Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Johannes Weiner | 2397 | 37.66% | 11 | 11.70% |
Suren Baghdasaryan | 2104 | 33.06% | 14 | 14.89% |
Chengming Zhou | 659 | 10.35% | 11 | 11.70% |
Domenico Cerasuolo | 649 | 10.20% | 4 | 4.26% |
Tvrtko A. Ursulin | 83 | 1.30% | 1 | 1.06% |
John Stultz | 68 | 1.07% | 1 | 1.06% |
Chenwandun | 46 | 0.72% | 1 | 1.06% |
Yang Yang | 41 | 0.64% | 3 | 3.19% |
Tejun Heo | 37 | 0.58% | 6 | 6.38% |
Alexey Dobriyan | 33 | 0.52% | 1 | 1.06% |
Ingo Molnar | 28 | 0.44% | 5 | 5.32% |
Shakeel Butt | 24 | 0.38% | 1 | 1.06% |
zhaoyang | 23 | 0.36% | 2 | 2.13% |
Brian Chen | 20 | 0.31% | 1 | 1.06% |
Peter Zijlstra | 14 | 0.22% | 7 | 7.45% |
Liu hailong | 13 | 0.20% | 1 | 1.06% |
Charan Teja Reddy | 13 | 0.20% | 1 | 1.06% |
Andrew Morton | 12 | 0.19% | 1 | 1.06% |
Olof Johansson | 12 | 0.19% | 1 | 1.06% |
Jiang Liu | 12 | 0.19% | 1 | 1.06% |
Christoph Hellwig | 10 | 0.16% | 1 | 1.06% |
Yafang Shao | 9 | 0.14% | 1 | 1.06% |
Motohiro Kosaki | 8 | 0.13% | 1 | 1.06% |
Wang Long | 6 | 0.09% | 1 | 1.06% |
Daniel Mack | 5 | 0.08% | 1 | 1.06% |
Paul Menage | 5 | 0.08% | 1 | 1.06% |
Fan Yu | 5 | 0.08% | 1 | 1.06% |
Rick Lindsley | 4 | 0.06% | 1 | 1.06% |
Lin Shengwang | 4 | 0.06% | 1 | 1.06% |
Andrew Lutomirski | 4 | 0.06% | 1 | 1.06% |
Joshua Hunt | 4 | 0.06% | 1 | 1.06% |
haifeng.xu | 3 | 0.05% | 1 | 1.06% |
Nikhil P Rao | 2 | 0.03% | 1 | 1.06% |
Srivatsa Vaddagiri | 2 | 0.03% | 1 | 1.06% |
Paul Turner | 1 | 0.02% | 1 | 1.06% |
Hao Jia | 1 | 0.02% | 1 | 1.06% |
Aubrey Li | 1 | 0.02% | 1 | 1.06% |
Miaohe Lin | 1 | 0.02% | 1 | 1.06% |
Munehisa Kamata | 1 | 0.02% | 1 | 1.06% |
Liu Xinpeng | 1 | 0.02% | 1 | 1.06% |
Total | 6365 | 94 |
// SPDX-License-Identifier: GPL-2.0 /* * Pressure stall information for CPU, memory and IO * * Copyright (c) 2018 Facebook, Inc. * Author: Johannes Weiner <hannes@cmpxchg.org> * * Polling support by Suren Baghdasaryan <surenb@google.com> * Copyright (c) 2018 Google, Inc. * * When CPU, memory and IO are contended, tasks experience delays that * reduce throughput and introduce latencies into the workload. Memory * and IO contention, in addition, can cause a full loss of forward * progress in which the CPU goes idle. * * This code aggregates individual task delays into resource pressure * metrics that indicate problems with both workload health and * resource utilization. * * Model * * The time in which a task can execute on a CPU is our baseline for * productivity. Pressure expresses the amount of time in which this * potential cannot be realized due to resource contention. * * This concept of productivity has two components: the workload and * the CPU. To measure the impact of pressure on both, we define two * contention states for a resource: SOME and FULL. * * In the SOME state of a given resource, one or more tasks are * delayed on that resource. This affects the workload's ability to * perform work, but the CPU may still be executing other tasks. * * In the FULL state of a given resource, all non-idle tasks are * delayed on that resource such that nobody is advancing and the CPU * goes idle. This leaves both workload and CPU unproductive. * * SOME = nr_delayed_tasks != 0 * FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0 * * What it means for a task to be productive is defined differently * for each resource. For IO, productive means a running task. For * memory, productive means a running task that isn't a reclaimer. For * CPU, productive means an on-CPU task. * * Naturally, the FULL state doesn't exist for the CPU resource at the * system level, but exist at the cgroup level. At the cgroup level, * FULL means all non-idle tasks in the cgroup are delayed on the CPU * resource which is being used by others outside of the cgroup or * throttled by the cgroup cpu.max configuration. * * The percentage of wall clock time spent in those compound stall * states gives pressure numbers between 0 and 100 for each resource, * where the SOME percentage indicates workload slowdowns and the FULL * percentage indicates reduced CPU utilization: * * %SOME = time(SOME) / period * %FULL = time(FULL) / period * * Multiple CPUs * * The more tasks and available CPUs there are, the more work can be * performed concurrently. This means that the potential that can go * unrealized due to resource contention *also* scales with non-idle * tasks and CPUs. * * Consider a scenario where 257 number crunching tasks are trying to * run concurrently on 256 CPUs. If we simply aggregated the task * states, we would have to conclude a CPU SOME pressure number of * 100%, since *somebody* is waiting on a runqueue at all * times. However, that is clearly not the amount of contention the * workload is experiencing: only one out of 256 possible execution * threads will be contended at any given time, or about 0.4%. * * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any * given time *one* of the tasks is delayed due to a lack of memory. * Again, looking purely at the task state would yield a memory FULL * pressure number of 0%, since *somebody* is always making forward * progress. But again this wouldn't capture the amount of execution * potential lost, which is 1 out of 4 CPUs, or 25%. * * To calculate wasted potential (pressure) with multiple processors, * we have to base our calculation on the number of non-idle tasks in * conjunction with the number of available CPUs, which is the number * of potential execution threads. SOME becomes then the proportion of * delayed tasks to possible threads, and FULL is the share of possible * threads that are unproductive due to delays: * * threads = min(nr_nonidle_tasks, nr_cpus) * SOME = min(nr_delayed_tasks / threads, 1) * FULL = (threads - min(nr_productive_tasks, threads)) / threads * * For the 257 number crunchers on 256 CPUs, this yields: * * threads = min(257, 256) * SOME = min(1 / 256, 1) = 0.4% * FULL = (256 - min(256, 256)) / 256 = 0% * * For the 1 out of 4 memory-delayed tasks, this yields: * * threads = min(4, 4) * SOME = min(1 / 4, 1) = 25% * FULL = (4 - min(3, 4)) / 4 = 25% * * [ Substitute nr_cpus with 1, and you can see that it's a natural * extension of the single-CPU model. ] * * Implementation * * To assess the precise time spent in each such state, we would have * to freeze the system on task changes and start/stop the state * clocks accordingly. Obviously that doesn't scale in practice. * * Because the scheduler aims to distribute the compute load evenly * among the available CPUs, we can track task state locally to each * CPU and, at much lower frequency, extrapolate the global state for * the cumulative stall times and the running averages. * * For each runqueue, we track: * * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0) * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu]) * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0) * * and then periodically aggregate: * * tNONIDLE = sum(tNONIDLE[i]) * * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE * * %SOME = tSOME / period * %FULL = tFULL / period * * This gives us an approximation of pressure that is practical * cost-wise, yet way more sensitive and accurate than periodic * sampling of the aggregate task states would be. */ static int psi_bug __read_mostly; DEFINE_STATIC_KEY_FALSE(psi_disabled); static DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled); #ifdef CONFIG_PSI_DEFAULT_DISABLED static bool psi_enable; #else static bool psi_enable = true; #endif static int __init setup_psi(char *str) { return kstrtobool(str, &psi_enable) == 0; } __setup("psi=", setup_psi); /* Running averages - we need to be higher-res than loadavg */ #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */ #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */ #define EXP_60s 1981 /* 1/exp(2s/60s) */ #define EXP_300s 2034 /* 1/exp(2s/300s) */ /* PSI trigger definitions */ #define WINDOW_MAX_US 10000000 /* Max window size is 10s */ #define UPDATES_PER_WINDOW 10 /* 10 updates per window */ /* Sampling frequency in nanoseconds */ static u64 psi_period __read_mostly; /* System-level pressure and stall tracking */ static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu); struct psi_group psi_system = { .pcpu = &system_group_pcpu, }; static void psi_avgs_work(struct work_struct *work); static void poll_timer_fn(struct timer_list *t); static void group_init(struct psi_group *group) { int cpu; group->enabled = true; for_each_possible_cpu(cpu) seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq); group->avg_last_update = sched_clock(); group->avg_next_update = group->avg_last_update + psi_period; mutex_init(&group->avgs_lock); /* Init avg trigger-related members */ INIT_LIST_HEAD(&group->avg_triggers); memset(group->avg_nr_triggers, 0, sizeof(group->avg_nr_triggers)); INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work); /* Init rtpoll trigger-related members */ atomic_set(&group->rtpoll_scheduled, 0); mutex_init(&group->rtpoll_trigger_lock); INIT_LIST_HEAD(&group->rtpoll_triggers); group->rtpoll_min_period = U32_MAX; group->rtpoll_next_update = ULLONG_MAX; init_waitqueue_head(&group->rtpoll_wait); timer_setup(&group->rtpoll_timer, poll_timer_fn, 0); rcu_assign_pointer(group->rtpoll_task, NULL); } void __init psi_init(void) { if (!psi_enable) { static_branch_enable(&psi_disabled); static_branch_disable(&psi_cgroups_enabled); return; } if (!cgroup_psi_enabled()) static_branch_disable(&psi_cgroups_enabled); psi_period = jiffies_to_nsecs(PSI_FREQ); group_init(&psi_system); } static u32 test_states(unsigned int *tasks, u32 state_mask) { const bool oncpu = state_mask & PSI_ONCPU; if (tasks[NR_IOWAIT]) { state_mask |= BIT(PSI_IO_SOME); if (!tasks[NR_RUNNING]) state_mask |= BIT(PSI_IO_FULL); } if (tasks[NR_MEMSTALL]) { state_mask |= BIT(PSI_MEM_SOME); if (tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]) state_mask |= BIT(PSI_MEM_FULL); } if (tasks[NR_RUNNING] > oncpu) state_mask |= BIT(PSI_CPU_SOME); if (tasks[NR_RUNNING] && !oncpu) state_mask |= BIT(PSI_CPU_FULL); if (tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || tasks[NR_RUNNING]) state_mask |= BIT(PSI_NONIDLE); return state_mask; } static void get_recent_times(struct psi_group *group, int cpu, enum psi_aggregators aggregator, u32 *times, u32 *pchanged_states) { struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu); int current_cpu = raw_smp_processor_id(); unsigned int tasks[NR_PSI_TASK_COUNTS]; u64 now, state_start; enum psi_states s; unsigned int seq; u32 state_mask; *pchanged_states = 0; /* Snapshot a coherent view of the CPU state */ do { seq = read_seqcount_begin(&groupc->seq); now = cpu_clock(cpu); memcpy(times, groupc->times, sizeof(groupc->times)); state_mask = groupc->state_mask; state_start = groupc->state_start; if (cpu == current_cpu) memcpy(tasks, groupc->tasks, sizeof(groupc->tasks)); } while (read_seqcount_retry(&groupc->seq, seq)); /* Calculate state time deltas against the previous snapshot */ for (s = 0; s < NR_PSI_STATES; s++) { u32 delta; /* * In addition to already concluded states, we also * incorporate currently active states on the CPU, * since states may last for many sampling periods. * * This way we keep our delta sampling buckets small * (u32) and our reported pressure close to what's * actually happening. */ if (state_mask & (1 << s)) times[s] += now - state_start; delta = times[s] - groupc->times_prev[aggregator][s]; groupc->times_prev[aggregator][s] = times[s]; times[s] = delta; if (delta) *pchanged_states |= (1 << s); } /* * When collect_percpu_times() from the avgs_work, we don't want to * re-arm avgs_work when all CPUs are IDLE. But the current CPU running * this avgs_work is never IDLE, cause avgs_work can't be shut off. * So for the current CPU, we need to re-arm avgs_work only when * (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs * we can just check PSI_NONIDLE delta. */ if (current_work() == &group->avgs_work.work) { bool reschedule; if (cpu == current_cpu) reschedule = tasks[NR_RUNNING] + tasks[NR_IOWAIT] + tasks[NR_MEMSTALL] > 1; else reschedule = *pchanged_states & (1 << PSI_NONIDLE); if (reschedule) *pchanged_states |= PSI_STATE_RESCHEDULE; } } static void calc_avgs(unsigned long avg[3], int missed_periods, u64 time, u64 period) { unsigned long pct; /* Fill in zeroes for periods of no activity */ if (missed_periods) { avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods); avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods); avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods); } /* Sample the most recent active period */ pct = div_u64(time * 100, period); pct *= FIXED_1; avg[0] = calc_load(avg[0], EXP_10s, pct); avg[1] = calc_load(avg[1], EXP_60s, pct); avg[2] = calc_load(avg[2], EXP_300s, pct); } static void collect_percpu_times(struct psi_group *group, enum psi_aggregators aggregator, u32 *pchanged_states) { u64 deltas[NR_PSI_STATES - 1] = { 0, }; unsigned long nonidle_total = 0; u32 changed_states = 0; int cpu; int s; /* * Collect the per-cpu time buckets and average them into a * single time sample that is normalized to wall clock time. * * For averaging, each CPU is weighted by its non-idle time in * the sampling period. This eliminates artifacts from uneven * loading, or even entirely idle CPUs. */ for_each_possible_cpu(cpu) { u32 times[NR_PSI_STATES]; u32 nonidle; u32 cpu_changed_states; get_recent_times(group, cpu, aggregator, times, &cpu_changed_states); changed_states |= cpu_changed_states; nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]); nonidle_total += nonidle; for (s = 0; s < PSI_NONIDLE; s++) deltas[s] += (u64)times[s] * nonidle; } /* * Integrate the sample into the running statistics that are * reported to userspace: the cumulative stall times and the * decaying averages. * * Pressure percentages are sampled at PSI_FREQ. We might be * called more often when the user polls more frequently than * that; we might be called less often when there is no task * activity, thus no data, and clock ticks are sporadic. The * below handles both. */ /* total= */ for (s = 0; s < NR_PSI_STATES - 1; s++) group->total[aggregator][s] += div_u64(deltas[s], max(nonidle_total, 1UL)); if (pchanged_states) *pchanged_states = changed_states; } /* Trigger tracking window manipulations */ static void window_reset(struct psi_window *win, u64 now, u64 value, u64 prev_growth) { win->start_time = now; win->start_value = value; win->prev_growth = prev_growth; } /* * PSI growth tracking window update and growth calculation routine. * * This approximates a sliding tracking window by interpolating * partially elapsed windows using historical growth data from the * previous intervals. This minimizes memory requirements (by not storing * all the intermediate values in the previous window) and simplifies * the calculations. It works well because PSI signal changes only in * positive direction and over relatively small window sizes the growth * is close to linear. */ static u64 window_update(struct psi_window *win, u64 now, u64 value) { u64 elapsed; u64 growth; elapsed = now - win->start_time; growth = value - win->start_value; /* * After each tracking window passes win->start_value and * win->start_time get reset and win->prev_growth stores * the average per-window growth of the previous window. * win->prev_growth is then used to interpolate additional * growth from the previous window assuming it was linear. */ if (elapsed > win->size) window_reset(win, now, value, growth); else { u32 remaining; remaining = win->size - elapsed; growth += div64_u64(win->prev_growth * remaining, win->size); } return growth; } static void update_triggers(struct psi_group *group, u64 now, enum psi_aggregators aggregator) { struct psi_trigger *t; u64 *total = group->total[aggregator]; struct list_head *triggers; u64 *aggregator_total; if (aggregator == PSI_AVGS) { triggers = &group->avg_triggers; aggregator_total = group->avg_total; } else { triggers = &group->rtpoll_triggers; aggregator_total = group->rtpoll_total; } /* * On subsequent updates, calculate growth deltas and let * watchers know when their specified thresholds are exceeded. */ list_for_each_entry(t, triggers, node) { u64 growth; bool new_stall; new_stall = aggregator_total[t->state] != total[t->state]; /* Check for stall activity or a previous threshold breach */ if (!new_stall && !t->pending_event) continue; /* * Check for new stall activity, as well as deferred * events that occurred in the last window after the * trigger had already fired (we want to ratelimit * events without dropping any). */ if (new_stall) { /* Calculate growth since last update */ growth = window_update(&t->win, now, total[t->state]); if (!t->pending_event) { if (growth < t->threshold) continue; t->pending_event = true; } } /* Limit event signaling to once per window */ if (now < t->last_event_time + t->win.size) continue; /* Generate an event */ if (cmpxchg(&t->event, 0, 1) == 0) { if (t->of) kernfs_notify(t->of->kn); else wake_up_interruptible(&t->event_wait); } t->last_event_time = now; /* Reset threshold breach flag once event got generated */ t->pending_event = false; } } static u64 update_averages(struct psi_group *group, u64 now) { unsigned long missed_periods = 0; u64 expires, period; u64 avg_next_update; int s; /* avgX= */ expires = group->avg_next_update; if (now - expires >= psi_period) missed_periods = div_u64(now - expires, psi_period); /* * The periodic clock tick can get delayed for various * reasons, especially on loaded systems. To avoid clock * drift, we schedule the clock in fixed psi_period intervals. * But the deltas we sample out of the per-cpu buckets above * are based on the actual time elapsing between clock ticks. */ avg_next_update = expires + ((1 + missed_periods) * psi_period); period = now - (group->avg_last_update + (missed_periods * psi_period)); group->avg_last_update = now; for (s = 0; s < NR_PSI_STATES - 1; s++) { u32 sample; sample = group->total[PSI_AVGS][s] - group->avg_total[s]; /* * Due to the lockless sampling of the time buckets, * recorded time deltas can slip into the next period, * which under full pressure can result in samples in * excess of the period length. * * We don't want to report non-sensical pressures in * excess of 100%, nor do we want to drop such events * on the floor. Instead we punt any overage into the * future until pressure subsides. By doing this we * don't underreport the occurring pressure curve, we * just report it delayed by one period length. * * The error isn't cumulative. As soon as another * delta slips from a period P to P+1, by definition * it frees up its time T in P. */ if (sample > period) sample = period; group->avg_total[s] += sample; calc_avgs(group->avg[s], missed_periods, sample, period); } return avg_next_update; } static void psi_avgs_work(struct work_struct *work) { struct delayed_work *dwork; struct psi_group *group; u32 changed_states; u64 now; dwork = to_delayed_work(work); group = container_of(dwork, struct psi_group, avgs_work); mutex_lock(&group->avgs_lock); now = sched_clock(); collect_percpu_times(group, PSI_AVGS, &changed_states); /* * If there is task activity, periodically fold the per-cpu * times and feed samples into the running averages. If things * are idle and there is no data to process, stop the clock. * Once restarted, we'll catch up the running averages in one * go - see calc_avgs() and missed_periods. */ if (now >= group->avg_next_update) { update_triggers(group, now, PSI_AVGS); group->avg_next_update = update_averages(group, now); } if (changed_states & PSI_STATE_RESCHEDULE) { schedule_delayed_work(dwork, nsecs_to_jiffies( group->avg_next_update - now) + 1); } mutex_unlock(&group->avgs_lock); } static void init_rtpoll_triggers(struct psi_group *group, u64 now) { struct psi_trigger *t; list_for_each_entry(t, &group->rtpoll_triggers, node) window_reset(&t->win, now, group->total[PSI_POLL][t->state], 0); memcpy(group->rtpoll_total, group->total[PSI_POLL], sizeof(group->rtpoll_total)); group->rtpoll_next_update = now + group->rtpoll_min_period; } /* Schedule rtpolling if it's not already scheduled or forced. */ static void psi_schedule_rtpoll_work(struct psi_group *group, unsigned long delay, bool force) { struct task_struct *task; /* * atomic_xchg should be called even when !force to provide a * full memory barrier (see the comment inside psi_rtpoll_work). */ if (atomic_xchg(&group->rtpoll_scheduled, 1) && !force) return; rcu_read_lock(); task = rcu_dereference(group->rtpoll_task); /* * kworker might be NULL in case psi_trigger_destroy races with * psi_task_change (hotpath) which can't use locks */ if (likely(task)) mod_timer(&group->rtpoll_timer, jiffies + delay); else atomic_set(&group->rtpoll_scheduled, 0); rcu_read_unlock(); } static void psi_rtpoll_work(struct psi_group *group) { bool force_reschedule = false; u32 changed_states; u64 now; mutex_lock(&group->rtpoll_trigger_lock); now = sched_clock(); if (now > group->rtpoll_until) { /* * We are either about to start or might stop rtpolling if no * state change was recorded. Resetting rtpoll_scheduled leaves * a small window for psi_group_change to sneak in and schedule * an immediate rtpoll_work before we get to rescheduling. One * potential extra wakeup at the end of the rtpolling window * should be negligible and rtpoll_next_update still keeps * updates correctly on schedule. */ atomic_set(&group->rtpoll_scheduled, 0); /* * A task change can race with the rtpoll worker that is supposed to * report on it. To avoid missing events, ensure ordering between * rtpoll_scheduled and the task state accesses, such that if the * rtpoll worker misses the state update, the task change is * guaranteed to reschedule the rtpoll worker: * * rtpoll worker: * atomic_set(rtpoll_scheduled, 0) * smp_mb() * LOAD states * * task change: * STORE states * if atomic_xchg(rtpoll_scheduled, 1) == 0: * schedule rtpoll worker * * The atomic_xchg() implies a full barrier. */ smp_mb(); } else { /* The rtpolling window is not over, keep rescheduling */ force_reschedule = true; } collect_percpu_times(group, PSI_POLL, &changed_states); if (changed_states & group->rtpoll_states) { /* Initialize trigger windows when entering rtpolling mode */ if (now > group->rtpoll_until) init_rtpoll_triggers(group, now); /* * Keep the monitor active for at least the duration of the * minimum tracking window as long as monitor states are * changing. */ group->rtpoll_until = now + group->rtpoll_min_period * UPDATES_PER_WINDOW; } if (now > group->rtpoll_until) { group->rtpoll_next_update = ULLONG_MAX; goto out; } if (now >= group->rtpoll_next_update) { if (changed_states & group->rtpoll_states) { update_triggers(group, now, PSI_POLL); memcpy(group->rtpoll_total, group->total[PSI_POLL], sizeof(group->rtpoll_total)); } group->rtpoll_next_update = now + group->rtpoll_min_period; } psi_schedule_rtpoll_work(group, nsecs_to_jiffies(group->rtpoll_next_update - now) + 1, force_reschedule); out: mutex_unlock(&group->rtpoll_trigger_lock); } static int psi_rtpoll_worker(void *data) { struct psi_group *group = (struct psi_group *)data; sched_set_fifo_low(current); while (true) { wait_event_interruptible(group->rtpoll_wait, atomic_cmpxchg(&group->rtpoll_wakeup, 1, 0) || kthread_should_stop()); if (kthread_should_stop()) break; psi_rtpoll_work(group); } return 0; } static void poll_timer_fn(struct timer_list *t) { struct psi_group *group = from_timer(group, t, rtpoll_timer); atomic_set(&group->rtpoll_wakeup, 1); wake_up_interruptible(&group->rtpoll_wait); } static void record_times(struct psi_group_cpu *groupc, u64 now) { u32 delta; delta = now - groupc->state_start; groupc->state_start = now; if (groupc->state_mask & (1 << PSI_IO_SOME)) { groupc->times[PSI_IO_SOME] += delta; if (groupc->state_mask & (1 << PSI_IO_FULL)) groupc->times[PSI_IO_FULL] += delta; } if (groupc->state_mask & (1 << PSI_MEM_SOME)) { groupc->times[PSI_MEM_SOME] += delta; if (groupc->state_mask & (1 << PSI_MEM_FULL)) groupc->times[PSI_MEM_FULL] += delta; } if (groupc->state_mask & (1 << PSI_CPU_SOME)) { groupc->times[PSI_CPU_SOME] += delta; if (groupc->state_mask & (1 << PSI_CPU_FULL)) groupc->times[PSI_CPU_FULL] += delta; } if (groupc->state_mask & (1 << PSI_NONIDLE)) groupc->times[PSI_NONIDLE] += delta; } static void psi_group_change(struct psi_group *group, int cpu, unsigned int clear, unsigned int set, u64 now, bool wake_clock) { struct psi_group_cpu *groupc; unsigned int t, m; u32 state_mask; lockdep_assert_rq_held(cpu_rq(cpu)); groupc = per_cpu_ptr(group->pcpu, cpu); /* * First we update the task counts according to the state * change requested through the @clear and @set bits. * * Then if the cgroup PSI stats accounting enabled, we * assess the aggregate resource states this CPU's tasks * have been in since the last change, and account any * SOME and FULL time these may have resulted in. */ write_seqcount_begin(&groupc->seq); /* * Start with TSK_ONCPU, which doesn't have a corresponding * task count - it's just a boolean flag directly encoded in * the state mask. Clear, set, or carry the current state if * no changes are requested. */ if (unlikely(clear & TSK_ONCPU)) { state_mask = 0; clear &= ~TSK_ONCPU; } else if (unlikely(set & TSK_ONCPU)) { state_mask = PSI_ONCPU; set &= ~TSK_ONCPU; } else { state_mask = groupc->state_mask & PSI_ONCPU; } /* * The rest of the state mask is calculated based on the task * counts. Update those first, then construct the mask. */ for (t = 0, m = clear; m; m &= ~(1 << t), t++) { if (!(m & (1 << t))) continue; if (groupc->tasks[t]) { groupc->tasks[t]--; } else if (!psi_bug) { printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n", cpu, t, groupc->tasks[0], groupc->tasks[1], groupc->tasks[2], groupc->tasks[3], clear, set); psi_bug = 1; } } for (t = 0; set; set &= ~(1 << t), t++) if (set & (1 << t)) groupc->tasks[t]++; if (!group->enabled) { /* * On the first group change after disabling PSI, conclude * the current state and flush its time. This is unlikely * to matter to the user, but aggregation (get_recent_times) * may have already incorporated the live state into times_prev; * avoid a delta sample underflow when PSI is later re-enabled. */ if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE))) record_times(groupc, now); groupc->state_mask = state_mask; write_seqcount_end(&groupc->seq); return; } state_mask = test_states(groupc->tasks, state_mask); /* * Since we care about lost potential, a memstall is FULL * when there are no other working tasks, but also when * the CPU is actively reclaiming and nothing productive * could run even if it were runnable. So when the current * task in a cgroup is in_memstall, the corresponding groupc * on that cpu is in PSI_MEM_FULL state. */ if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall)) state_mask |= (1 << PSI_MEM_FULL); record_times(groupc, now); groupc->state_mask = state_mask; write_seqcount_end(&groupc->seq); if (state_mask & group->rtpoll_states) psi_schedule_rtpoll_work(group, 1, false); if (wake_clock && !delayed_work_pending(&group->avgs_work)) schedule_delayed_work(&group->avgs_work, PSI_FREQ); } static inline struct psi_group *task_psi_group(struct task_struct *task) { #ifdef CONFIG_CGROUPS if (static_branch_likely(&psi_cgroups_enabled)) return cgroup_psi(task_dfl_cgroup(task)); #endif return &psi_system; } static void psi_flags_change(struct task_struct *task, int clear, int set) { if (((task->psi_flags & set) || (task->psi_flags & clear) != clear) && !psi_bug) { printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n", task->pid, task->comm, task_cpu(task), task->psi_flags, clear, set); psi_bug = 1; } task->psi_flags &= ~clear; task->psi_flags |= set; } void psi_task_change(struct task_struct *task, int clear, int set) { int cpu = task_cpu(task); struct psi_group *group; u64 now; if (!task->pid) return; psi_flags_change(task, clear, set); now = cpu_clock(cpu); group = task_psi_group(task); do { psi_group_change(group, cpu, clear, set, now, true); } while ((group = group->parent)); } void psi_task_switch(struct task_struct *prev, struct task_struct *next, bool sleep) { struct psi_group *group, *common = NULL; int cpu = task_cpu(prev); u64 now = cpu_clock(cpu); if (next->pid) { psi_flags_change(next, 0, TSK_ONCPU); /* * Set TSK_ONCPU on @next's cgroups. If @next shares any * ancestors with @prev, those will already have @prev's * TSK_ONCPU bit set, and we can stop the iteration there. */ group = task_psi_group(next); do { if (per_cpu_ptr(group->pcpu, cpu)->state_mask & PSI_ONCPU) { common = group; break; } psi_group_change(group, cpu, 0, TSK_ONCPU, now, true); } while ((group = group->parent)); } if (prev->pid) { int clear = TSK_ONCPU, set = 0; bool wake_clock = true; /* * When we're going to sleep, psi_dequeue() lets us * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and * TSK_IOWAIT here, where we can combine it with * TSK_ONCPU and save walking common ancestors twice. */ if (sleep) { clear |= TSK_RUNNING; if (prev->in_memstall) clear |= TSK_MEMSTALL_RUNNING; if (prev->in_iowait) set |= TSK_IOWAIT; /* * Periodic aggregation shuts off if there is a period of no * task changes, so we wake it back up if necessary. However, * don't do this if the task change is the aggregation worker * itself going to sleep, or we'll ping-pong forever. */ if (unlikely((prev->flags & PF_WQ_WORKER) && wq_worker_last_func(prev) == psi_avgs_work)) wake_clock = false; } psi_flags_change(prev, clear, set); group = task_psi_group(prev); do { if (group == common) break; psi_group_change(group, cpu, clear, set, now, wake_clock); } while ((group = group->parent)); /* * TSK_ONCPU is handled up to the common ancestor. If there are * any other differences between the two tasks (e.g. prev goes * to sleep, or only one task is memstall), finish propagating * those differences all the way up to the root. */ if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) { clear &= ~TSK_ONCPU; for (; group; group = group->parent) psi_group_change(group, cpu, clear, set, now, wake_clock); } } } #ifdef CONFIG_IRQ_TIME_ACCOUNTING void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev) { int cpu = task_cpu(curr); struct psi_group *group; struct psi_group_cpu *groupc; u64 now, irq; s64 delta; if (static_branch_likely(&psi_disabled)) return; if (!curr->pid) return; lockdep_assert_rq_held(rq); group = task_psi_group(curr); if (prev && task_psi_group(prev) == group) return; now = cpu_clock(cpu); irq = irq_time_read(cpu); delta = (s64)(irq - rq->psi_irq_time); if (delta < 0) return; rq->psi_irq_time = irq; do { if (!group->enabled) continue; groupc = per_cpu_ptr(group->pcpu, cpu); write_seqcount_begin(&groupc->seq); record_times(groupc, now); groupc->times[PSI_IRQ_FULL] += delta; write_seqcount_end(&groupc->seq); if (group->rtpoll_states & (1 << PSI_IRQ_FULL)) psi_schedule_rtpoll_work(group, 1, false); } while ((group = group->parent)); } #endif /** * psi_memstall_enter - mark the beginning of a memory stall section * @flags: flags to handle nested sections * * Marks the calling task as being stalled due to a lack of memory, * such as waiting for a refault or performing reclaim. */ void psi_memstall_enter(unsigned long *flags) { struct rq_flags rf; struct rq *rq; if (static_branch_likely(&psi_disabled)) return; *flags = current->in_memstall; if (*flags) return; /* * in_memstall setting & accounting needs to be atomic wrt * changes to the task's scheduling state, otherwise we can * race with CPU migration. */ rq = this_rq_lock_irq(&rf); current->in_memstall = 1; psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING); rq_unlock_irq(rq, &rf); } EXPORT_SYMBOL_GPL(psi_memstall_enter); /** * psi_memstall_leave - mark the end of an memory stall section * @flags: flags to handle nested memdelay sections * * Marks the calling task as no longer stalled due to lack of memory. */ void psi_memstall_leave(unsigned long *flags) { struct rq_flags rf; struct rq *rq; if (static_branch_likely(&psi_disabled)) return; if (*flags) return; /* * in_memstall clearing & accounting needs to be atomic wrt * changes to the task's scheduling state, otherwise we could * race with CPU migration. */ rq = this_rq_lock_irq(&rf); current->in_memstall = 0; psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0); rq_unlock_irq(rq, &rf); } EXPORT_SYMBOL_GPL(psi_memstall_leave); #ifdef CONFIG_CGROUPS int psi_cgroup_alloc(struct cgroup *cgroup) { if (!static_branch_likely(&psi_cgroups_enabled)) return 0; cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL); if (!cgroup->psi) return -ENOMEM; cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu); if (!cgroup->psi->pcpu) { kfree(cgroup->psi); return -ENOMEM; } group_init(cgroup->psi); cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup)); return 0; } void psi_cgroup_free(struct cgroup *cgroup) { if (!static_branch_likely(&psi_cgroups_enabled)) return; cancel_delayed_work_sync(&cgroup->psi->avgs_work); free_percpu(cgroup->psi->pcpu); /* All triggers must be removed by now */ WARN_ONCE(cgroup->psi->rtpoll_states, "psi: trigger leak\n"); kfree(cgroup->psi); } /** * cgroup_move_task - move task to a different cgroup * @task: the task * @to: the target css_set * * Move task to a new cgroup and safely migrate its associated stall * state between the different groups. * * This function acquires the task's rq lock to lock out concurrent * changes to the task's scheduling state and - in case the task is * running - concurrent changes to its stall state. */ void cgroup_move_task(struct task_struct *task, struct css_set *to) { unsigned int task_flags; struct rq_flags rf; struct rq *rq; if (!static_branch_likely(&psi_cgroups_enabled)) { /* * Lame to do this here, but the scheduler cannot be locked * from the outside, so we move cgroups from inside sched/. */ rcu_assign_pointer(task->cgroups, to); return; } rq = task_rq_lock(task, &rf); /* * We may race with schedule() dropping the rq lock between * deactivating prev and switching to next. Because the psi * updates from the deactivation are deferred to the switch * callback to save cgroup tree updates, the task's scheduling * state here is not coherent with its psi state: * * schedule() cgroup_move_task() * rq_lock() * deactivate_task() * p->on_rq = 0 * psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates * pick_next_task() * rq_unlock() * rq_lock() * psi_task_change() // old cgroup * task->cgroups = to * psi_task_change() // new cgroup * rq_unlock() * rq_lock() * psi_sched_switch() // does deferred updates in new cgroup * * Don't rely on the scheduling state. Use psi_flags instead. */ task_flags = task->psi_flags; if (task_flags) psi_task_change(task, task_flags, 0); /* See comment above */ rcu_assign_pointer(task->cgroups, to); if (task_flags) psi_task_change(task, 0, task_flags); task_rq_unlock(rq, task, &rf); } void psi_cgroup_restart(struct psi_group *group) { int cpu; /* * After we disable psi_group->enabled, we don't actually * stop percpu tasks accounting in each psi_group_cpu, * instead only stop test_states() loop, record_times() * and averaging worker, see psi_group_change() for details. * * When disable cgroup PSI, this function has nothing to sync * since cgroup pressure files are hidden and percpu psi_group_cpu * would see !psi_group->enabled and only do task accounting. * * When re-enable cgroup PSI, this function use psi_group_change() * to get correct state mask from test_states() loop on tasks[], * and restart groupc->state_start from now, use .clear = .set = 0 * here since no task status really changed. */ if (!group->enabled) return; for_each_possible_cpu(cpu) { struct rq *rq = cpu_rq(cpu); struct rq_flags rf; u64 now; rq_lock_irq(rq, &rf); now = cpu_clock(cpu); psi_group_change(group, cpu, 0, 0, now, true); rq_unlock_irq(rq, &rf); } } #endif /* CONFIG_CGROUPS */ int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res) { bool only_full = false; int full; u64 now; if (static_branch_likely(&psi_disabled)) return -EOPNOTSUPP; /* Update averages before reporting them */ mutex_lock(&group->avgs_lock); now = sched_clock(); collect_percpu_times(group, PSI_AVGS, NULL); if (now >= group->avg_next_update) group->avg_next_update = update_averages(group, now); mutex_unlock(&group->avgs_lock); #ifdef CONFIG_IRQ_TIME_ACCOUNTING only_full = res == PSI_IRQ; #endif for (full = 0; full < 2 - only_full; full++) { unsigned long avg[3] = { 0, }; u64 total = 0; int w; /* CPU FULL is undefined at the system level */ if (!(group == &psi_system && res == PSI_CPU && full)) { for (w = 0; w < 3; w++) avg[w] = group->avg[res * 2 + full][w]; total = div_u64(group->total[PSI_AVGS][res * 2 + full], NSEC_PER_USEC); } seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n", full || only_full ? "full" : "some", LOAD_INT(avg[0]), LOAD_FRAC(avg[0]), LOAD_INT(avg[1]), LOAD_FRAC(avg[1]), LOAD_INT(avg[2]), LOAD_FRAC(avg[2]), total); } return 0; } struct psi_trigger *psi_trigger_create(struct psi_group *group, char *buf, enum psi_res res, struct file *file, struct kernfs_open_file *of) { struct psi_trigger *t; enum psi_states state; u32 threshold_us; bool privileged; u32 window_us; if (static_branch_likely(&psi_disabled)) return ERR_PTR(-EOPNOTSUPP); /* * Checking the privilege here on file->f_cred implies that a privileged user * could open the file and delegate the write to an unprivileged one. */ privileged = cap_raised(file->f_cred->cap_effective, CAP_SYS_RESOURCE); if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2) state = PSI_IO_SOME + res * 2; else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2) state = PSI_IO_FULL + res * 2; else return ERR_PTR(-EINVAL); #ifdef CONFIG_IRQ_TIME_ACCOUNTING if (res == PSI_IRQ && --state != PSI_IRQ_FULL) return ERR_PTR(-EINVAL); #endif if (state >= PSI_NONIDLE) return ERR_PTR(-EINVAL); if (window_us == 0 || window_us > WINDOW_MAX_US) return ERR_PTR(-EINVAL); /* * Unprivileged users can only use 2s windows so that averages aggregation * work is used, and no RT threads need to be spawned. */ if (!privileged && window_us % 2000000) return ERR_PTR(-EINVAL); /* Check threshold */ if (threshold_us == 0 || threshold_us > window_us) return ERR_PTR(-EINVAL); t = kmalloc(sizeof(*t), GFP_KERNEL); if (!t) return ERR_PTR(-ENOMEM); t->group = group; t->state = state; t->threshold = threshold_us * NSEC_PER_USEC; t->win.size = window_us * NSEC_PER_USEC; window_reset(&t->win, sched_clock(), group->total[PSI_POLL][t->state], 0); t->event = 0; t->last_event_time = 0; t->of = of; if (!of) init_waitqueue_head(&t->event_wait); t->pending_event = false; t->aggregator = privileged ? PSI_POLL : PSI_AVGS; if (privileged) { mutex_lock(&group->rtpoll_trigger_lock); if (!rcu_access_pointer(group->rtpoll_task)) { struct task_struct *task; task = kthread_create(psi_rtpoll_worker, group, "psimon"); if (IS_ERR(task)) { kfree(t); mutex_unlock(&group->rtpoll_trigger_lock); return ERR_CAST(task); } atomic_set(&group->rtpoll_wakeup, 0); wake_up_process(task); rcu_assign_pointer(group->rtpoll_task, task); } list_add(&t->node, &group->rtpoll_triggers); group->rtpoll_min_period = min(group->rtpoll_min_period, div_u64(t->win.size, UPDATES_PER_WINDOW)); group->rtpoll_nr_triggers[t->state]++; group->rtpoll_states |= (1 << t->state); mutex_unlock(&group->rtpoll_trigger_lock); } else { mutex_lock(&group->avgs_lock); list_add(&t->node, &group->avg_triggers); group->avg_nr_triggers[t->state]++; mutex_unlock(&group->avgs_lock); } return t; } void psi_trigger_destroy(struct psi_trigger *t) { struct psi_group *group; struct task_struct *task_to_destroy = NULL; /* * We do not check psi_disabled since it might have been disabled after * the trigger got created. */ if (!t) return; group = t->group; /* * Wakeup waiters to stop polling and clear the queue to prevent it from * being accessed later. Can happen if cgroup is deleted from under a * polling process. */ if (t->of) kernfs_notify(t->of->kn); else wake_up_interruptible(&t->event_wait); if (t->aggregator == PSI_AVGS) { mutex_lock(&group->avgs_lock); if (!list_empty(&t->node)) { list_del(&t->node); group->avg_nr_triggers[t->state]--; } mutex_unlock(&group->avgs_lock); } else { mutex_lock(&group->rtpoll_trigger_lock); if (!list_empty(&t->node)) { struct psi_trigger *tmp; u64 period = ULLONG_MAX; list_del(&t->node); group->rtpoll_nr_triggers[t->state]--; if (!group->rtpoll_nr_triggers[t->state]) group->rtpoll_states &= ~(1 << t->state); /* * Reset min update period for the remaining triggers * iff the destroying trigger had the min window size. */ if (group->rtpoll_min_period == div_u64(t->win.size, UPDATES_PER_WINDOW)) { list_for_each_entry(tmp, &group->rtpoll_triggers, node) period = min(period, div_u64(tmp->win.size, UPDATES_PER_WINDOW)); group->rtpoll_min_period = period; } /* Destroy rtpoll_task when the last trigger is destroyed */ if (group->rtpoll_states == 0) { group->rtpoll_until = 0; task_to_destroy = rcu_dereference_protected( group->rtpoll_task, lockdep_is_held(&group->rtpoll_trigger_lock)); rcu_assign_pointer(group->rtpoll_task, NULL); del_timer(&group->rtpoll_timer); } } mutex_unlock(&group->rtpoll_trigger_lock); } /* * Wait for psi_schedule_rtpoll_work RCU to complete its read-side * critical section before destroying the trigger and optionally the * rtpoll_task. */ synchronize_rcu(); /* * Stop kthread 'psimon' after releasing rtpoll_trigger_lock to prevent * a deadlock while waiting for psi_rtpoll_work to acquire * rtpoll_trigger_lock */ if (task_to_destroy) { /* * After the RCU grace period has expired, the worker * can no longer be found through group->rtpoll_task. */ kthread_stop(task_to_destroy); atomic_set(&group->rtpoll_scheduled, 0); } kfree(t); } __poll_t psi_trigger_poll(void **trigger_ptr, struct file *file, poll_table *wait) { __poll_t ret = DEFAULT_POLLMASK; struct psi_trigger *t; if (static_branch_likely(&psi_disabled)) return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; t = smp_load_acquire(trigger_ptr); if (!t) return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; if (t->of) kernfs_generic_poll(t->of, wait); else poll_wait(file, &t->event_wait, wait); if (cmpxchg(&t->event, 1, 0) == 1) ret |= EPOLLPRI; return ret; } #ifdef CONFIG_PROC_FS static int psi_io_show(struct seq_file *m, void *v) { return psi_show(m, &psi_system, PSI_IO); } static int psi_memory_show(struct seq_file *m, void *v) { return psi_show(m, &psi_system, PSI_MEM); } static int psi_cpu_show(struct seq_file *m, void *v) { return psi_show(m, &psi_system, PSI_CPU); } static int psi_io_open(struct inode *inode, struct file *file) { return single_open(file, psi_io_show, NULL); } static int psi_memory_open(struct inode *inode, struct file *file) { return single_open(file, psi_memory_show, NULL); } static int psi_cpu_open(struct inode *inode, struct file *file) { return single_open(file, psi_cpu_show, NULL); } static ssize_t psi_write(struct file *file, const char __user *user_buf, size_t nbytes, enum psi_res res) { char buf[32]; size_t buf_size; struct seq_file *seq; struct psi_trigger *new; if (static_branch_likely(&psi_disabled)) return -EOPNOTSUPP; if (!nbytes) return -EINVAL; buf_size = min(nbytes, sizeof(buf)); if (copy_from_user(buf, user_buf, buf_size)) return -EFAULT; buf[buf_size - 1] = '\0'; seq = file->private_data; /* Take seq->lock to protect seq->private from concurrent writes */ mutex_lock(&seq->lock); /* Allow only one trigger per file descriptor */ if (seq->private) { mutex_unlock(&seq->lock); return -EBUSY; } new = psi_trigger_create(&psi_system, buf, res, file, NULL); if (IS_ERR(new)) { mutex_unlock(&seq->lock); return PTR_ERR(new); } smp_store_release(&seq->private, new); mutex_unlock(&seq->lock); return nbytes; } static ssize_t psi_io_write(struct file *file, const char __user *user_buf, size_t nbytes, loff_t *ppos) { return psi_write(file, user_buf, nbytes, PSI_IO); } static ssize_t psi_memory_write(struct file *file, const char __user *user_buf, size_t nbytes, loff_t *ppos) { return psi_write(file, user_buf, nbytes, PSI_MEM); } static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf, size_t nbytes, loff_t *ppos) { return psi_write(file, user_buf, nbytes, PSI_CPU); } static __poll_t psi_fop_poll(struct file *file, poll_table *wait) { struct seq_file *seq = file->private_data; return psi_trigger_poll(&seq->private, file, wait); } static int psi_fop_release(struct inode *inode, struct file *file) { struct seq_file *seq = file->private_data; psi_trigger_destroy(seq->private); return single_release(inode, file); } static const struct proc_ops psi_io_proc_ops = { .proc_open = psi_io_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_write = psi_io_write, .proc_poll = psi_fop_poll, .proc_release = psi_fop_release, }; static const struct proc_ops psi_memory_proc_ops = { .proc_open = psi_memory_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_write = psi_memory_write, .proc_poll = psi_fop_poll, .proc_release = psi_fop_release, }; static const struct proc_ops psi_cpu_proc_ops = { .proc_open = psi_cpu_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_write = psi_cpu_write, .proc_poll = psi_fop_poll, .proc_release = psi_fop_release, }; #ifdef CONFIG_IRQ_TIME_ACCOUNTING static int psi_irq_show(struct seq_file *m, void *v) { return psi_show(m, &psi_system, PSI_IRQ); } static int psi_irq_open(struct inode *inode, struct file *file) { return single_open(file, psi_irq_show, NULL); } static ssize_t psi_irq_write(struct file *file, const char __user *user_buf, size_t nbytes, loff_t *ppos) { return psi_write(file, user_buf, nbytes, PSI_IRQ); } static const struct proc_ops psi_irq_proc_ops = { .proc_open = psi_irq_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_write = psi_irq_write, .proc_poll = psi_fop_poll, .proc_release = psi_fop_release, }; #endif static int __init psi_proc_init(void) { if (psi_enable) { proc_mkdir("pressure", NULL); proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops); proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops); proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops); #ifdef CONFIG_IRQ_TIME_ACCOUNTING proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops); #endif } return 0; } module_init(psi_proc_init); #endif /* CONFIG_PROC_FS */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1