct kretprobe_instance *ri; struct llist_node *node; /* Early boot, not yet initialized. */ if (unlikely(!kprobes_initialized)) return; kprobe_busy_begin(); node = __llist_del_all(&tk->kretprobe_instances); while (node) { ri = container_of(node, struct kretprobe_instance, llist); node = node->next; recycle_rp_inst(ri); } kprobe_busy_end(); } NOKPROBE_SYMBOL(kprobe_flush_task); static inline void free_rp_inst(struct kretprobe *rp) { struct kretprobe_holder *rph = rp->rph; if (!rph) return; rp->rph = NULL; objpool_fini(&rph->pool); } /* This assumes the 'tsk' is the current task or the is not running. */ static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk, struct llist_node **cur) { struct kretprobe_instance *ri = NULL; struct llist_node *node = *cur; if (!node) node = tsk->kretprobe_instances.first; else node = node->next; while (node) { ri = container_of(node, struct kretprobe_instance, llist); if (ri->ret_addr != kretprobe_trampoline_addr()) { *cur = node; return ri->ret_addr; } node = node->next; } return NULL; } NOKPROBE_SYMBOL(__kretprobe_find_ret_addr); /** * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe * @tsk: Target task * @fp: A frame pointer * @cur: a storage of the loop cursor llist_node pointer for next call * * Find the correct return address modified by a kretprobe on @tsk in unsigned * long type. If it finds the return address, this returns that address value, * or this returns 0. * The @tsk must be 'current' or a task which is not running. @fp is a hint * to get the currect return address - which is compared with the * kretprobe_instance::fp field. The @cur is a loop cursor for searching the * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the * first call, but '@cur' itself must NOT NULL. */ unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp, struct llist_node **cur) { struct kretprobe_instance *ri; kprobe_opcode_t *ret; if (WARN_ON_ONCE(!cur)) return 0; do { ret = __kretprobe_find_ret_addr(tsk, cur); if (!ret) break; ri = container_of(*cur, struct kretprobe_instance, llist); } while (ri->fp != fp); return (unsigned long)ret; } NOKPROBE_SYMBOL(kretprobe_find_ret_addr); void __weak arch_kretprobe_fixup_return(struct pt_regs *regs, kprobe_opcode_t *correct_ret_addr) { /* * Do nothing by default. Please fill this to update the fake return * address on the stack with the correct one on each arch if possible. */ } unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs, void *frame_pointer) { struct kretprobe_instance *ri = NULL; struct llist_node *first, *node = NULL; kprobe_opcode_t *correct_ret_addr; struct kretprobe *rp; /* Find correct address and all nodes for this frame. */ correct_ret_addr = __kretprobe_find_ret_addr(current, &node); if (!correct_ret_addr) { pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n"); BUG_ON(1); } /* * Set the return address as the instruction pointer, because if the * user handler calls stack_trace_save_regs() with this 'regs', * the stack trace will start from the instruction pointer. */ instruction_pointer_set(regs, (unsigned long)correct_ret_addr); /* Run the user handler of the nodes. */ first = current->kretprobe_instances.first; while (first) { ri = container_of(first, struct kretprobe_instance, llist); if (WARN_ON_ONCE(ri->fp != frame_pointer)) break; rp = get_kretprobe(ri); if (rp && rp->handler) { struct kprobe *prev = kprobe_running(); __this_cpu_write(current_kprobe, &rp->kp); ri->ret_addr = correct_ret_addr; rp->handler(ri, regs); __this_cpu_write(current_kprobe, prev); } if (first == node) break; first = first->next; } arch_kretprobe_fixup_return(regs, correct_ret_addr); /* Unlink all nodes for this frame. */ first = current->kretprobe_instances.first; current->kretprobe_instances.first = node->next; node->next = NULL; /* Recycle free instances. */ while (first) { ri = container_of(first, struct kretprobe_instance, llist); first = first->next; recycle_rp_inst(ri); } return (unsigned long)correct_ret_addr; } NOKPROBE_SYMBOL(__kretprobe_trampoline_handler) /* * This kprobe pre_handler is registered with every kretprobe. When probe * hits it will set up the return probe. */ static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) { struct kretprobe *rp = container_of(p, struct kretprobe, kp); struct kretprobe_holder *rph = rp->rph; struct kretprobe_instance *ri; ri = objpool_pop(&rph->pool); if (!ri) { rp->nmissed++; return 0; } if (rp->entry_handler && rp->entry_handler(ri, regs)) { objpool_push(ri, &rph->pool); return 0; } arch_prepare_kretprobe(ri, regs); __llist_add(&ri->llist, ¤t->kretprobe_instances); return 0; } NOKPROBE_SYMBOL(pre_handler_kretprobe); #else /* CONFIG_KRETPROBE_ON_RETHOOK */ /* * This kprobe pre_handler is registered with every kretprobe. When probe * hits it will set up the return probe. */ static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) { struct kretprobe *rp = container_of(p, struct kretprobe, kp); struct kretprobe_instance *ri; struct rethook_node *rhn; rhn = rethook_try_get(rp->rh); if (!rhn) { rp->nmissed++; return 0; } ri = container_of(rhn, struct kretprobe_instance, node); if (rp->entry_handler && rp->entry_handler(ri, regs)) rethook_recycle(rhn); else rethook_hook(rhn, regs, kprobe_ftrace(p)); return 0; } NOKPROBE_SYMBOL(pre_handler_kretprobe); static void kretprobe_rethook_handler(struct rethook_node *rh, void *data, unsigned long ret_addr, struct pt_regs *regs) { struct kretprobe *rp = (struct kretprobe *)data; struct kretprobe_instance *ri; struct kprobe_ctlblk *kcb; /* The data must NOT be null. This means rethook data structure is broken. */ if (WARN_ON_ONCE(!data) || !rp->handler) return; __this_cpu_write(current_kprobe, &rp->kp); kcb = get_kprobe_ctlblk(); kcb->kprobe_status = KPROBE_HIT_ACTIVE; ri = container_of(rh, struct kretprobe_instance, node); rp->handler(ri, regs); __this_cpu_write(current_kprobe, NULL); } NOKPROBE_SYMBOL(kretprobe_rethook_handler); #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */ /** * kprobe_on_func_entry() -- check whether given address is function entry * @addr: Target address * @sym: Target symbol name * @offset: The offset from the symbol or the address * * This checks whether the given @addr+@offset or @sym+@offset is on the * function entry address or not. * This returns 0 if it is the function entry, or -EINVAL if it is not. * And also it returns -ENOENT if it fails the symbol or address lookup. * Caller must pass @addr or @sym (either one must be NULL), or this * returns -EINVAL. */ int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) { bool on_func_entry; kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry); if (IS_ERR(kp_addr)) return PTR_ERR(kp_addr); if (!on_func_entry) return -EINVAL; return 0; } int register_kretprobe(struct kretprobe *rp) { int ret; int i; void *addr; ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset); if (ret) return ret; /* If only 'rp->kp.addr' is specified, check reregistering kprobes */ if (rp->kp.addr && warn_kprobe_rereg(&rp->kp)) return -EINVAL; if (kretprobe_blacklist_size) { addr = kprobe_addr(&rp->kp); if (IS_ERR(addr)) return PTR_ERR(addr); for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { if (kretprobe_blacklist[i].addr == addr) return -EINVAL; } } if (rp->data_size > KRETPROBE_MAX_DATA_SIZE) return -E2BIG; rp->kp.pre_handler = pre_handler_kretprobe; rp->kp.post_handler = NULL; /* Pre-allocate memory for max kretprobe instances */ if (rp->maxactive <= 0) rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); #ifdef CONFIG_KRETPROBE_ON_RETHOOK rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler, sizeof(struct kretprobe_instance) + rp->data_size, rp->maxactive); if (IS_ERR(rp->rh)) return PTR_ERR(rp->rh); rp->nmissed = 0; /* Establish function entry probe point */ ret = register_kprobe(&rp->kp); if (ret != 0) { rethook_free(rp->rh); rp->rh = NULL; } #else /* !CONFIG_KRETPROBE_ON_RETHOOK */ rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL); if (!rp->rph) return -ENOMEM; if (objpool_init(&rp->rph->pool, rp->maxactive, rp->data_size + sizeof(struct kretprobe_instance), GFP_KERNEL, rp->rph, kretprobe_init_inst, kretprobe_fini_pool)) { kfree(rp->rph); rp->rph = NULL; return -ENOMEM; } rcu_assign_pointer(rp->rph->rp, rp); rp->nmissed = 0; /* Establish function entry probe point */ ret = register_kprobe(&rp->kp); if (ret != 0) free_rp_inst(rp); #endif return ret; } EXPORT_SYMBOL_GPL(register_kretprobe); int register_kretprobes(struct kretprobe **rps, int num) { int ret = 0, i; if (num <= 0) return -EINVAL; for (i = 0; i < num; i++) { ret = register_kretprobe(rps[i]); if (ret < 0) { if (i > 0) unregister_kretprobes(rps, i); break; } } return ret; } EXPORT_SYMBOL_GPL(register_kretprobes); void unregister_kretprobe(struct kretprobe *rp) { unregister_kretprobes(&rp, 1); } EXPORT_SYMBOL_GPL(unregister_kretprobe); void unregister_kretprobes(struct kretprobe **rps, int num) { int i; if (num <= 0) return; mutex_lock(&kprobe_mutex); for (i = 0; i < num; i++) { if (__unregister_kprobe_top(&rps[i]->kp) < 0) rps[i]->kp.addr = NULL; #ifdef CONFIG_KRETPROBE_ON_RETHOOK rethook_free(rps[i]->rh); #else rcu_assign_pointer(rps[i]->rph->rp, NULL); #endif } mutex_unlock(&kprobe_mutex); synchronize_rcu(); for (i = 0; i < num; i++) { if (rps[i]->kp.addr) { __unregister_kprobe_bottom(&rps[i]->kp); #ifndef CONFIG_KRETPROBE_ON_RETHOOK free_rp_inst(rps[i]); #endif } } } EXPORT_SYMBOL_GPL(unregister_kretprobes); #else /* CONFIG_KRETPROBES */ int register_kretprobe(struct kretprobe *rp) { return -EOPNOTSUPP; } EXPORT_SYMBOL_GPL(register_kretprobe); int register_kretprobes(struct kretprobe **rps, int num) { return -EOPNOTSUPP; } EXPORT_SYMBOL_GPL(register_kretprobes); void unregister_kretprobe(struct kretprobe *rp) { } EXPORT_SYMBOL_GPL(unregister_kretprobe); void unregister_kretprobes(struct kretprobe **rps, int num) { } EXPORT_SYMBOL_GPL(unregister_kretprobes); static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) { return 0; } NOKPROBE_SYMBOL(pre_handler_kretprobe); #endif /* CONFIG_KRETPROBES */ /* Set the kprobe gone and remove its instruction buffer. */ static void kill_kprobe(struct kprobe *p) { struct kprobe *kp; lockdep_assert_held(&kprobe_mutex); /* * The module is going away. We should disarm the kprobe which * is using ftrace, because ftrace framework is still available at * 'MODULE_STATE_GOING' notification. */ if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed) disarm_kprobe_ftrace(p); p->flags |= KPROBE_FLAG_GONE; if (kprobe_aggrprobe(p)) { /* * If this is an aggr_kprobe, we have to list all the * chained probes and mark them GONE. */ list_for_each_entry(kp, &p->list, list) kp->flags |= KPROBE_FLAG_GONE; p->post_handler = NULL; kill_optimized_kprobe(p); } /* * Here, we can remove insn_slot safely, because no thread calls * the original probed function (which will be freed soon) any more. */ arch_remove_kprobe(p); } /* Disable one kprobe */ int disable_kprobe(struct kprobe *kp) { int ret = 0; struct kprobe *p; mutex_lock(&kprobe_mutex); /* Disable this kprobe */ p = __disable_kprobe(kp); if (IS_ERR(p)) ret = PTR_ERR(p); mutex_unlock(&kprobe_mutex); return ret; } EXPORT_SYMBOL_GPL(disable_kprobe); /* Enable one kprobe */ int enable_kprobe(struct kprobe *kp) { int ret = 0; struct kprobe *p; mutex_lock(&kprobe_mutex); /* Check whether specified probe is valid. */ p = __get_valid_kprobe(kp); if (unlikely(p == NULL)) { ret = -EINVAL; goto out; } if (kprobe_gone(kp)) { /* This kprobe has gone, we couldn't enable it. */ ret = -EINVAL; goto out; } if (p != kp) kp->flags &= ~KPROBE_FLAG_DISABLED; if (!kprobes_all_disarmed && kprobe_disabled(p)) { p->flags &= ~KPROBE_FLAG_DISABLED; ret = arm_kprobe(p); if (ret) { p->flags |= KPROBE_FLAG_DISABLED; if (p != kp) kp->flags |= KPROBE_FLAG_DISABLED; } } out: mutex_unlock(&kprobe_mutex); return ret; } EXPORT_SYMBOL_GPL(enable_kprobe); /* Caller must NOT call this in usual path. This is only for critical case */ void dump_kprobe(struct kprobe *kp) { pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n", kp->symbol_name, kp->offset, kp->addr); } NOKPROBE_SYMBOL(dump_kprobe); int kprobe_add_ksym_blacklist(unsigned long entry) { struct kprobe_blacklist_entry *ent; unsigned long offset = 0, size = 0; if (!kernel_text_address(entry) || !kallsyms_lookup_size_offset(entry, &size, &offset)) return -EINVAL; ent = kmalloc(sizeof(*ent), GFP_KERNEL); if (!ent) return -ENOMEM; ent->start_addr = entry; ent->end_addr = entry + size; INIT_LIST_HEAD(&ent->list); list_add_tail(&ent->list, &kprobe_blacklist); return (int)size; } /* Add all symbols in given area into kprobe blacklist */ int kprobe_add_area_blacklist(unsigned long start, unsigned long end) { unsigned long entry; int ret = 0; for (entry = start; entry < end; entry += ret) { ret = kprobe_add_ksym_blacklist(entry); if (ret < 0) return ret; if (ret == 0) /* In case of alias symbol */ ret = 1; } return 0; } int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, char *type, char *sym) { return -ERANGE; } int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, char *sym) { #ifdef __ARCH_WANT_KPROBES_INSN_SLOT if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym)) return 0; #ifdef CONFIG_OPTPROBES if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym)) return 0; #endif #endif if (!arch_kprobe_get_kallsym(&symnum, value, type, sym)) return 0; return -ERANGE; } int __init __weak arch_populate_kprobe_blacklist(void) { return 0; } /* * Lookup and populate the kprobe_blacklist. * * Unlike the kretprobe blacklist, we'll need to determine * the range of addresses that belong to the said functions, * since a kprobe need not necessarily be at the beginning * of a function. */ static int __init populate_kprobe_blacklist(unsigned long *start, unsigned long *end) { unsigned long entry; unsigned long *iter; int ret; for (iter = start; iter < end; iter++) { entry = (unsigned long)dereference_symbol_descriptor((void *)*iter); ret = kprobe_add_ksym_blacklist(entry); if (ret == -EINVAL) continue; if (ret < 0) return ret; } /* Symbols in '__kprobes_text' are blacklisted */ ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, (unsigned long)__kprobes_text_end); if (ret) return ret; /* Symbols in 'noinstr' section are blacklisted */ ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start, (unsigned long)__noinstr_text_end); return ret ? : arch_populate_kprobe_blacklist(); } #ifdef CONFIG_MODULES /* Remove all symbols in given area from kprobe blacklist */ static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end) { struct kprobe_blacklist_entry *ent, *n; list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) { if (ent->start_addr < start || ent->start_addr >= end) continue; list_del(&ent->list); kfree(ent); } } static void kprobe_remove_ksym_blacklist(unsigned long entry) { kprobe_remove_area_blacklist(entry, entry + 1); } static void add_module_kprobe_blacklist(struct module *mod) { unsigned long start, end; int i; if (mod->kprobe_blacklist) { for (i = 0; i < mod->num_kprobe_blacklist; i++) kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]); } start = (unsigned long)mod->kprobes_text_start; if (start) { end = start + mod->kprobes_text_size; kprobe_add_area_blacklist(start, end); } start = (unsigned long)mod->noinstr_text_start; if (start) { end = start + mod->noinstr_text_size; kprobe_add_area_blacklist(start, end); } } static void remove_module_kprobe_blacklist(struct module *mod) { unsigned long start, end; int i; if (mod->kprobe_blacklist) { for (i = 0; i < mod->num_kprobe_blacklist; i++) kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]); } start = (unsigned long)mod->kprobes_text_start; if (start) { end = start + mod->kprobes_text_size; kprobe_remove_area_blacklist(start, end); } start = (unsigned long)mod->noinstr_text_start; if (start) { end = start + mod->noinstr_text_size; kprobe_remove_area_blacklist(start, end); } } /* Module notifier call back, checking kprobes on the module */ static int kprobes_module_callback(struct notifier_block *nb, unsigned long val, void *data) { struct module *mod = data; struct hlist_head *head; struct kprobe *p; unsigned int i; int checkcore = (val == MODULE_STATE_GOING); if (val == MODULE_STATE_COMING) { mutex_lock(&kprobe_mutex); add_module_kprobe_blacklist(mod); mutex_unlock(&kprobe_mutex); } if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) return NOTIFY_DONE; /* * When 'MODULE_STATE_GOING' was notified, both of module '.text' and * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was * notified, only '.init.text' section would be freed. We need to * disable kprobes which have been inserted in the sections. */ mutex_lock(&kprobe_mutex); for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry(p, head, hlist) if (within_module_init((unsigned long)p->addr, mod) || (checkcore && within_module_core((unsigned long)p->addr, mod))) { /* * The vaddr this probe is installed will soon * be vfreed buy not synced to disk. Hence, * disarming the breakpoint isn't needed. * * Note, this will also move any optimized probes * that are pending to be removed from their * corresponding lists to the 'freeing_list' and * will not be touched by the delayed * kprobe_optimizer() work handler. */ kill_kprobe(p); } } if (val == MODULE_STATE_GOING) remove_module_kprobe_blacklist(mod); mutex_unlock(&kprobe_mutex); return NOTIFY_DONE; } static struct notifier_block kprobe_module_nb = { .notifier_call = kprobes_module_callback, .priority = 0 }; static int kprobe_register_module_notifier(void) { return register_module_notifier(&kprobe_module_nb); } #else static int kprobe_register_module_notifier(void) { return 0; } #endif /* CONFIG_MODULES */ void kprobe_free_init_mem(void) { void *start = (void *)(&__init_begin); void *end = (void *)(&__init_end); struct hlist_head *head; struct kprobe *p; int i; mutex_lock(&kprobe_mutex); /* Kill all kprobes on initmem because the target code has been freed. */ for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry(p, head, hlist) { if (start <= (void *)p->addr && (void *)p->addr < end) kill_kprobe(p); } } mutex_unlock(&kprobe_mutex); } static int __init init_kprobes(void) { int i, err; /* FIXME allocate the probe table, currently defined statically */ /* initialize all list heads */ for (i = 0; i < KPROBE_TABLE_SIZE; i++) INIT_HLIST_HEAD(&kprobe_table[i]); err = populate_kprobe_blacklist(__start_kprobe_blacklist, __stop_kprobe_blacklist); if (err) pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err); if (kretprobe_blacklist_size) { /* lookup the function address from its name */ for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { kretprobe_blacklist[i].addr = kprobe_lookup_name(kretprobe_blacklist[i].name, 0); if (!kretprobe_blacklist[i].addr) pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n", kretprobe_blacklist[i].name); } } /* By default, kprobes are armed */ kprobes_all_disarmed = false; #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT) /* Init 'kprobe_optinsn_slots' for allocation */ kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; #endif err = arch_init_kprobes(); if (!err) err = register_die_notifier(&kprobe_exceptions_nb); if (!err) err = kprobe_register_module_notifier(); kprobes_initialized = (err == 0); kprobe_sysctls_init(); return err; } early_initcall(init_kprobes); #if defined(CONFIG_OPTPROBES) static int __init init_optprobes(void) { /* * Enable kprobe optimization - this kicks the optimizer which * depends on synchronize_rcu_tasks() and ksoftirqd, that is * not spawned in early initcall. So delay the optimization. */ optimize_all_kprobes(); return 0; } subsys_initcall(init_optprobes); #endif #ifdef CONFIG_DEBUG_FS static void report_probe(struct seq_file *pi, struct kprobe *p, const char *sym, int offset, char *modname, struct kprobe *pp) { char *kprobe_type; void *addr = p->addr; if (p->pre_handler == pre_handler_kretprobe) kprobe_type = "r"; else kprobe_type = "k"; if (!kallsyms_show_value(pi->file->f_cred)) addr = NULL; if (sym) seq_printf(pi, "%px %s %s+0x%x %s ", addr, kprobe_type, sym, offset, (modname ? modname : " ")); else /* try to use %pS */ seq_printf(pi, "%px %s %pS ", addr, kprobe_type, p->addr); if (!pp) pp = p; seq_printf(pi, "%s%s%s%s\n", (kprobe_gone(p) ? "[GONE]" : ""), ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), (kprobe_ftrace(pp) ? "[FTRACE]" : "")); } static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) { return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; } static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) { (*pos)++; if (*pos >= KPROBE_TABLE_SIZE) return NULL; return pos; } static void kprobe_seq_stop(struct seq_file *f, void *v) { /* Nothing to do */ } static int show_kprobe_addr(struct seq_file *pi, void *v) { struct hlist_head *head; struct kprobe *p, *kp; const char *sym; unsigned int i = *(loff_t *) v; unsigned long offset = 0; char *modname, namebuf[KSYM_NAME_LEN]; head = &kprobe_table[i]; preempt_disable(); hlist_for_each_entry_rcu(p, head, hlist) { sym = kallsyms_lookup((unsigned long)p->addr, NULL, &offset, &modname, namebuf); if (kprobe_aggrprobe(p)) { list_for_each_entry_rcu(kp, &p->list, list) report_probe(pi, kp, sym, offset, modname, p); } else report_probe(pi, p, sym, offset, modname, NULL); } preempt_enable(); return 0; } static const struct seq_operations kprobes_sops = { .start = kprobe_seq_start, .next = kprobe_seq_next, .stop = kprobe_seq_stop, .show = show_kprobe_addr }; DEFINE_SEQ_ATTRIBUTE(kprobes); /* kprobes/blacklist -- shows which functions can not be probed */ static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) { mutex_lock(&kprobe_mutex); return seq_list_start(&kprobe_blacklist, *pos); } static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) { return seq_list_next(v, &kprobe_blacklist, pos); } static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) { struct kprobe_blacklist_entry *ent = list_entry(v, struct kprobe_blacklist_entry, list); /* * If '/proc/kallsyms' is not showing kernel address, we won't * show them here either. */ if (!kallsyms_show_value(m->file->f_cred)) seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, (void *)ent->start_addr); else seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, (void *)ent->end_addr, (void *)ent->start_addr); return 0; } static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v) { mutex_unlock(&kprobe_mutex); } static const struct seq_operations kprobe_blacklist_sops = { .start = kprobe_blacklist_seq_start, .next = kprobe_blacklist_seq_next, .stop = kprobe_blacklist_seq_stop, .show = kprobe_blacklist_seq_show, }; DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist); static int arm_all_kprobes(void) { struct hlist_head *head; struct kprobe *p; unsigned int i, total = 0, errors = 0; int err, ret = 0; mutex_lock(&kprobe_mutex); /* If kprobes are armed, just return */ if (!kprobes_all_disarmed) goto already_enabled; /* * optimize_kprobe() called by arm_kprobe() checks * kprobes_all_disarmed, so set kprobes_all_disarmed before * arm_kprobe. */ kprobes_all_disarmed = false; /* Arming kprobes doesn't optimize kprobe itself */ for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; /* Arm all kprobes on a best-effort basis */ hlist_for_each_entry(p, head, hlist) { if (!kprobe_disabled(p)) { err = arm_kprobe(p); if (err) { errors++; ret = err; } total++; } } } if (errors) pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n", errors, total); else pr_info("Kprobes globally enabled\n"); already_enabled: mutex_unlock(&kprobe_mutex); return ret; } static int disarm_all_kprobes(void) { struct hlist_head *head; struct kprobe *p; unsigned int i, total = 0, errors = 0; int err, ret = 0; mutex_lock(&kprobe_mutex); /* If kprobes are already disarmed, just return */ if (kprobes_all_disarmed) { mutex_unlock(&kprobe_mutex); return 0; } kprobes_all_disarmed = true; for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; /* Disarm all kprobes on a best-effort basis */ hlist_for_each_entry(p, head, hlist) { if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { err = disarm_kprobe(p, false); if (err) { errors++; ret = err; } total++; } } } if (errors) pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n", errors, total); else pr_info("Kprobes globally disabled\n"); mutex_unlock(&kprobe_mutex); /* Wait for disarming all kprobes by optimizer */ wait_for_kprobe_optimizer(); return ret; } /* * XXX: The debugfs bool file interface doesn't allow for callbacks * when the bool state is switched. We can reuse that facility when * available */ static ssize_t read_enabled_file_bool(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char buf[3]; if (!kprobes_all_disarmed) buf[0] = '1'; else buf[0] = '0'; buf[1] = '\n'; buf[2] = 0x00; return simple_read_from_buffer(user_buf, count, ppos, buf, 2); } static ssize_t write_enabled_file_bool(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { bool enable; int ret; ret = kstrtobool_from_user(user_buf, count, &enable); if (ret) return ret; ret = enable ? arm_all_kprobes() : disarm_all_kprobes(); if (ret) return ret; return count; } static const struct file_operations fops_kp = { .read = read_enabled_file_bool, .write = write_enabled_file_bool, .llseek = default_llseek, }; static int __init debugfs_kprobe_init(void) { struct dentry *dir; dir = debugfs_create_dir("kprobes", NULL); debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops); debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp); debugfs_create_file("blacklist", 0400, dir, NULL, &kprobe_blacklist_fops); return 0; } late_initcall(debugfs_kprobe_init); #endif /* CONFIG_DEBUG_FS */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1