Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dmitry Osipenko | 975 | 25.93% | 11 | 12.22% |
Matteo Croce | 956 | 25.43% | 7 | 7.78% |
Robin Holt | 743 | 19.76% | 5 | 5.56% |
Andrey Smirnov | 145 | 3.86% | 1 | 1.11% |
Matti Vaittinen | 112 | 2.98% | 1 | 1.11% |
Joel Stanley | 95 | 2.53% | 1 | 1.11% |
Yue haibing | 95 | 2.53% | 1 | 1.11% |
Jeremy Fitzhardinge | 85 | 2.26% | 1 | 1.11% |
Oleg Nesterov | 73 | 1.94% | 1 | 1.11% |
Linus Torvalds (pre-git) | 72 | 1.91% | 9 | 10.00% |
Aaro Koskinen | 52 | 1.38% | 1 | 1.11% |
Guenter Roeck | 44 | 1.17% | 1 | 1.11% |
Eric W. Biedermann | 37 | 0.98% | 4 | 4.44% |
Kai-Heng Feng | 36 | 0.96% | 1 | 1.11% |
Miguel Botón | 26 | 0.69% | 1 | 1.11% |
Benjamin Bara | 23 | 0.61% | 2 | 2.22% |
Dongmin Lee | 21 | 0.56% | 1 | 1.11% |
Andi Kleen | 19 | 0.51% | 4 | 4.44% |
Andrew Morton | 18 | 0.48% | 2 | 2.22% |
Rafael J. Wysocki | 14 | 0.37% | 2 | 2.22% |
Fabio Estevam | 14 | 0.37% | 2 | 2.22% |
Linus Torvalds | 12 | 0.32% | 2 | 2.22% |
James Bottomley | 11 | 0.29% | 1 | 1.11% |
Andy Grover | 9 | 0.24% | 1 | 1.11% |
Seiji Aguchi | 8 | 0.21% | 1 | 1.11% |
Cédric Le Goater | 8 | 0.21% | 1 | 1.11% |
Michael D Labriola | 5 | 0.13% | 2 | 2.22% |
tangmeng | 5 | 0.13% | 1 | 1.11% |
Shawn Guo | 5 | 0.13% | 1 | 1.11% |
Mark Lord | 4 | 0.11% | 1 | 1.11% |
Liu Ping Fan | 3 | 0.08% | 1 | 1.11% |
Kees Cook | 3 | 0.08% | 1 | 1.11% |
Chuansheng Liu | 3 | 0.08% | 1 | 1.11% |
Boaz Harrosh | 3 | 0.08% | 1 | 1.11% |
H. Peter Anvin | 3 | 0.08% | 1 | 1.11% |
Nadia Yvette Chambers | 3 | 0.08% | 1 | 1.11% |
Simon Kågström | 3 | 0.08% | 1 | 1.11% |
Zachary Amsden | 2 | 0.05% | 1 | 1.11% |
Huang Ying | 2 | 0.05% | 1 | 1.11% |
Matthew Wilcox | 2 | 0.05% | 1 | 1.11% |
Anil S Keshavamurthy | 2 | 0.05% | 1 | 1.11% |
Fabian Frederick | 1 | 0.03% | 1 | 1.11% |
Motohiro Kosaki | 1 | 0.03% | 1 | 1.11% |
Matthew Garrett | 1 | 0.03% | 1 | 1.11% |
Feng Hong | 1 | 0.03% | 1 | 1.11% |
Petr Mladek | 1 | 0.03% | 1 | 1.11% |
Paul Gortmaker | 1 | 0.03% | 1 | 1.11% |
Dave Young | 1 | 0.03% | 1 | 1.11% |
Joel Granados | 1 | 0.03% | 1 | 1.11% |
Thomas Gleixner | 1 | 0.03% | 1 | 1.11% |
Total | 3760 | 90 |
// SPDX-License-Identifier: GPL-2.0-only /* * linux/kernel/reboot.c * * Copyright (C) 2013 Linus Torvalds */ #define pr_fmt(fmt) "reboot: " fmt #include <linux/atomic.h> #include <linux/ctype.h> #include <linux/export.h> #include <linux/kexec.h> #include <linux/kmod.h> #include <linux/kmsg_dump.h> #include <linux/reboot.h> #include <linux/suspend.h> #include <linux/syscalls.h> #include <linux/syscore_ops.h> #include <linux/uaccess.h> /* * this indicates whether you can reboot with ctrl-alt-del: the default is yes */ static int C_A_D = 1; struct pid *cad_pid; EXPORT_SYMBOL(cad_pid); #if defined(CONFIG_ARM) #define DEFAULT_REBOOT_MODE = REBOOT_HARD #else #define DEFAULT_REBOOT_MODE #endif enum reboot_mode reboot_mode DEFAULT_REBOOT_MODE; EXPORT_SYMBOL_GPL(reboot_mode); enum reboot_mode panic_reboot_mode = REBOOT_UNDEFINED; /* * This variable is used privately to keep track of whether or not * reboot_type is still set to its default value (i.e., reboot= hasn't * been set on the command line). This is needed so that we can * suppress DMI scanning for reboot quirks. Without it, it's * impossible to override a faulty reboot quirk without recompiling. */ int reboot_default = 1; int reboot_cpu; enum reboot_type reboot_type = BOOT_ACPI; int reboot_force; struct sys_off_handler { struct notifier_block nb; int (*sys_off_cb)(struct sys_off_data *data); void *cb_data; enum sys_off_mode mode; bool blocking; void *list; struct device *dev; }; /* * This variable is used to indicate if a halt was initiated instead of a * reboot when the reboot call was invoked with LINUX_REBOOT_CMD_POWER_OFF, but * the system cannot be powered off. This allowes kernel_halt() to notify users * of that. */ static bool poweroff_fallback_to_halt; /* * Temporary stub that prevents linkage failure while we're in process * of removing all uses of legacy pm_power_off() around the kernel. */ void __weak (*pm_power_off)(void); /** * emergency_restart - reboot the system * * Without shutting down any hardware or taking any locks * reboot the system. This is called when we know we are in * trouble so this is our best effort to reboot. This is * safe to call in interrupt context. */ void emergency_restart(void) { kmsg_dump(KMSG_DUMP_EMERG); system_state = SYSTEM_RESTART; machine_emergency_restart(); } EXPORT_SYMBOL_GPL(emergency_restart); void kernel_restart_prepare(char *cmd) { blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); system_state = SYSTEM_RESTART; usermodehelper_disable(); device_shutdown(); } /** * register_reboot_notifier - Register function to be called at reboot time * @nb: Info about notifier function to be called * * Registers a function with the list of functions * to be called at reboot time. * * Currently always returns zero, as blocking_notifier_chain_register() * always returns zero. */ int register_reboot_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&reboot_notifier_list, nb); } EXPORT_SYMBOL(register_reboot_notifier); /** * unregister_reboot_notifier - Unregister previously registered reboot notifier * @nb: Hook to be unregistered * * Unregisters a previously registered reboot * notifier function. * * Returns zero on success, or %-ENOENT on failure. */ int unregister_reboot_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&reboot_notifier_list, nb); } EXPORT_SYMBOL(unregister_reboot_notifier); static void devm_unregister_reboot_notifier(struct device *dev, void *res) { WARN_ON(unregister_reboot_notifier(*(struct notifier_block **)res)); } int devm_register_reboot_notifier(struct device *dev, struct notifier_block *nb) { struct notifier_block **rcnb; int ret; rcnb = devres_alloc(devm_unregister_reboot_notifier, sizeof(*rcnb), GFP_KERNEL); if (!rcnb) return -ENOMEM; ret = register_reboot_notifier(nb); if (!ret) { *rcnb = nb; devres_add(dev, rcnb); } else { devres_free(rcnb); } return ret; } EXPORT_SYMBOL(devm_register_reboot_notifier); /* * Notifier list for kernel code which wants to be called * to restart the system. */ static ATOMIC_NOTIFIER_HEAD(restart_handler_list); /** * register_restart_handler - Register function to be called to reset * the system * @nb: Info about handler function to be called * @nb->priority: Handler priority. Handlers should follow the * following guidelines for setting priorities. * 0: Restart handler of last resort, * with limited restart capabilities * 128: Default restart handler; use if no other * restart handler is expected to be available, * and/or if restart functionality is * sufficient to restart the entire system * 255: Highest priority restart handler, will * preempt all other restart handlers * * Registers a function with code to be called to restart the * system. * * Registered functions will be called from machine_restart as last * step of the restart sequence (if the architecture specific * machine_restart function calls do_kernel_restart - see below * for details). * Registered functions are expected to restart the system immediately. * If more than one function is registered, the restart handler priority * selects which function will be called first. * * Restart handlers are expected to be registered from non-architecture * code, typically from drivers. A typical use case would be a system * where restart functionality is provided through a watchdog. Multiple * restart handlers may exist; for example, one restart handler might * restart the entire system, while another only restarts the CPU. * In such cases, the restart handler which only restarts part of the * hardware is expected to register with low priority to ensure that * it only runs if no other means to restart the system is available. * * Currently always returns zero, as atomic_notifier_chain_register() * always returns zero. */ int register_restart_handler(struct notifier_block *nb) { return atomic_notifier_chain_register(&restart_handler_list, nb); } EXPORT_SYMBOL(register_restart_handler); /** * unregister_restart_handler - Unregister previously registered * restart handler * @nb: Hook to be unregistered * * Unregisters a previously registered restart handler function. * * Returns zero on success, or %-ENOENT on failure. */ int unregister_restart_handler(struct notifier_block *nb) { return atomic_notifier_chain_unregister(&restart_handler_list, nb); } EXPORT_SYMBOL(unregister_restart_handler); /** * do_kernel_restart - Execute kernel restart handler call chain * * Calls functions registered with register_restart_handler. * * Expected to be called from machine_restart as last step of the restart * sequence. * * Restarts the system immediately if a restart handler function has been * registered. Otherwise does nothing. */ void do_kernel_restart(char *cmd) { atomic_notifier_call_chain(&restart_handler_list, reboot_mode, cmd); } void migrate_to_reboot_cpu(void) { /* The boot cpu is always logical cpu 0 */ int cpu = reboot_cpu; cpu_hotplug_disable(); /* Make certain the cpu I'm about to reboot on is online */ if (!cpu_online(cpu)) cpu = cpumask_first(cpu_online_mask); /* Prevent races with other tasks migrating this task */ current->flags |= PF_NO_SETAFFINITY; /* Make certain I only run on the appropriate processor */ set_cpus_allowed_ptr(current, cpumask_of(cpu)); } /* * Notifier list for kernel code which wants to be called * to prepare system for restart. */ static BLOCKING_NOTIFIER_HEAD(restart_prep_handler_list); static void do_kernel_restart_prepare(void) { blocking_notifier_call_chain(&restart_prep_handler_list, 0, NULL); } /** * kernel_restart - reboot the system * @cmd: pointer to buffer containing command to execute for restart * or %NULL * * Shutdown everything and perform a clean reboot. * This is not safe to call in interrupt context. */ void kernel_restart(char *cmd) { kernel_restart_prepare(cmd); do_kernel_restart_prepare(); migrate_to_reboot_cpu(); syscore_shutdown(); if (!cmd) pr_emerg("Restarting system\n"); else pr_emerg("Restarting system with command '%s'\n", cmd); kmsg_dump(KMSG_DUMP_SHUTDOWN); machine_restart(cmd); } EXPORT_SYMBOL_GPL(kernel_restart); static void kernel_shutdown_prepare(enum system_states state) { blocking_notifier_call_chain(&reboot_notifier_list, (state == SYSTEM_HALT) ? SYS_HALT : SYS_POWER_OFF, NULL); system_state = state; usermodehelper_disable(); device_shutdown(); } /** * kernel_halt - halt the system * * Shutdown everything and perform a clean system halt. */ void kernel_halt(void) { kernel_shutdown_prepare(SYSTEM_HALT); migrate_to_reboot_cpu(); syscore_shutdown(); if (poweroff_fallback_to_halt) pr_emerg("Power off not available: System halted instead\n"); else pr_emerg("System halted\n"); kmsg_dump(KMSG_DUMP_SHUTDOWN); machine_halt(); } EXPORT_SYMBOL_GPL(kernel_halt); /* * Notifier list for kernel code which wants to be called * to prepare system for power off. */ static BLOCKING_NOTIFIER_HEAD(power_off_prep_handler_list); /* * Notifier list for kernel code which wants to be called * to power off system. */ static ATOMIC_NOTIFIER_HEAD(power_off_handler_list); static int sys_off_notify(struct notifier_block *nb, unsigned long mode, void *cmd) { struct sys_off_handler *handler; struct sys_off_data data = {}; handler = container_of(nb, struct sys_off_handler, nb); data.cb_data = handler->cb_data; data.mode = mode; data.cmd = cmd; data.dev = handler->dev; return handler->sys_off_cb(&data); } static struct sys_off_handler platform_sys_off_handler; static struct sys_off_handler *alloc_sys_off_handler(int priority) { struct sys_off_handler *handler; gfp_t flags; /* * Platforms like m68k can't allocate sys_off handler dynamically * at the early boot time because memory allocator isn't available yet. */ if (priority == SYS_OFF_PRIO_PLATFORM) { handler = &platform_sys_off_handler; if (handler->cb_data) return ERR_PTR(-EBUSY); } else { if (system_state > SYSTEM_RUNNING) flags = GFP_ATOMIC; else flags = GFP_KERNEL; handler = kzalloc(sizeof(*handler), flags); if (!handler) return ERR_PTR(-ENOMEM); } return handler; } static void free_sys_off_handler(struct sys_off_handler *handler) { if (handler == &platform_sys_off_handler) memset(handler, 0, sizeof(*handler)); else kfree(handler); } /** * register_sys_off_handler - Register sys-off handler * @mode: Sys-off mode * @priority: Handler priority * @callback: Callback function * @cb_data: Callback argument * * Registers system power-off or restart handler that will be invoked * at the step corresponding to the given sys-off mode. Handler's callback * should return NOTIFY_DONE to permit execution of the next handler in * the call chain or NOTIFY_STOP to break the chain (in error case for * example). * * Multiple handlers can be registered at the default priority level. * * Only one handler can be registered at the non-default priority level, * otherwise ERR_PTR(-EBUSY) is returned. * * Returns a new instance of struct sys_off_handler on success, or * an ERR_PTR()-encoded error code otherwise. */ struct sys_off_handler * register_sys_off_handler(enum sys_off_mode mode, int priority, int (*callback)(struct sys_off_data *data), void *cb_data) { struct sys_off_handler *handler; int err; handler = alloc_sys_off_handler(priority); if (IS_ERR(handler)) return handler; switch (mode) { case SYS_OFF_MODE_POWER_OFF_PREPARE: handler->list = &power_off_prep_handler_list; handler->blocking = true; break; case SYS_OFF_MODE_POWER_OFF: handler->list = &power_off_handler_list; break; case SYS_OFF_MODE_RESTART_PREPARE: handler->list = &restart_prep_handler_list; handler->blocking = true; break; case SYS_OFF_MODE_RESTART: handler->list = &restart_handler_list; break; default: free_sys_off_handler(handler); return ERR_PTR(-EINVAL); } handler->nb.notifier_call = sys_off_notify; handler->nb.priority = priority; handler->sys_off_cb = callback; handler->cb_data = cb_data; handler->mode = mode; if (handler->blocking) { if (priority == SYS_OFF_PRIO_DEFAULT) err = blocking_notifier_chain_register(handler->list, &handler->nb); else err = blocking_notifier_chain_register_unique_prio(handler->list, &handler->nb); } else { if (priority == SYS_OFF_PRIO_DEFAULT) err = atomic_notifier_chain_register(handler->list, &handler->nb); else err = atomic_notifier_chain_register_unique_prio(handler->list, &handler->nb); } if (err) { free_sys_off_handler(handler); return ERR_PTR(err); } return handler; } EXPORT_SYMBOL_GPL(register_sys_off_handler); /** * unregister_sys_off_handler - Unregister sys-off handler * @handler: Sys-off handler * * Unregisters given sys-off handler. */ void unregister_sys_off_handler(struct sys_off_handler *handler) { int err; if (IS_ERR_OR_NULL(handler)) return; if (handler->blocking) err = blocking_notifier_chain_unregister(handler->list, &handler->nb); else err = atomic_notifier_chain_unregister(handler->list, &handler->nb); /* sanity check, shall never happen */ WARN_ON(err); free_sys_off_handler(handler); } EXPORT_SYMBOL_GPL(unregister_sys_off_handler); static void devm_unregister_sys_off_handler(void *data) { struct sys_off_handler *handler = data; unregister_sys_off_handler(handler); } /** * devm_register_sys_off_handler - Register sys-off handler * @dev: Device that registers handler * @mode: Sys-off mode * @priority: Handler priority * @callback: Callback function * @cb_data: Callback argument * * Registers resource-managed sys-off handler. * * Returns zero on success, or error code on failure. */ int devm_register_sys_off_handler(struct device *dev, enum sys_off_mode mode, int priority, int (*callback)(struct sys_off_data *data), void *cb_data) { struct sys_off_handler *handler; handler = register_sys_off_handler(mode, priority, callback, cb_data); if (IS_ERR(handler)) return PTR_ERR(handler); handler->dev = dev; return devm_add_action_or_reset(dev, devm_unregister_sys_off_handler, handler); } EXPORT_SYMBOL_GPL(devm_register_sys_off_handler); /** * devm_register_power_off_handler - Register power-off handler * @dev: Device that registers callback * @callback: Callback function * @cb_data: Callback's argument * * Registers resource-managed sys-off handler with a default priority * and using power-off mode. * * Returns zero on success, or error code on failure. */ int devm_register_power_off_handler(struct device *dev, int (*callback)(struct sys_off_data *data), void *cb_data) { return devm_register_sys_off_handler(dev, SYS_OFF_MODE_POWER_OFF, SYS_OFF_PRIO_DEFAULT, callback, cb_data); } EXPORT_SYMBOL_GPL(devm_register_power_off_handler); /** * devm_register_restart_handler - Register restart handler * @dev: Device that registers callback * @callback: Callback function * @cb_data: Callback's argument * * Registers resource-managed sys-off handler with a default priority * and using restart mode. * * Returns zero on success, or error code on failure. */ int devm_register_restart_handler(struct device *dev, int (*callback)(struct sys_off_data *data), void *cb_data) { return devm_register_sys_off_handler(dev, SYS_OFF_MODE_RESTART, SYS_OFF_PRIO_DEFAULT, callback, cb_data); } EXPORT_SYMBOL_GPL(devm_register_restart_handler); static struct sys_off_handler *platform_power_off_handler; static int platform_power_off_notify(struct sys_off_data *data) { void (*platform_power_power_off_cb)(void) = data->cb_data; platform_power_power_off_cb(); return NOTIFY_DONE; } /** * register_platform_power_off - Register platform-level power-off callback * @power_off: Power-off callback * * Registers power-off callback that will be called as last step * of the power-off sequence. This callback is expected to be invoked * for the last resort. Only one platform power-off callback is allowed * to be registered at a time. * * Returns zero on success, or error code on failure. */ int register_platform_power_off(void (*power_off)(void)) { struct sys_off_handler *handler; handler = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF, SYS_OFF_PRIO_PLATFORM, platform_power_off_notify, power_off); if (IS_ERR(handler)) return PTR_ERR(handler); platform_power_off_handler = handler; return 0; } EXPORT_SYMBOL_GPL(register_platform_power_off); /** * unregister_platform_power_off - Unregister platform-level power-off callback * @power_off: Power-off callback * * Unregisters previously registered platform power-off callback. */ void unregister_platform_power_off(void (*power_off)(void)) { if (platform_power_off_handler && platform_power_off_handler->cb_data == power_off) { unregister_sys_off_handler(platform_power_off_handler); platform_power_off_handler = NULL; } } EXPORT_SYMBOL_GPL(unregister_platform_power_off); static int legacy_pm_power_off(struct sys_off_data *data) { if (pm_power_off) pm_power_off(); return NOTIFY_DONE; } static void do_kernel_power_off_prepare(void) { blocking_notifier_call_chain(&power_off_prep_handler_list, 0, NULL); } /** * do_kernel_power_off - Execute kernel power-off handler call chain * * Expected to be called as last step of the power-off sequence. * * Powers off the system immediately if a power-off handler function has * been registered. Otherwise does nothing. */ void do_kernel_power_off(void) { struct sys_off_handler *sys_off = NULL; /* * Register sys-off handlers for legacy PM callback. This allows * legacy PM callbacks temporary co-exist with the new sys-off API. * * TODO: Remove legacy handlers once all legacy PM users will be * switched to the sys-off based APIs. */ if (pm_power_off) sys_off = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF, SYS_OFF_PRIO_DEFAULT, legacy_pm_power_off, NULL); atomic_notifier_call_chain(&power_off_handler_list, 0, NULL); unregister_sys_off_handler(sys_off); } /** * kernel_can_power_off - check whether system can be powered off * * Returns true if power-off handler is registered and system can be * powered off, false otherwise. */ bool kernel_can_power_off(void) { return !atomic_notifier_call_chain_is_empty(&power_off_handler_list) || pm_power_off; } EXPORT_SYMBOL_GPL(kernel_can_power_off); /** * kernel_power_off - power_off the system * * Shutdown everything and perform a clean system power_off. */ void kernel_power_off(void) { kernel_shutdown_prepare(SYSTEM_POWER_OFF); do_kernel_power_off_prepare(); migrate_to_reboot_cpu(); syscore_shutdown(); pr_emerg("Power down\n"); kmsg_dump(KMSG_DUMP_SHUTDOWN); machine_power_off(); } EXPORT_SYMBOL_GPL(kernel_power_off); DEFINE_MUTEX(system_transition_mutex); /* * Reboot system call: for obvious reasons only root may call it, * and even root needs to set up some magic numbers in the registers * so that some mistake won't make this reboot the whole machine. * You can also set the meaning of the ctrl-alt-del-key here. * * reboot doesn't sync: do that yourself before calling this. */ SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd, void __user *, arg) { struct pid_namespace *pid_ns = task_active_pid_ns(current); char buffer[256]; int ret = 0; /* We only trust the superuser with rebooting the system. */ if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT)) return -EPERM; /* For safety, we require "magic" arguments. */ if (magic1 != LINUX_REBOOT_MAGIC1 || (magic2 != LINUX_REBOOT_MAGIC2 && magic2 != LINUX_REBOOT_MAGIC2A && magic2 != LINUX_REBOOT_MAGIC2B && magic2 != LINUX_REBOOT_MAGIC2C)) return -EINVAL; /* * If pid namespaces are enabled and the current task is in a child * pid_namespace, the command is handled by reboot_pid_ns() which will * call do_exit(). */ ret = reboot_pid_ns(pid_ns, cmd); if (ret) return ret; /* Instead of trying to make the power_off code look like * halt when pm_power_off is not set do it the easy way. */ if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !kernel_can_power_off()) { poweroff_fallback_to_halt = true; cmd = LINUX_REBOOT_CMD_HALT; } mutex_lock(&system_transition_mutex); switch (cmd) { case LINUX_REBOOT_CMD_RESTART: kernel_restart(NULL); break; case LINUX_REBOOT_CMD_CAD_ON: C_A_D = 1; break; case LINUX_REBOOT_CMD_CAD_OFF: C_A_D = 0; break; case LINUX_REBOOT_CMD_HALT: kernel_halt(); do_exit(0); case LINUX_REBOOT_CMD_POWER_OFF: kernel_power_off(); do_exit(0); break; case LINUX_REBOOT_CMD_RESTART2: ret = strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1); if (ret < 0) { ret = -EFAULT; break; } buffer[sizeof(buffer) - 1] = '\0'; kernel_restart(buffer); break; #ifdef CONFIG_KEXEC_CORE case LINUX_REBOOT_CMD_KEXEC: ret = kernel_kexec(); break; #endif #ifdef CONFIG_HIBERNATION case LINUX_REBOOT_CMD_SW_SUSPEND: ret = hibernate(); break; #endif default: ret = -EINVAL; break; } mutex_unlock(&system_transition_mutex); return ret; } static void deferred_cad(struct work_struct *dummy) { kernel_restart(NULL); } /* * This function gets called by ctrl-alt-del - ie the keyboard interrupt. * As it's called within an interrupt, it may NOT sync: the only choice * is whether to reboot at once, or just ignore the ctrl-alt-del. */ void ctrl_alt_del(void) { static DECLARE_WORK(cad_work, deferred_cad); if (C_A_D) schedule_work(&cad_work); else kill_cad_pid(SIGINT, 1); } #define POWEROFF_CMD_PATH_LEN 256 static char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff"; static const char reboot_cmd[] = "/sbin/reboot"; static int run_cmd(const char *cmd) { char **argv; static char *envp[] = { "HOME=/", "PATH=/sbin:/bin:/usr/sbin:/usr/bin", NULL }; int ret; argv = argv_split(GFP_KERNEL, cmd, NULL); if (argv) { ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); argv_free(argv); } else { ret = -ENOMEM; } return ret; } static int __orderly_reboot(void) { int ret; ret = run_cmd(reboot_cmd); if (ret) { pr_warn("Failed to start orderly reboot: forcing the issue\n"); emergency_sync(); kernel_restart(NULL); } return ret; } static int __orderly_poweroff(bool force) { int ret; ret = run_cmd(poweroff_cmd); if (ret && force) { pr_warn("Failed to start orderly shutdown: forcing the issue\n"); /* * I guess this should try to kick off some daemon to sync and * poweroff asap. Or not even bother syncing if we're doing an * emergency shutdown? */ emergency_sync(); kernel_power_off(); } return ret; } static bool poweroff_force; static void poweroff_work_func(struct work_struct *work) { __orderly_poweroff(poweroff_force); } static DECLARE_WORK(poweroff_work, poweroff_work_func); /** * orderly_poweroff - Trigger an orderly system poweroff * @force: force poweroff if command execution fails * * This may be called from any context to trigger a system shutdown. * If the orderly shutdown fails, it will force an immediate shutdown. */ void orderly_poweroff(bool force) { if (force) /* do not override the pending "true" */ poweroff_force = true; schedule_work(&poweroff_work); } EXPORT_SYMBOL_GPL(orderly_poweroff); static void reboot_work_func(struct work_struct *work) { __orderly_reboot(); } static DECLARE_WORK(reboot_work, reboot_work_func); /** * orderly_reboot - Trigger an orderly system reboot * * This may be called from any context to trigger a system reboot. * If the orderly reboot fails, it will force an immediate reboot. */ void orderly_reboot(void) { schedule_work(&reboot_work); } EXPORT_SYMBOL_GPL(orderly_reboot); /** * hw_failure_emergency_poweroff_func - emergency poweroff work after a known delay * @work: work_struct associated with the emergency poweroff function * * This function is called in very critical situations to force * a kernel poweroff after a configurable timeout value. */ static void hw_failure_emergency_poweroff_func(struct work_struct *work) { /* * We have reached here after the emergency shutdown waiting period has * expired. This means orderly_poweroff has not been able to shut off * the system for some reason. * * Try to shut down the system immediately using kernel_power_off * if populated */ pr_emerg("Hardware protection timed-out. Trying forced poweroff\n"); kernel_power_off(); /* * Worst of the worst case trigger emergency restart */ pr_emerg("Hardware protection shutdown failed. Trying emergency restart\n"); emergency_restart(); } static DECLARE_DELAYED_WORK(hw_failure_emergency_poweroff_work, hw_failure_emergency_poweroff_func); /** * hw_failure_emergency_poweroff - Trigger an emergency system poweroff * * This may be called from any critical situation to trigger a system shutdown * after a given period of time. If time is negative this is not scheduled. */ static void hw_failure_emergency_poweroff(int poweroff_delay_ms) { if (poweroff_delay_ms <= 0) return; schedule_delayed_work(&hw_failure_emergency_poweroff_work, msecs_to_jiffies(poweroff_delay_ms)); } /** * __hw_protection_shutdown - Trigger an emergency system shutdown or reboot * * @reason: Reason of emergency shutdown or reboot to be printed. * @ms_until_forced: Time to wait for orderly shutdown or reboot before * triggering it. Negative value disables the forced * shutdown or reboot. * @shutdown: If true, indicates that a shutdown will happen * after the critical tempeature is reached. * If false, indicates that a reboot will happen * after the critical tempeature is reached. * * Initiate an emergency system shutdown or reboot in order to protect * hardware from further damage. Usage examples include a thermal protection. * NOTE: The request is ignored if protection shutdown or reboot is already * pending even if the previous request has given a large timeout for forced * shutdown/reboot. */ void __hw_protection_shutdown(const char *reason, int ms_until_forced, bool shutdown) { static atomic_t allow_proceed = ATOMIC_INIT(1); pr_emerg("HARDWARE PROTECTION shutdown (%s)\n", reason); /* Shutdown should be initiated only once. */ if (!atomic_dec_and_test(&allow_proceed)) return; /* * Queue a backup emergency shutdown in the event of * orderly_poweroff failure */ hw_failure_emergency_poweroff(ms_until_forced); if (shutdown) orderly_poweroff(true); else orderly_reboot(); } EXPORT_SYMBOL_GPL(__hw_protection_shutdown); static int __init reboot_setup(char *str) { for (;;) { enum reboot_mode *mode; /* * Having anything passed on the command line via * reboot= will cause us to disable DMI checking * below. */ reboot_default = 0; if (!strncmp(str, "panic_", 6)) { mode = &panic_reboot_mode; str += 6; } else { mode = &reboot_mode; } switch (*str) { case 'w': *mode = REBOOT_WARM; break; case 'c': *mode = REBOOT_COLD; break; case 'h': *mode = REBOOT_HARD; break; case 's': /* * reboot_cpu is s[mp]#### with #### being the processor * to be used for rebooting. Skip 's' or 'smp' prefix. */ str += str[1] == 'm' && str[2] == 'p' ? 3 : 1; if (isdigit(str[0])) { int cpu = simple_strtoul(str, NULL, 0); if (cpu >= num_possible_cpus()) { pr_err("Ignoring the CPU number in reboot= option. " "CPU %d exceeds possible cpu number %d\n", cpu, num_possible_cpus()); break; } reboot_cpu = cpu; } else *mode = REBOOT_SOFT; break; case 'g': *mode = REBOOT_GPIO; break; case 'b': case 'a': case 'k': case 't': case 'e': case 'p': reboot_type = *str; break; case 'f': reboot_force = 1; break; } str = strchr(str, ','); if (str) str++; else break; } return 1; } __setup("reboot=", reboot_setup); #ifdef CONFIG_SYSFS #define REBOOT_COLD_STR "cold" #define REBOOT_WARM_STR "warm" #define REBOOT_HARD_STR "hard" #define REBOOT_SOFT_STR "soft" #define REBOOT_GPIO_STR "gpio" #define REBOOT_UNDEFINED_STR "undefined" #define BOOT_TRIPLE_STR "triple" #define BOOT_KBD_STR "kbd" #define BOOT_BIOS_STR "bios" #define BOOT_ACPI_STR "acpi" #define BOOT_EFI_STR "efi" #define BOOT_PCI_STR "pci" static ssize_t mode_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { const char *val; switch (reboot_mode) { case REBOOT_COLD: val = REBOOT_COLD_STR; break; case REBOOT_WARM: val = REBOOT_WARM_STR; break; case REBOOT_HARD: val = REBOOT_HARD_STR; break; case REBOOT_SOFT: val = REBOOT_SOFT_STR; break; case REBOOT_GPIO: val = REBOOT_GPIO_STR; break; default: val = REBOOT_UNDEFINED_STR; } return sprintf(buf, "%s\n", val); } static ssize_t mode_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { if (!capable(CAP_SYS_BOOT)) return -EPERM; if (!strncmp(buf, REBOOT_COLD_STR, strlen(REBOOT_COLD_STR))) reboot_mode = REBOOT_COLD; else if (!strncmp(buf, REBOOT_WARM_STR, strlen(REBOOT_WARM_STR))) reboot_mode = REBOOT_WARM; else if (!strncmp(buf, REBOOT_HARD_STR, strlen(REBOOT_HARD_STR))) reboot_mode = REBOOT_HARD; else if (!strncmp(buf, REBOOT_SOFT_STR, strlen(REBOOT_SOFT_STR))) reboot_mode = REBOOT_SOFT; else if (!strncmp(buf, REBOOT_GPIO_STR, strlen(REBOOT_GPIO_STR))) reboot_mode = REBOOT_GPIO; else return -EINVAL; reboot_default = 0; return count; } static struct kobj_attribute reboot_mode_attr = __ATTR_RW(mode); #ifdef CONFIG_X86 static ssize_t force_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%d\n", reboot_force); } static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { bool res; if (!capable(CAP_SYS_BOOT)) return -EPERM; if (kstrtobool(buf, &res)) return -EINVAL; reboot_default = 0; reboot_force = res; return count; } static struct kobj_attribute reboot_force_attr = __ATTR_RW(force); static ssize_t type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { const char *val; switch (reboot_type) { case BOOT_TRIPLE: val = BOOT_TRIPLE_STR; break; case BOOT_KBD: val = BOOT_KBD_STR; break; case BOOT_BIOS: val = BOOT_BIOS_STR; break; case BOOT_ACPI: val = BOOT_ACPI_STR; break; case BOOT_EFI: val = BOOT_EFI_STR; break; case BOOT_CF9_FORCE: val = BOOT_PCI_STR; break; default: val = REBOOT_UNDEFINED_STR; } return sprintf(buf, "%s\n", val); } static ssize_t type_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { if (!capable(CAP_SYS_BOOT)) return -EPERM; if (!strncmp(buf, BOOT_TRIPLE_STR, strlen(BOOT_TRIPLE_STR))) reboot_type = BOOT_TRIPLE; else if (!strncmp(buf, BOOT_KBD_STR, strlen(BOOT_KBD_STR))) reboot_type = BOOT_KBD; else if (!strncmp(buf, BOOT_BIOS_STR, strlen(BOOT_BIOS_STR))) reboot_type = BOOT_BIOS; else if (!strncmp(buf, BOOT_ACPI_STR, strlen(BOOT_ACPI_STR))) reboot_type = BOOT_ACPI; else if (!strncmp(buf, BOOT_EFI_STR, strlen(BOOT_EFI_STR))) reboot_type = BOOT_EFI; else if (!strncmp(buf, BOOT_PCI_STR, strlen(BOOT_PCI_STR))) reboot_type = BOOT_CF9_FORCE; else return -EINVAL; reboot_default = 0; return count; } static struct kobj_attribute reboot_type_attr = __ATTR_RW(type); #endif #ifdef CONFIG_SMP static ssize_t cpu_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%d\n", reboot_cpu); } static ssize_t cpu_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { unsigned int cpunum; int rc; if (!capable(CAP_SYS_BOOT)) return -EPERM; rc = kstrtouint(buf, 0, &cpunum); if (rc) return rc; if (cpunum >= num_possible_cpus()) return -ERANGE; reboot_default = 0; reboot_cpu = cpunum; return count; } static struct kobj_attribute reboot_cpu_attr = __ATTR_RW(cpu); #endif static struct attribute *reboot_attrs[] = { &reboot_mode_attr.attr, #ifdef CONFIG_X86 &reboot_force_attr.attr, &reboot_type_attr.attr, #endif #ifdef CONFIG_SMP &reboot_cpu_attr.attr, #endif NULL, }; #ifdef CONFIG_SYSCTL static struct ctl_table kern_reboot_table[] = { { .procname = "poweroff_cmd", .data = &poweroff_cmd, .maxlen = POWEROFF_CMD_PATH_LEN, .mode = 0644, .proc_handler = proc_dostring, }, { .procname = "ctrl-alt-del", .data = &C_A_D, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, }; static void __init kernel_reboot_sysctls_init(void) { register_sysctl_init("kernel", kern_reboot_table); } #else #define kernel_reboot_sysctls_init() do { } while (0) #endif /* CONFIG_SYSCTL */ static const struct attribute_group reboot_attr_group = { .attrs = reboot_attrs, }; static int __init reboot_ksysfs_init(void) { struct kobject *reboot_kobj; int ret; reboot_kobj = kobject_create_and_add("reboot", kernel_kobj); if (!reboot_kobj) return -ENOMEM; ret = sysfs_create_group(reboot_kobj, &reboot_attr_group); if (ret) { kobject_put(reboot_kobj); return ret; } kernel_reboot_sysctls_init(); return 0; } late_initcall(reboot_ksysfs_init); #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1