Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Frédéric Weisbecker | 2832 | 73.08% | 60 | 41.38% |
Wanpeng Li | 206 | 5.32% | 5 | 3.45% |
Rik Van Riel | 174 | 4.49% | 5 | 3.45% |
Stanislaw Gruszka | 148 | 3.82% | 6 | 4.14% |
Peter Zijlstra | 146 | 3.77% | 12 | 8.28% |
Ingo Molnar | 41 | 1.06% | 11 | 7.59% |
Tejun Heo | 38 | 0.98% | 2 | 1.38% |
Chris Wilson | 27 | 0.70% | 1 | 0.69% |
Josh Don | 25 | 0.65% | 2 | 1.38% |
Pavel Machek | 25 | 0.65% | 1 | 0.69% |
Oleg Nesterov | 24 | 0.62% | 3 | 2.07% |
Venkatesh Pallipadi | 22 | 0.57% | 3 | 2.07% |
Petr Tesarik | 18 | 0.46% | 1 | 0.69% |
Hiroshi Shimamoto | 15 | 0.39% | 1 | 0.69% |
Thomas Gleixner | 14 | 0.36% | 3 | 2.07% |
Zucheng Zheng | 14 | 0.36% | 1 | 0.69% |
Paul Mackerras | 14 | 0.36% | 2 | 1.38% |
Andrey Smetanin | 10 | 0.26% | 1 | 0.69% |
Alexey Dobriyan | 9 | 0.23% | 1 | 0.69% |
Borislav Petkov | 9 | 0.23% | 1 | 0.69% |
Martin Schwidefsky | 8 | 0.21% | 3 | 2.07% |
Frank Mayhar | 7 | 0.18% | 3 | 2.07% |
Srivatsa Vaddagiri | 6 | 0.15% | 2 | 1.38% |
Christoph Hellwig | 6 | 0.15% | 1 | 0.69% |
Linus Torvalds | 4 | 0.10% | 1 | 0.69% |
Alex Shi | 4 | 0.10% | 1 | 0.69% |
Laurent Vivier | 4 | 0.10% | 1 | 0.69% |
Andrey Ryabinin | 4 | 0.10% | 1 | 0.69% |
Andrew Morton | 4 | 0.10% | 1 | 0.69% |
Hidetoshi Seto | 3 | 0.08% | 1 | 0.69% |
Christoph Lameter | 3 | 0.08% | 1 | 0.69% |
Glauber de Oliveira Costa | 3 | 0.08% | 2 | 1.38% |
Li Zefan | 2 | 0.05% | 1 | 0.69% |
Dongsheng Yang | 2 | 0.05% | 1 | 0.69% |
Nicholas Piggin | 2 | 0.05% | 1 | 0.69% |
Nikhil P Rao | 1 | 0.03% | 1 | 0.69% |
Dhaval Giani | 1 | 0.03% | 1 | 0.69% |
Total | 3875 | 145 |
// SPDX-License-Identifier: GPL-2.0-only /* * Simple CPU accounting cgroup controller */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE #include <asm/cputime.h> #endif #ifdef CONFIG_IRQ_TIME_ACCOUNTING /* * There are no locks covering percpu hardirq/softirq time. * They are only modified in vtime_account, on corresponding CPU * with interrupts disabled. So, writes are safe. * They are read and saved off onto struct rq in update_rq_clock(). * This may result in other CPU reading this CPU's IRQ time and can * race with irq/vtime_account on this CPU. We would either get old * or new value with a side effect of accounting a slice of IRQ time to wrong * task when IRQ is in progress while we read rq->clock. That is a worthy * compromise in place of having locks on each IRQ in account_system_time. */ DEFINE_PER_CPU(struct irqtime, cpu_irqtime); static int sched_clock_irqtime; void enable_sched_clock_irqtime(void) { sched_clock_irqtime = 1; } void disable_sched_clock_irqtime(void) { sched_clock_irqtime = 0; } static void irqtime_account_delta(struct irqtime *irqtime, u64 delta, enum cpu_usage_stat idx) { u64 *cpustat = kcpustat_this_cpu->cpustat; u64_stats_update_begin(&irqtime->sync); cpustat[idx] += delta; irqtime->total += delta; irqtime->tick_delta += delta; u64_stats_update_end(&irqtime->sync); } /* * Called after incrementing preempt_count on {soft,}irq_enter * and before decrementing preempt_count on {soft,}irq_exit. */ void irqtime_account_irq(struct task_struct *curr, unsigned int offset) { struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); unsigned int pc; s64 delta; int cpu; if (!sched_clock_irqtime) return; cpu = smp_processor_id(); delta = sched_clock_cpu(cpu) - irqtime->irq_start_time; irqtime->irq_start_time += delta; pc = irq_count() - offset; /* * We do not account for softirq time from ksoftirqd here. * We want to continue accounting softirq time to ksoftirqd thread * in that case, so as not to confuse scheduler with a special task * that do not consume any time, but still wants to run. */ if (pc & HARDIRQ_MASK) irqtime_account_delta(irqtime, delta, CPUTIME_IRQ); else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd()) irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ); } static u64 irqtime_tick_accounted(u64 maxtime) { struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); u64 delta; delta = min(irqtime->tick_delta, maxtime); irqtime->tick_delta -= delta; return delta; } #else /* CONFIG_IRQ_TIME_ACCOUNTING */ #define sched_clock_irqtime (0) static u64 irqtime_tick_accounted(u64 dummy) { return 0; } #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ static inline void task_group_account_field(struct task_struct *p, int index, u64 tmp) { /* * Since all updates are sure to touch the root cgroup, we * get ourselves ahead and touch it first. If the root cgroup * is the only cgroup, then nothing else should be necessary. * */ __this_cpu_add(kernel_cpustat.cpustat[index], tmp); cgroup_account_cputime_field(p, index, tmp); } /* * Account user CPU time to a process. * @p: the process that the CPU time gets accounted to * @cputime: the CPU time spent in user space since the last update */ void account_user_time(struct task_struct *p, u64 cputime) { int index; /* Add user time to process. */ p->utime += cputime; account_group_user_time(p, cputime); index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; /* Add user time to cpustat. */ task_group_account_field(p, index, cputime); /* Account for user time used */ acct_account_cputime(p); } /* * Account guest CPU time to a process. * @p: the process that the CPU time gets accounted to * @cputime: the CPU time spent in virtual machine since the last update */ void account_guest_time(struct task_struct *p, u64 cputime) { u64 *cpustat = kcpustat_this_cpu->cpustat; /* Add guest time to process. */ p->utime += cputime; account_group_user_time(p, cputime); p->gtime += cputime; /* Add guest time to cpustat. */ if (task_nice(p) > 0) { task_group_account_field(p, CPUTIME_NICE, cputime); cpustat[CPUTIME_GUEST_NICE] += cputime; } else { task_group_account_field(p, CPUTIME_USER, cputime); cpustat[CPUTIME_GUEST] += cputime; } } /* * Account system CPU time to a process and desired cpustat field * @p: the process that the CPU time gets accounted to * @cputime: the CPU time spent in kernel space since the last update * @index: pointer to cpustat field that has to be updated */ void account_system_index_time(struct task_struct *p, u64 cputime, enum cpu_usage_stat index) { /* Add system time to process. */ p->stime += cputime; account_group_system_time(p, cputime); /* Add system time to cpustat. */ task_group_account_field(p, index, cputime); /* Account for system time used */ acct_account_cputime(p); } /* * Account system CPU time to a process. * @p: the process that the CPU time gets accounted to * @hardirq_offset: the offset to subtract from hardirq_count() * @cputime: the CPU time spent in kernel space since the last update */ void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime) { int index; if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { account_guest_time(p, cputime); return; } if (hardirq_count() - hardirq_offset) index = CPUTIME_IRQ; else if (in_serving_softirq()) index = CPUTIME_SOFTIRQ; else index = CPUTIME_SYSTEM; account_system_index_time(p, cputime, index); } /* * Account for involuntary wait time. * @cputime: the CPU time spent in involuntary wait */ void account_steal_time(u64 cputime) { u64 *cpustat = kcpustat_this_cpu->cpustat; cpustat[CPUTIME_STEAL] += cputime; } /* * Account for idle time. * @cputime: the CPU time spent in idle wait */ void account_idle_time(u64 cputime) { u64 *cpustat = kcpustat_this_cpu->cpustat; struct rq *rq = this_rq(); if (atomic_read(&rq->nr_iowait) > 0) cpustat[CPUTIME_IOWAIT] += cputime; else cpustat[CPUTIME_IDLE] += cputime; } #ifdef CONFIG_SCHED_CORE /* * Account for forceidle time due to core scheduling. * * REQUIRES: schedstat is enabled. */ void __account_forceidle_time(struct task_struct *p, u64 delta) { __schedstat_add(p->stats.core_forceidle_sum, delta); task_group_account_field(p, CPUTIME_FORCEIDLE, delta); } #endif /* * When a guest is interrupted for a longer amount of time, missed clock * ticks are not redelivered later. Due to that, this function may on * occasion account more time than the calling functions think elapsed. */ static __always_inline u64 steal_account_process_time(u64 maxtime) { #ifdef CONFIG_PARAVIRT if (static_key_false(¶virt_steal_enabled)) { u64 steal; steal = paravirt_steal_clock(smp_processor_id()); steal -= this_rq()->prev_steal_time; steal = min(steal, maxtime); account_steal_time(steal); this_rq()->prev_steal_time += steal; return steal; } #endif return 0; } /* * Account how much elapsed time was spent in steal, IRQ, or softirq time. */ static inline u64 account_other_time(u64 max) { u64 accounted; lockdep_assert_irqs_disabled(); accounted = steal_account_process_time(max); if (accounted < max) accounted += irqtime_tick_accounted(max - accounted); return accounted; } #ifdef CONFIG_64BIT static inline u64 read_sum_exec_runtime(struct task_struct *t) { return t->se.sum_exec_runtime; } #else static u64 read_sum_exec_runtime(struct task_struct *t) { u64 ns; struct rq_flags rf; struct rq *rq; rq = task_rq_lock(t, &rf); ns = t->se.sum_exec_runtime; task_rq_unlock(rq, t, &rf); return ns; } #endif /* * Accumulate raw cputime values of dead tasks (sig->[us]time) and live * tasks (sum on group iteration) belonging to @tsk's group. */ void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) { struct signal_struct *sig = tsk->signal; u64 utime, stime; struct task_struct *t; unsigned int seq, nextseq; unsigned long flags; /* * Update current task runtime to account pending time since last * scheduler action or thread_group_cputime() call. This thread group * might have other running tasks on different CPUs, but updating * their runtime can affect syscall performance, so we skip account * those pending times and rely only on values updated on tick or * other scheduler action. */ if (same_thread_group(current, tsk)) (void) task_sched_runtime(current); rcu_read_lock(); /* Attempt a lockless read on the first round. */ nextseq = 0; do { seq = nextseq; flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); times->utime = sig->utime; times->stime = sig->stime; times->sum_exec_runtime = sig->sum_sched_runtime; for_each_thread(tsk, t) { task_cputime(t, &utime, &stime); times->utime += utime; times->stime += stime; times->sum_exec_runtime += read_sum_exec_runtime(t); } /* If lockless access failed, take the lock. */ nextseq = 1; } while (need_seqretry(&sig->stats_lock, seq)); done_seqretry_irqrestore(&sig->stats_lock, seq, flags); rcu_read_unlock(); } #ifdef CONFIG_IRQ_TIME_ACCOUNTING /* * Account a tick to a process and cpustat * @p: the process that the CPU time gets accounted to * @user_tick: is the tick from userspace * @rq: the pointer to rq * * Tick demultiplexing follows the order * - pending hardirq update * - pending softirq update * - user_time * - idle_time * - system time * - check for guest_time * - else account as system_time * * Check for hardirq is done both for system and user time as there is * no timer going off while we are on hardirq and hence we may never get an * opportunity to update it solely in system time. * p->stime and friends are only updated on system time and not on IRQ * softirq as those do not count in task exec_runtime any more. */ static void irqtime_account_process_tick(struct task_struct *p, int user_tick, int ticks) { u64 other, cputime = TICK_NSEC * ticks; /* * When returning from idle, many ticks can get accounted at * once, including some ticks of steal, IRQ, and softirq time. * Subtract those ticks from the amount of time accounted to * idle, or potentially user or system time. Due to rounding, * other time can exceed ticks occasionally. */ other = account_other_time(ULONG_MAX); if (other >= cputime) return; cputime -= other; if (this_cpu_ksoftirqd() == p) { /* * ksoftirqd time do not get accounted in cpu_softirq_time. * So, we have to handle it separately here. * Also, p->stime needs to be updated for ksoftirqd. */ account_system_index_time(p, cputime, CPUTIME_SOFTIRQ); } else if (user_tick) { account_user_time(p, cputime); } else if (p == this_rq()->idle) { account_idle_time(cputime); } else if (p->flags & PF_VCPU) { /* System time or guest time */ account_guest_time(p, cputime); } else { account_system_index_time(p, cputime, CPUTIME_SYSTEM); } } static void irqtime_account_idle_ticks(int ticks) { irqtime_account_process_tick(current, 0, ticks); } #else /* CONFIG_IRQ_TIME_ACCOUNTING */ static inline void irqtime_account_idle_ticks(int ticks) { } static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, int nr_ticks) { } #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ /* * Use precise platform statistics if available: */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE void vtime_account_irq(struct task_struct *tsk, unsigned int offset) { unsigned int pc = irq_count() - offset; if (pc & HARDIRQ_OFFSET) { vtime_account_hardirq(tsk); } else if (pc & SOFTIRQ_OFFSET) { vtime_account_softirq(tsk); } else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) && is_idle_task(tsk)) { vtime_account_idle(tsk); } else { vtime_account_kernel(tsk); } } void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, u64 *ut, u64 *st) { *ut = curr->utime; *st = curr->stime; } void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) { *ut = p->utime; *st = p->stime; } EXPORT_SYMBOL_GPL(task_cputime_adjusted); void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) { struct task_cputime cputime; thread_group_cputime(p, &cputime); *ut = cputime.utime; *st = cputime.stime; } #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */ /* * Account a single tick of CPU time. * @p: the process that the CPU time gets accounted to * @user_tick: indicates if the tick is a user or a system tick */ void account_process_tick(struct task_struct *p, int user_tick) { u64 cputime, steal; if (vtime_accounting_enabled_this_cpu()) return; if (sched_clock_irqtime) { irqtime_account_process_tick(p, user_tick, 1); return; } cputime = TICK_NSEC; steal = steal_account_process_time(ULONG_MAX); if (steal >= cputime) return; cputime -= steal; if (user_tick) account_user_time(p, cputime); else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET)) account_system_time(p, HARDIRQ_OFFSET, cputime); else account_idle_time(cputime); } /* * Account multiple ticks of idle time. * @ticks: number of stolen ticks */ void account_idle_ticks(unsigned long ticks) { u64 cputime, steal; if (sched_clock_irqtime) { irqtime_account_idle_ticks(ticks); return; } cputime = ticks * TICK_NSEC; steal = steal_account_process_time(ULONG_MAX); if (steal >= cputime) return; cputime -= steal; account_idle_time(cputime); } /* * Adjust tick based cputime random precision against scheduler runtime * accounting. * * Tick based cputime accounting depend on random scheduling timeslices of a * task to be interrupted or not by the timer. Depending on these * circumstances, the number of these interrupts may be over or * under-optimistic, matching the real user and system cputime with a variable * precision. * * Fix this by scaling these tick based values against the total runtime * accounted by the CFS scheduler. * * This code provides the following guarantees: * * stime + utime == rtime * stime_i+1 >= stime_i, utime_i+1 >= utime_i * * Assuming that rtime_i+1 >= rtime_i. */ void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, u64 *ut, u64 *st) { u64 rtime, stime, utime; unsigned long flags; /* Serialize concurrent callers such that we can honour our guarantees */ raw_spin_lock_irqsave(&prev->lock, flags); rtime = curr->sum_exec_runtime; /* * This is possible under two circumstances: * - rtime isn't monotonic after all (a bug); * - we got reordered by the lock. * * In both cases this acts as a filter such that the rest of the code * can assume it is monotonic regardless of anything else. */ if (prev->stime + prev->utime >= rtime) goto out; stime = curr->stime; utime = curr->utime; /* * If either stime or utime are 0, assume all runtime is userspace. * Once a task gets some ticks, the monotonicity code at 'update:' * will ensure things converge to the observed ratio. */ if (stime == 0) { utime = rtime; goto update; } if (utime == 0) { stime = rtime; goto update; } stime = mul_u64_u64_div_u64(stime, rtime, stime + utime); /* * Because mul_u64_u64_div_u64() can approximate on some * achitectures; enforce the constraint that: a*b/(b+c) <= a. */ if (unlikely(stime > rtime)) stime = rtime; update: /* * Make sure stime doesn't go backwards; this preserves monotonicity * for utime because rtime is monotonic. * * utime_i+1 = rtime_i+1 - stime_i * = rtime_i+1 - (rtime_i - utime_i) * = (rtime_i+1 - rtime_i) + utime_i * >= utime_i */ if (stime < prev->stime) stime = prev->stime; utime = rtime - stime; /* * Make sure utime doesn't go backwards; this still preserves * monotonicity for stime, analogous argument to above. */ if (utime < prev->utime) { utime = prev->utime; stime = rtime - utime; } prev->stime = stime; prev->utime = utime; out: *ut = prev->utime; *st = prev->stime; raw_spin_unlock_irqrestore(&prev->lock, flags); } void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) { struct task_cputime cputime = { .sum_exec_runtime = p->se.sum_exec_runtime, }; if (task_cputime(p, &cputime.utime, &cputime.stime)) cputime.sum_exec_runtime = task_sched_runtime(p); cputime_adjust(&cputime, &p->prev_cputime, ut, st); } EXPORT_SYMBOL_GPL(task_cputime_adjusted); void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) { struct task_cputime cputime; thread_group_cputime(p, &cputime); cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); } #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN static u64 vtime_delta(struct vtime *vtime) { unsigned long long clock; clock = sched_clock(); if (clock < vtime->starttime) return 0; return clock - vtime->starttime; } static u64 get_vtime_delta(struct vtime *vtime) { u64 delta = vtime_delta(vtime); u64 other; /* * Unlike tick based timing, vtime based timing never has lost * ticks, and no need for steal time accounting to make up for * lost ticks. Vtime accounts a rounded version of actual * elapsed time. Limit account_other_time to prevent rounding * errors from causing elapsed vtime to go negative. */ other = account_other_time(delta); WARN_ON_ONCE(vtime->state == VTIME_INACTIVE); vtime->starttime += delta; return delta - other; } static void vtime_account_system(struct task_struct *tsk, struct vtime *vtime) { vtime->stime += get_vtime_delta(vtime); if (vtime->stime >= TICK_NSEC) { account_system_time(tsk, irq_count(), vtime->stime); vtime->stime = 0; } } static void vtime_account_guest(struct task_struct *tsk, struct vtime *vtime) { vtime->gtime += get_vtime_delta(vtime); if (vtime->gtime >= TICK_NSEC) { account_guest_time(tsk, vtime->gtime); vtime->gtime = 0; } } static void __vtime_account_kernel(struct task_struct *tsk, struct vtime *vtime) { /* We might have scheduled out from guest path */ if (vtime->state == VTIME_GUEST) vtime_account_guest(tsk, vtime); else vtime_account_system(tsk, vtime); } void vtime_account_kernel(struct task_struct *tsk) { struct vtime *vtime = &tsk->vtime; if (!vtime_delta(vtime)) return; write_seqcount_begin(&vtime->seqcount); __vtime_account_kernel(tsk, vtime); write_seqcount_end(&vtime->seqcount); } void vtime_user_enter(struct task_struct *tsk) { struct vtime *vtime = &tsk->vtime; write_seqcount_begin(&vtime->seqcount); vtime_account_system(tsk, vtime); vtime->state = VTIME_USER; write_seqcount_end(&vtime->seqcount); } void vtime_user_exit(struct task_struct *tsk) { struct vtime *vtime = &tsk->vtime; write_seqcount_begin(&vtime->seqcount); vtime->utime += get_vtime_delta(vtime); if (vtime->utime >= TICK_NSEC) { account_user_time(tsk, vtime->utime); vtime->utime = 0; } vtime->state = VTIME_SYS; write_seqcount_end(&vtime->seqcount); } void vtime_guest_enter(struct task_struct *tsk) { struct vtime *vtime = &tsk->vtime; /* * The flags must be updated under the lock with * the vtime_starttime flush and update. * That enforces a right ordering and update sequence * synchronization against the reader (task_gtime()) * that can thus safely catch up with a tickless delta. */ write_seqcount_begin(&vtime->seqcount); vtime_account_system(tsk, vtime); tsk->flags |= PF_VCPU; vtime->state = VTIME_GUEST; write_seqcount_end(&vtime->seqcount); } EXPORT_SYMBOL_GPL(vtime_guest_enter); void vtime_guest_exit(struct task_struct *tsk) { struct vtime *vtime = &tsk->vtime; write_seqcount_begin(&vtime->seqcount); vtime_account_guest(tsk, vtime); tsk->flags &= ~PF_VCPU; vtime->state = VTIME_SYS; write_seqcount_end(&vtime->seqcount); } EXPORT_SYMBOL_GPL(vtime_guest_exit); void vtime_account_idle(struct task_struct *tsk) { account_idle_time(get_vtime_delta(&tsk->vtime)); } void vtime_task_switch_generic(struct task_struct *prev) { struct vtime *vtime = &prev->vtime; write_seqcount_begin(&vtime->seqcount); if (vtime->state == VTIME_IDLE) vtime_account_idle(prev); else __vtime_account_kernel(prev, vtime); vtime->state = VTIME_INACTIVE; vtime->cpu = -1; write_seqcount_end(&vtime->seqcount); vtime = ¤t->vtime; write_seqcount_begin(&vtime->seqcount); if (is_idle_task(current)) vtime->state = VTIME_IDLE; else if (current->flags & PF_VCPU) vtime->state = VTIME_GUEST; else vtime->state = VTIME_SYS; vtime->starttime = sched_clock(); vtime->cpu = smp_processor_id(); write_seqcount_end(&vtime->seqcount); } void vtime_init_idle(struct task_struct *t, int cpu) { struct vtime *vtime = &t->vtime; unsigned long flags; local_irq_save(flags); write_seqcount_begin(&vtime->seqcount); vtime->state = VTIME_IDLE; vtime->starttime = sched_clock(); vtime->cpu = cpu; write_seqcount_end(&vtime->seqcount); local_irq_restore(flags); } u64 task_gtime(struct task_struct *t) { struct vtime *vtime = &t->vtime; unsigned int seq; u64 gtime; if (!vtime_accounting_enabled()) return t->gtime; do { seq = read_seqcount_begin(&vtime->seqcount); gtime = t->gtime; if (vtime->state == VTIME_GUEST) gtime += vtime->gtime + vtime_delta(vtime); } while (read_seqcount_retry(&vtime->seqcount, seq)); return gtime; } /* * Fetch cputime raw values from fields of task_struct and * add up the pending nohz execution time since the last * cputime snapshot. */ bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime) { struct vtime *vtime = &t->vtime; unsigned int seq; u64 delta; int ret; if (!vtime_accounting_enabled()) { *utime = t->utime; *stime = t->stime; return false; } do { ret = false; seq = read_seqcount_begin(&vtime->seqcount); *utime = t->utime; *stime = t->stime; /* Task is sleeping or idle, nothing to add */ if (vtime->state < VTIME_SYS) continue; ret = true; delta = vtime_delta(vtime); /* * Task runs either in user (including guest) or kernel space, * add pending nohz time to the right place. */ if (vtime->state == VTIME_SYS) *stime += vtime->stime + delta; else *utime += vtime->utime + delta; } while (read_seqcount_retry(&vtime->seqcount, seq)); return ret; } static int vtime_state_fetch(struct vtime *vtime, int cpu) { int state = READ_ONCE(vtime->state); /* * We raced against a context switch, fetch the * kcpustat task again. */ if (vtime->cpu != cpu && vtime->cpu != -1) return -EAGAIN; /* * Two possible things here: * 1) We are seeing the scheduling out task (prev) or any past one. * 2) We are seeing the scheduling in task (next) but it hasn't * passed though vtime_task_switch() yet so the pending * cputime of the prev task may not be flushed yet. * * Case 1) is ok but 2) is not. So wait for a safe VTIME state. */ if (state == VTIME_INACTIVE) return -EAGAIN; return state; } static u64 kcpustat_user_vtime(struct vtime *vtime) { if (vtime->state == VTIME_USER) return vtime->utime + vtime_delta(vtime); else if (vtime->state == VTIME_GUEST) return vtime->gtime + vtime_delta(vtime); return 0; } static int kcpustat_field_vtime(u64 *cpustat, struct task_struct *tsk, enum cpu_usage_stat usage, int cpu, u64 *val) { struct vtime *vtime = &tsk->vtime; unsigned int seq; do { int state; seq = read_seqcount_begin(&vtime->seqcount); state = vtime_state_fetch(vtime, cpu); if (state < 0) return state; *val = cpustat[usage]; /* * Nice VS unnice cputime accounting may be inaccurate if * the nice value has changed since the last vtime update. * But proper fix would involve interrupting target on nice * updates which is a no go on nohz_full (although the scheduler * may still interrupt the target if rescheduling is needed...) */ switch (usage) { case CPUTIME_SYSTEM: if (state == VTIME_SYS) *val += vtime->stime + vtime_delta(vtime); break; case CPUTIME_USER: if (task_nice(tsk) <= 0) *val += kcpustat_user_vtime(vtime); break; case CPUTIME_NICE: if (task_nice(tsk) > 0) *val += kcpustat_user_vtime(vtime); break; case CPUTIME_GUEST: if (state == VTIME_GUEST && task_nice(tsk) <= 0) *val += vtime->gtime + vtime_delta(vtime); break; case CPUTIME_GUEST_NICE: if (state == VTIME_GUEST && task_nice(tsk) > 0) *val += vtime->gtime + vtime_delta(vtime); break; default: break; } } while (read_seqcount_retry(&vtime->seqcount, seq)); return 0; } u64 kcpustat_field(struct kernel_cpustat *kcpustat, enum cpu_usage_stat usage, int cpu) { u64 *cpustat = kcpustat->cpustat; u64 val = cpustat[usage]; struct rq *rq; int err; if (!vtime_accounting_enabled_cpu(cpu)) return val; rq = cpu_rq(cpu); for (;;) { struct task_struct *curr; rcu_read_lock(); curr = rcu_dereference(rq->curr); if (WARN_ON_ONCE(!curr)) { rcu_read_unlock(); return cpustat[usage]; } err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val); rcu_read_unlock(); if (!err) return val; cpu_relax(); } } EXPORT_SYMBOL_GPL(kcpustat_field); static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst, const struct kernel_cpustat *src, struct task_struct *tsk, int cpu) { struct vtime *vtime = &tsk->vtime; unsigned int seq; do { u64 *cpustat; u64 delta; int state; seq = read_seqcount_begin(&vtime->seqcount); state = vtime_state_fetch(vtime, cpu); if (state < 0) return state; *dst = *src; cpustat = dst->cpustat; /* Task is sleeping, dead or idle, nothing to add */ if (state < VTIME_SYS) continue; delta = vtime_delta(vtime); /* * Task runs either in user (including guest) or kernel space, * add pending nohz time to the right place. */ if (state == VTIME_SYS) { cpustat[CPUTIME_SYSTEM] += vtime->stime + delta; } else if (state == VTIME_USER) { if (task_nice(tsk) > 0) cpustat[CPUTIME_NICE] += vtime->utime + delta; else cpustat[CPUTIME_USER] += vtime->utime + delta; } else { WARN_ON_ONCE(state != VTIME_GUEST); if (task_nice(tsk) > 0) { cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta; cpustat[CPUTIME_NICE] += vtime->gtime + delta; } else { cpustat[CPUTIME_GUEST] += vtime->gtime + delta; cpustat[CPUTIME_USER] += vtime->gtime + delta; } } } while (read_seqcount_retry(&vtime->seqcount, seq)); return 0; } void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu) { const struct kernel_cpustat *src = &kcpustat_cpu(cpu); struct rq *rq; int err; if (!vtime_accounting_enabled_cpu(cpu)) { *dst = *src; return; } rq = cpu_rq(cpu); for (;;) { struct task_struct *curr; rcu_read_lock(); curr = rcu_dereference(rq->curr); if (WARN_ON_ONCE(!curr)) { rcu_read_unlock(); *dst = *src; return; } err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu); rcu_read_unlock(); if (!err) return; cpu_relax(); } } EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch); #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1