Contributors: 128
Author Tokens Token Proportion Commits Commit Proportion
Peter Zijlstra 3619 29.52% 147 24.54%
Ingo Molnar 1219 9.94% 59 9.85%
Mathieu Desnoyers 1065 8.69% 6 1.00%
Johannes Weiner 818 6.67% 3 0.50%
Vincent Guittot 406 3.31% 24 4.01%
Juri Lelli 393 3.21% 12 2.00%
Li Zefan 344 2.81% 6 1.00%
Qais Yousef 334 2.72% 6 1.00%
Aubrey Li 208 1.70% 1 0.17%
Frédéric Weisbecker 206 1.68% 16 2.67%
Patrick Bellasi 163 1.33% 9 1.50%
Matt Fleming 162 1.32% 2 0.33%
Srivatsa Vaddagiri 156 1.27% 6 1.00%
Dario Faggioli 156 1.27% 5 0.83%
Rafael J. Wysocki 140 1.14% 6 1.00%
Steven Rostedt 133 1.08% 11 1.84%
Hao Jia 127 1.04% 3 0.50%
Josh Don 120 0.98% 6 1.00%
Quentin Perret 108 0.88% 7 1.17%
Nico Pitre 106 0.86% 4 0.67%
Linus Torvalds (pre-git) 104 0.85% 11 1.84%
Paul Turner 104 0.85% 11 1.84%
Vincent Donnefort 97 0.79% 2 0.33%
Valentin Schneider 96 0.78% 8 1.34%
Thomas Gleixner 93 0.76% 12 2.00%
Mike Galbraith 93 0.76% 7 1.17%
Phil Auld 83 0.68% 4 0.67%
Byungchul Park 71 0.58% 1 0.17%
Gregory Haskins 66 0.54% 10 1.67%
Dietmar Eggemann 66 0.54% 9 1.50%
Mel Gorman 59 0.48% 7 1.17%
Joel A Fernandes 53 0.43% 4 0.67%
Daniel Lezcano 52 0.42% 1 0.17%
Shrikanth Hegde 51 0.42% 2 0.33%
Srikar Dronamraju 48 0.39% 6 1.00%
Wanpeng Li 47 0.38% 2 0.33%
Paul Gortmaker 46 0.38% 1 0.17%
Waiman Long 45 0.37% 4 0.67%
Lin Shengwang 43 0.35% 1 0.17%
Venkatesh Pallipadi 42 0.34% 4 0.67%
Luca Abeni 42 0.34% 6 1.00%
Kirill V Tkhai 40 0.33% 4 0.67%
Ricardo Neri 39 0.32% 2 0.33%
Henrik Austad 35 0.29% 2 0.33%
Andrew Morton 33 0.27% 5 0.83%
Clark Williams 32 0.26% 3 0.50%
Tim Chen 32 0.26% 3 0.50%
Huang Ying 29 0.24% 3 0.50%
Chengming Zhou 28 0.23% 2 0.33%
Kees Cook 25 0.20% 1 0.17%
Ben Segall 23 0.19% 2 0.33%
Viresh Kumar 22 0.18% 5 0.83%
Peter Oskolkov 22 0.18% 1 0.17%
Morten Rasmussen 22 0.18% 5 0.83%
Huaixin Chang 20 0.16% 3 0.50%
Rusty Russell 20 0.16% 6 1.00%
Tejun Heo 17 0.14% 4 0.67%
Alex Shi 17 0.14% 5 0.83%
Linus Torvalds 17 0.14% 4 0.67%
Suresh B. Siddha 16 0.13% 2 0.33%
Dhaval Giani 16 0.13% 2 0.33%
Matthew Wilcox 16 0.13% 2 0.33%
Ben Dooks 14 0.11% 1 0.17%
Guillaume Chazarain 14 0.11% 1 0.17%
Bharata B Rao 14 0.11% 2 0.33%
Yuyang Du 14 0.11% 4 0.67%
Davidlohr Bueso A 13 0.11% 3 0.50%
Dmitry Adamushko 12 0.10% 2 0.33%
Stanislaw Gruszka 12 0.10% 1 0.17%
Barry Song 12 0.10% 2 0.33%
Yun Wu 12 0.10% 1 0.17%
Vladimir Davydov 11 0.09% 1 0.17%
Arnd Bergmann 10 0.08% 1 0.17%
Christoph Lameter 10 0.08% 2 0.33%
Peter Williams 10 0.08% 2 0.33%
Pavel Emelyanov 10 0.08% 1 0.17%
Giovanni Gherdovich 9 0.07% 1 0.17%
Sebastian Andrzej Siewior 9 0.07% 1 0.17%
Mathieu Malaterre 9 0.07% 1 0.17%
Preeti U. Murthy 8 0.07% 1 0.17%
Motohiro Kosaki 8 0.07% 1 0.17%
Rakib Mullick 7 0.06% 1 0.17%
Andrea Parri 7 0.06% 1 0.17%
Rik Van Riel 7 0.06% 3 0.50%
Thara Gopinath 7 0.06% 1 0.17%
David Woodhouse 6 0.05% 1 0.17%
Vineeth Pillai 6 0.05% 2 0.33%
Neil Horman 6 0.05% 1 0.17%
Peng Liu 5 0.04% 2 0.33%
Hiroshi Shimamoto 5 0.04% 1 0.17%
Miao Xie 5 0.04% 1 0.17%
Mathias Krause 4 0.03% 1 0.17%
Andrey Vagin 4 0.03% 1 0.17%
Alex Kelly 4 0.03% 1 0.17%
Eric W. Biedermann 4 0.03% 1 0.17%
Andi Kleen 4 0.03% 1 0.17%
Jason Low 4 0.03% 1 0.17%
Will Deacon 4 0.03% 1 0.17%
Arjan van de Ven 3 0.02% 1 0.17%
Al Viro 3 0.02% 1 0.17%
Nikhil P Rao 3 0.02% 1 0.17%
Aaron Lu 3 0.02% 1 0.17%
Alexey Dobriyan 3 0.02% 1 0.17%
John Stultz 3 0.02% 1 0.17%
Glauber de Oliveira Costa 3 0.02% 1 0.17%
Xiaotian Feng 3 0.02% 1 0.17%
Balbir Singh 3 0.02% 1 0.17%
Zhen Ni 2 0.02% 2 0.33%
Liu hailong 2 0.02% 1 0.17%
Alan Cox 2 0.02% 1 0.17%
Miaohe Lin 2 0.02% 1 0.17%
Arun R Bharadwaj 2 0.02% 1 0.17%
Clement Courbet 2 0.02% 1 0.17%
Martin J. Bligh 2 0.02% 1 0.17%
Yun Wang 1 0.01% 1 0.17%
Yong Zhang 1 0.01% 1 0.17%
Prasanna Meda 1 0.01% 1 0.17%
Lai Jiangshan 1 0.01% 1 0.17%
Jason Baron 1 0.01% 1 0.17%
Paul E. McKenney 1 0.01% 1 0.17%
zhuguangqing 1 0.01% 1 0.17%
Rick Lindsley 1 0.01% 1 0.17%
Madhuparna Bhowmik 1 0.01% 1 0.17%
Gustavo A. R. Silva 1 0.01% 1 0.17%
Christian Dietrich 1 0.01% 1 0.17%
Zhihui Zhang 1 0.01% 1 0.17%
Greg Kroah-Hartman 1 0.01% 1 0.17%
Mike Travis 1 0.01% 1 0.17%
Total 12260 599


/* SPDX-License-Identifier: GPL-2.0 */
/*
 * Scheduler internal types and methods:
 */
#ifndef _KERNEL_SCHED_SCHED_H
#define _KERNEL_SCHED_SCHED_H

#include <linux/sched/affinity.h>
#include <linux/sched/autogroup.h>
#include <linux/sched/cpufreq.h>
#include <linux/sched/deadline.h>
#include <linux/sched.h>
#include <linux/sched/loadavg.h>
#include <linux/sched/mm.h>
#include <linux/sched/rseq_api.h>
#include <linux/sched/signal.h>
#include <linux/sched/smt.h>
#include <linux/sched/stat.h>
#include <linux/sched/sysctl.h>
#include <linux/sched/task_flags.h>
#include <linux/sched/task.h>
#include <linux/sched/topology.h>

#include <linux/atomic.h>
#include <linux/bitmap.h>
#include <linux/bug.h>
#include <linux/capability.h>
#include <linux/cgroup_api.h>
#include <linux/cgroup.h>
#include <linux/context_tracking.h>
#include <linux/cpufreq.h>
#include <linux/cpumask_api.h>
#include <linux/ctype.h>
#include <linux/file.h>
#include <linux/fs_api.h>
#include <linux/hrtimer_api.h>
#include <linux/interrupt.h>
#include <linux/irq_work.h>
#include <linux/jiffies.h>
#include <linux/kref_api.h>
#include <linux/kthread.h>
#include <linux/ktime_api.h>
#include <linux/lockdep_api.h>
#include <linux/lockdep.h>
#include <linux/minmax.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex_api.h>
#include <linux/plist.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/profile.h>
#include <linux/psi.h>
#include <linux/rcupdate.h>
#include <linux/seq_file.h>
#include <linux/seqlock.h>
#include <linux/softirq.h>
#include <linux/spinlock_api.h>
#include <linux/static_key.h>
#include <linux/stop_machine.h>
#include <linux/syscalls_api.h>
#include <linux/syscalls.h>
#include <linux/tick.h>
#include <linux/topology.h>
#include <linux/types.h>
#include <linux/u64_stats_sync_api.h>
#include <linux/uaccess.h>
#include <linux/wait_api.h>
#include <linux/wait_bit.h>
#include <linux/workqueue_api.h>

#include <trace/events/power.h>
#include <trace/events/sched.h>

#include "../workqueue_internal.h"

struct rq;
struct cfs_rq;
struct rt_rq;
struct sched_group;
struct cpuidle_state;

#ifdef CONFIG_PARAVIRT
# include <asm/paravirt.h>
# include <asm/paravirt_api_clock.h>
#endif

#include <asm/barrier.h>

#include "cpupri.h"
#include "cpudeadline.h"

#ifdef CONFIG_SCHED_DEBUG
# define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
#else
# define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
#endif

/* task_struct::on_rq states: */
#define TASK_ON_RQ_QUEUED	1
#define TASK_ON_RQ_MIGRATING	2

extern __read_mostly int scheduler_running;

extern unsigned long calc_load_update;
extern atomic_long_t calc_load_tasks;

extern void calc_global_load_tick(struct rq *this_rq);
extern long calc_load_fold_active(struct rq *this_rq, long adjust);

extern void call_trace_sched_update_nr_running(struct rq *rq, int count);

extern int sysctl_sched_rt_period;
extern int sysctl_sched_rt_runtime;
extern int sched_rr_timeslice;

/*
 * Asymmetric CPU capacity bits
 */
struct asym_cap_data {
	struct list_head link;
	struct rcu_head rcu;
	unsigned long capacity;
	unsigned long cpus[];
};

extern struct list_head asym_cap_list;

#define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)

/*
 * Helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(time)	((unsigned long)(time) / (NSEC_PER_SEC/HZ))

/*
 * Increase resolution of nice-level calculations for 64-bit architectures.
 * The extra resolution improves shares distribution and load balancing of
 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group
 * hierarchies, especially on larger systems. This is not a user-visible change
 * and does not change the user-interface for setting shares/weights.
 *
 * We increase resolution only if we have enough bits to allow this increased
 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
 * are pretty high and the returns do not justify the increased costs.
 *
 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
 * increase coverage and consistency always enable it on 64-bit platforms.
 */
#ifdef CONFIG_64BIT
# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
# define scale_load_down(w)					\
({								\
	unsigned long __w = (w);				\
								\
	if (__w)						\
		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT);	\
	__w;							\
})
#else
# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
# define scale_load(w)		(w)
# define scale_load_down(w)	(w)
#endif

/*
 * Task weight (visible to users) and its load (invisible to users) have
 * independent resolution, but they should be well calibrated. We use
 * scale_load() and scale_load_down(w) to convert between them. The
 * following must be true:
 *
 *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
 *
 */
#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)

/*
 * Single value that decides SCHED_DEADLINE internal math precision.
 * 10 -> just above 1us
 * 9  -> just above 0.5us
 */
#define DL_SCALE		10

/*
 * Single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF		((u64)~0ULL)

static inline int idle_policy(int policy)
{
	return policy == SCHED_IDLE;
}

static inline int fair_policy(int policy)
{
	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
}

static inline int rt_policy(int policy)
{
	return policy == SCHED_FIFO || policy == SCHED_RR;
}

static inline int dl_policy(int policy)
{
	return policy == SCHED_DEADLINE;
}

static inline bool valid_policy(int policy)
{
	return idle_policy(policy) || fair_policy(policy) ||
		rt_policy(policy) || dl_policy(policy);
}

static inline int task_has_idle_policy(struct task_struct *p)
{
	return idle_policy(p->policy);
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

static inline int task_has_dl_policy(struct task_struct *p)
{
	return dl_policy(p->policy);
}

#define cap_scale(v, s)		((v)*(s) >> SCHED_CAPACITY_SHIFT)

static inline void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;

	*avg += diff / 8;
}

/*
 * Shifting a value by an exponent greater *or equal* to the size of said value
 * is UB; cap at size-1.
 */
#define shr_bound(val, shift)							\
	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))

/*
 * !! For sched_setattr_nocheck() (kernel) only !!
 *
 * This is actually gross. :(
 *
 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
 * tasks, but still be able to sleep. We need this on platforms that cannot
 * atomically change clock frequency. Remove once fast switching will be
 * available on such platforms.
 *
 * SUGOV stands for SchedUtil GOVernor.
 */
#define SCHED_FLAG_SUGOV	0x10000000

#define SCHED_DL_FLAGS		(SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)

static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
{
#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
#else
	return false;
#endif
}

/*
 * Tells if entity @a should preempt entity @b.
 */
static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
				     const struct sched_dl_entity *b)
{
	return dl_entity_is_special(a) ||
	       dl_time_before(a->deadline, b->deadline);
}

/*
 * This is the priority-queue data structure of the RT scheduling class:
 */
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct rt_bandwidth {
	/* nests inside the rq lock: */
	raw_spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
	unsigned int		rt_period_active;
};

static inline int dl_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
}

/*
 * To keep the bandwidth of -deadline tasks under control
 * we need some place where:
 *  - store the maximum -deadline bandwidth of each cpu;
 *  - cache the fraction of bandwidth that is currently allocated in
 *    each root domain;
 *
 * This is all done in the data structure below. It is similar to the
 * one used for RT-throttling (rt_bandwidth), with the main difference
 * that, since here we are only interested in admission control, we
 * do not decrease any runtime while the group "executes", neither we
 * need a timer to replenish it.
 *
 * With respect to SMP, bandwidth is given on a per root domain basis,
 * meaning that:
 *  - bw (< 100%) is the deadline bandwidth of each CPU;
 *  - total_bw is the currently allocated bandwidth in each root domain;
 */
struct dl_bw {
	raw_spinlock_t		lock;
	u64			bw;
	u64			total_bw;
};

extern void init_dl_bw(struct dl_bw *dl_b);
extern int  sched_dl_global_validate(void);
extern void sched_dl_do_global(void);
extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
extern bool __checkparam_dl(const struct sched_attr *attr);
extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
extern int  dl_bw_check_overflow(int cpu);

/*
 * SCHED_DEADLINE supports servers (nested scheduling) with the following
 * interface:
 *
 *   dl_se::rq -- runqueue we belong to.
 *
 *   dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the
 *                                server when it runs out of tasks to run.
 *
 *   dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
 *                           returns NULL.
 *
 *   dl_server_update() -- called from update_curr_common(), propagates runtime
 *                         to the server.
 *
 *   dl_server_start()
 *   dl_server_stop()  -- start/stop the server when it has (no) tasks.
 *
 *   dl_server_init() -- initializes the server.
 */
extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
extern void dl_server_start(struct sched_dl_entity *dl_se);
extern void dl_server_stop(struct sched_dl_entity *dl_se);
extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
		    dl_server_has_tasks_f has_tasks,
		    dl_server_pick_f pick);

#ifdef CONFIG_CGROUP_SCHED

extern struct list_head task_groups;

struct cfs_bandwidth {
#ifdef CONFIG_CFS_BANDWIDTH
	raw_spinlock_t		lock;
	ktime_t			period;
	u64			quota;
	u64			runtime;
	u64			burst;
	u64			runtime_snap;
	s64			hierarchical_quota;

	u8			idle;
	u8			period_active;
	u8			slack_started;
	struct hrtimer		period_timer;
	struct hrtimer		slack_timer;
	struct list_head	throttled_cfs_rq;

	/* Statistics: */
	int			nr_periods;
	int			nr_throttled;
	int			nr_burst;
	u64			throttled_time;
	u64			burst_time;
#endif
};

/* Task group related information */
struct task_group {
	struct cgroup_subsys_state css;

#ifdef CONFIG_FAIR_GROUP_SCHED
	/* schedulable entities of this group on each CPU */
	struct sched_entity	**se;
	/* runqueue "owned" by this group on each CPU */
	struct cfs_rq		**cfs_rq;
	unsigned long		shares;

	/* A positive value indicates that this is a SCHED_IDLE group. */
	int			idle;

#ifdef	CONFIG_SMP
	/*
	 * load_avg can be heavily contended at clock tick time, so put
	 * it in its own cache-line separated from the fields above which
	 * will also be accessed at each tick.
	 */
	atomic_long_t		load_avg ____cacheline_aligned;
#endif
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity	**rt_se;
	struct rt_rq		**rt_rq;

	struct rt_bandwidth	rt_bandwidth;
#endif

	struct rcu_head		rcu;
	struct list_head	list;

	struct task_group	*parent;
	struct list_head	siblings;
	struct list_head	children;

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup	*autogroup;
#endif

	struct cfs_bandwidth	cfs_bandwidth;

#ifdef CONFIG_UCLAMP_TASK_GROUP
	/* The two decimal precision [%] value requested from user-space */
	unsigned int		uclamp_pct[UCLAMP_CNT];
	/* Clamp values requested for a task group */
	struct uclamp_se	uclamp_req[UCLAMP_CNT];
	/* Effective clamp values used for a task group */
	struct uclamp_se	uclamp[UCLAMP_CNT];
#endif

};

#ifdef CONFIG_FAIR_GROUP_SCHED
#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD

/*
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
#define MIN_SHARES		(1UL <<  1)
#define MAX_SHARES		(1UL << 18)
#endif

typedef int (*tg_visitor)(struct task_group *, void *);

extern int walk_tg_tree_from(struct task_group *from,
			     tg_visitor down, tg_visitor up, void *data);

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
 */
static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
{
	return walk_tg_tree_from(&root_task_group, down, up, data);
}

extern int tg_nop(struct task_group *tg, void *data);

#ifdef CONFIG_FAIR_GROUP_SCHED
extern void free_fair_sched_group(struct task_group *tg);
extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
extern void online_fair_sched_group(struct task_group *tg);
extern void unregister_fair_sched_group(struct task_group *tg);
#else
static inline void free_fair_sched_group(struct task_group *tg) { }
static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
       return 1;
}
static inline void online_fair_sched_group(struct task_group *tg) { }
static inline void unregister_fair_sched_group(struct task_group *tg) { }
#endif

extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent);
extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);

extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
extern bool cfs_task_bw_constrained(struct task_struct *p);

extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent);
extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
extern long sched_group_rt_runtime(struct task_group *tg);
extern long sched_group_rt_period(struct task_group *tg);
extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);

extern struct task_group *sched_create_group(struct task_group *parent);
extern void sched_online_group(struct task_group *tg,
			       struct task_group *parent);
extern void sched_destroy_group(struct task_group *tg);
extern void sched_release_group(struct task_group *tg);

extern void sched_move_task(struct task_struct *tsk);

#ifdef CONFIG_FAIR_GROUP_SCHED
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);

extern int sched_group_set_idle(struct task_group *tg, long idle);

#ifdef CONFIG_SMP
extern void set_task_rq_fair(struct sched_entity *se,
			     struct cfs_rq *prev, struct cfs_rq *next);
#else /* !CONFIG_SMP */
static inline void set_task_rq_fair(struct sched_entity *se,
			     struct cfs_rq *prev, struct cfs_rq *next) { }
#endif /* CONFIG_SMP */
#endif /* CONFIG_FAIR_GROUP_SCHED */

#else /* CONFIG_CGROUP_SCHED */

struct cfs_bandwidth { };

static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }

#endif	/* CONFIG_CGROUP_SCHED */

extern void unregister_rt_sched_group(struct task_group *tg);
extern void free_rt_sched_group(struct task_group *tg);
extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);

/*
 * u64_u32_load/u64_u32_store
 *
 * Use a copy of a u64 value to protect against data race. This is only
 * applicable for 32-bits architectures.
 */
#ifdef CONFIG_64BIT
# define u64_u32_load_copy(var, copy)		var
# define u64_u32_store_copy(var, copy, val)	(var = val)
#else
# define u64_u32_load_copy(var, copy)					\
({									\
	u64 __val, __val_copy;						\
	do {								\
		__val_copy = copy;					\
		/*							\
		 * paired with u64_u32_store_copy(), ordering access	\
		 * to var and copy.					\
		 */							\
		smp_rmb();						\
		__val = var;						\
	} while (__val != __val_copy);					\
	__val;								\
})
# define u64_u32_store_copy(var, copy, val)				\
do {									\
	typeof(val) __val = (val);					\
	var = __val;							\
	/*								\
	 * paired with u64_u32_load_copy(), ordering access to var and	\
	 * copy.							\
	 */								\
	smp_wmb();							\
	copy = __val;							\
} while (0)
#endif
# define u64_u32_load(var)		u64_u32_load_copy(var, var##_copy)
# define u64_u32_store(var, val)	u64_u32_store_copy(var, var##_copy, val)

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight	load;
	unsigned int		nr_running;
	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
	unsigned int		idle_nr_running;   /* SCHED_IDLE */
	unsigned int		idle_h_nr_running; /* SCHED_IDLE */

	s64			avg_vruntime;
	u64			avg_load;

	u64			exec_clock;
	u64			min_vruntime;
#ifdef CONFIG_SCHED_CORE
	unsigned int		forceidle_seq;
	u64			min_vruntime_fi;
#endif

#ifndef CONFIG_64BIT
	u64			min_vruntime_copy;
#endif

	struct rb_root_cached	tasks_timeline;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity	*curr;
	struct sched_entity	*next;

#ifdef	CONFIG_SCHED_DEBUG
	unsigned int		nr_spread_over;
#endif

#ifdef CONFIG_SMP
	/*
	 * CFS load tracking
	 */
	struct sched_avg	avg;
#ifndef CONFIG_64BIT
	u64			last_update_time_copy;
#endif
	struct {
		raw_spinlock_t	lock ____cacheline_aligned;
		int		nr;
		unsigned long	load_avg;
		unsigned long	util_avg;
		unsigned long	runnable_avg;
	} removed;

#ifdef CONFIG_FAIR_GROUP_SCHED
	u64			last_update_tg_load_avg;
	unsigned long		tg_load_avg_contrib;
	long			propagate;
	long			prop_runnable_sum;

	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long		h_load;
	u64			last_h_load_update;
	struct sched_entity	*h_load_next;
#endif /* CONFIG_FAIR_GROUP_SCHED */
#endif /* CONFIG_SMP */

#ifdef CONFIG_FAIR_GROUP_SCHED
	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */

	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
	 * This list is used during load balance.
	 */
	int			on_list;
	struct list_head	leaf_cfs_rq_list;
	struct task_group	*tg;	/* group that "owns" this runqueue */

	/* Locally cached copy of our task_group's idle value */
	int			idle;

#ifdef CONFIG_CFS_BANDWIDTH
	int			runtime_enabled;
	s64			runtime_remaining;

	u64			throttled_pelt_idle;
#ifndef CONFIG_64BIT
	u64                     throttled_pelt_idle_copy;
#endif
	u64			throttled_clock;
	u64			throttled_clock_pelt;
	u64			throttled_clock_pelt_time;
	u64			throttled_clock_self;
	u64			throttled_clock_self_time;
	int			throttled;
	int			throttle_count;
	struct list_head	throttled_list;
	struct list_head	throttled_csd_list;
#endif /* CONFIG_CFS_BANDWIDTH */
#endif /* CONFIG_FAIR_GROUP_SCHED */
};

static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
}

/* RT IPI pull logic requires IRQ_WORK */
#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
# define HAVE_RT_PUSH_IPI
#endif

/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array	active;
	unsigned int		rt_nr_running;
	unsigned int		rr_nr_running;
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
	struct {
		int		curr; /* highest queued rt task prio */
#ifdef CONFIG_SMP
		int		next; /* next highest */
#endif
	} highest_prio;
#endif
#ifdef CONFIG_SMP
	bool			overloaded;
	struct plist_head	pushable_tasks;

#endif /* CONFIG_SMP */
	int			rt_queued;

	int			rt_throttled;
	u64			rt_time;
	u64			rt_runtime;
	/* Nests inside the rq lock: */
	raw_spinlock_t		rt_runtime_lock;

#ifdef CONFIG_RT_GROUP_SCHED
	unsigned int		rt_nr_boosted;

	struct rq		*rq;
	struct task_group	*tg;
#endif
};

static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
{
	return rt_rq->rt_queued && rt_rq->rt_nr_running;
}

/* Deadline class' related fields in a runqueue */
struct dl_rq {
	/* runqueue is an rbtree, ordered by deadline */
	struct rb_root_cached	root;

	unsigned int		dl_nr_running;

#ifdef CONFIG_SMP
	/*
	 * Deadline values of the currently executing and the
	 * earliest ready task on this rq. Caching these facilitates
	 * the decision whether or not a ready but not running task
	 * should migrate somewhere else.
	 */
	struct {
		u64		curr;
		u64		next;
	} earliest_dl;

	bool			overloaded;

	/*
	 * Tasks on this rq that can be pushed away. They are kept in
	 * an rb-tree, ordered by tasks' deadlines, with caching
	 * of the leftmost (earliest deadline) element.
	 */
	struct rb_root_cached	pushable_dl_tasks_root;
#else
	struct dl_bw		dl_bw;
#endif
	/*
	 * "Active utilization" for this runqueue: increased when a
	 * task wakes up (becomes TASK_RUNNING) and decreased when a
	 * task blocks
	 */
	u64			running_bw;

	/*
	 * Utilization of the tasks "assigned" to this runqueue (including
	 * the tasks that are in runqueue and the tasks that executed on this
	 * CPU and blocked). Increased when a task moves to this runqueue, and
	 * decreased when the task moves away (migrates, changes scheduling
	 * policy, or terminates).
	 * This is needed to compute the "inactive utilization" for the
	 * runqueue (inactive utilization = this_bw - running_bw).
	 */
	u64			this_bw;
	u64			extra_bw;

	/*
	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
	 */
	u64			max_bw;

	/*
	 * Inverse of the fraction of CPU utilization that can be reclaimed
	 * by the GRUB algorithm.
	 */
	u64			bw_ratio;
};

#ifdef CONFIG_FAIR_GROUP_SCHED

/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)

static inline void se_update_runnable(struct sched_entity *se)
{
	if (!entity_is_task(se))
		se->runnable_weight = se->my_q->h_nr_running;
}

static inline long se_runnable(struct sched_entity *se)
{
	if (entity_is_task(se))
		return !!se->on_rq;
	else
		return se->runnable_weight;
}

#else /* !CONFIG_FAIR_GROUP_SCHED: */

#define entity_is_task(se)	1

static inline void se_update_runnable(struct sched_entity *se) { }

static inline long se_runnable(struct sched_entity *se)
{
	return !!se->on_rq;
}

#endif /* !CONFIG_FAIR_GROUP_SCHED */

#ifdef CONFIG_SMP
/*
 * XXX we want to get rid of these helpers and use the full load resolution.
 */
static inline long se_weight(struct sched_entity *se)
{
	return scale_load_down(se->load.weight);
}


static inline bool sched_asym_prefer(int a, int b)
{
	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
}

struct perf_domain {
	struct em_perf_domain *em_pd;
	struct perf_domain *next;
	struct rcu_head rcu;
};

/*
 * We add the notion of a root-domain which will be used to define per-domain
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member CPUs from any other cpuset. Whenever a new
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t		refcount;
	atomic_t		rto_count;
	struct rcu_head		rcu;
	cpumask_var_t		span;
	cpumask_var_t		online;

	/*
	 * Indicate pullable load on at least one CPU, e.g:
	 * - More than one runnable task
	 * - Running task is misfit
	 */
	bool			overloaded;

	/* Indicate one or more CPUs over-utilized (tipping point) */
	bool			overutilized;

	/*
	 * The bit corresponding to a CPU gets set here if such CPU has more
	 * than one runnable -deadline task (as it is below for RT tasks).
	 */
	cpumask_var_t		dlo_mask;
	atomic_t		dlo_count;
	struct dl_bw		dl_bw;
	struct cpudl		cpudl;

	/*
	 * Indicate whether a root_domain's dl_bw has been checked or
	 * updated. It's monotonously increasing value.
	 *
	 * Also, some corner cases, like 'wrap around' is dangerous, but given
	 * that u64 is 'big enough'. So that shouldn't be a concern.
	 */
	u64 visit_gen;

#ifdef HAVE_RT_PUSH_IPI
	/*
	 * For IPI pull requests, loop across the rto_mask.
	 */
	struct irq_work		rto_push_work;
	raw_spinlock_t		rto_lock;
	/* These are only updated and read within rto_lock */
	int			rto_loop;
	int			rto_cpu;
	/* These atomics are updated outside of a lock */
	atomic_t		rto_loop_next;
	atomic_t		rto_loop_start;
#endif
	/*
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_var_t		rto_mask;
	struct cpupri		cpupri;

	/*
	 * NULL-terminated list of performance domains intersecting with the
	 * CPUs of the rd. Protected by RCU.
	 */
	struct perf_domain __rcu *pd;
};

extern void init_defrootdomain(void);
extern int sched_init_domains(const struct cpumask *cpu_map);
extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
extern void sched_get_rd(struct root_domain *rd);
extern void sched_put_rd(struct root_domain *rd);

static inline int get_rd_overloaded(struct root_domain *rd)
{
	return READ_ONCE(rd->overloaded);
}

static inline void set_rd_overloaded(struct root_domain *rd, int status)
{
	if (get_rd_overloaded(rd) != status)
		WRITE_ONCE(rd->overloaded, status);
}

#ifdef HAVE_RT_PUSH_IPI
extern void rto_push_irq_work_func(struct irq_work *work);
#endif
#endif /* CONFIG_SMP */

#ifdef CONFIG_UCLAMP_TASK
/*
 * struct uclamp_bucket - Utilization clamp bucket
 * @value: utilization clamp value for tasks on this clamp bucket
 * @tasks: number of RUNNABLE tasks on this clamp bucket
 *
 * Keep track of how many tasks are RUNNABLE for a given utilization
 * clamp value.
 */
struct uclamp_bucket {
	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
};

/*
 * struct uclamp_rq - rq's utilization clamp
 * @value: currently active clamp values for a rq
 * @bucket: utilization clamp buckets affecting a rq
 *
 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
 * A clamp value is affecting a rq when there is at least one task RUNNABLE
 * (or actually running) with that value.
 *
 * There are up to UCLAMP_CNT possible different clamp values, currently there
 * are only two: minimum utilization and maximum utilization.
 *
 * All utilization clamping values are MAX aggregated, since:
 * - for util_min: we want to run the CPU at least at the max of the minimum
 *   utilization required by its currently RUNNABLE tasks.
 * - for util_max: we want to allow the CPU to run up to the max of the
 *   maximum utilization allowed by its currently RUNNABLE tasks.
 *
 * Since on each system we expect only a limited number of different
 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
 * the metrics required to compute all the per-rq utilization clamp values.
 */
struct uclamp_rq {
	unsigned int value;
	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
};

DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
#endif /* CONFIG_UCLAMP_TASK */

struct balance_callback {
	struct balance_callback *next;
	void (*func)(struct rq *rq);
};

/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
struct rq {
	/* runqueue lock: */
	raw_spinlock_t		__lock;

	unsigned int		nr_running;
#ifdef CONFIG_NUMA_BALANCING
	unsigned int		nr_numa_running;
	unsigned int		nr_preferred_running;
	unsigned int		numa_migrate_on;
#endif
#ifdef CONFIG_NO_HZ_COMMON
#ifdef CONFIG_SMP
	unsigned long		last_blocked_load_update_tick;
	unsigned int		has_blocked_load;
	call_single_data_t	nohz_csd;
#endif /* CONFIG_SMP */
	unsigned int		nohz_tick_stopped;
	atomic_t		nohz_flags;
#endif /* CONFIG_NO_HZ_COMMON */

#ifdef CONFIG_SMP
	unsigned int		ttwu_pending;
#endif
	u64			nr_switches;

#ifdef CONFIG_UCLAMP_TASK
	/* Utilization clamp values based on CPU's RUNNABLE tasks */
	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
	unsigned int		uclamp_flags;
#define UCLAMP_FLAG_IDLE 0x01
#endif

	struct cfs_rq		cfs;
	struct rt_rq		rt;
	struct dl_rq		dl;

#ifdef CONFIG_FAIR_GROUP_SCHED
	/* list of leaf cfs_rq on this CPU: */
	struct list_head	leaf_cfs_rq_list;
	struct list_head	*tmp_alone_branch;
#endif /* CONFIG_FAIR_GROUP_SCHED */

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned int		nr_uninterruptible;

	struct task_struct __rcu	*curr;
	struct task_struct	*idle;
	struct task_struct	*stop;
	unsigned long		next_balance;
	struct mm_struct	*prev_mm;

	unsigned int		clock_update_flags;
	u64			clock;
	/* Ensure that all clocks are in the same cache line */
	u64			clock_task ____cacheline_aligned;
	u64			clock_pelt;
	unsigned long		lost_idle_time;
	u64			clock_pelt_idle;
	u64			clock_idle;
#ifndef CONFIG_64BIT
	u64			clock_pelt_idle_copy;
	u64			clock_idle_copy;
#endif

	atomic_t		nr_iowait;

#ifdef CONFIG_SCHED_DEBUG
	u64 last_seen_need_resched_ns;
	int ticks_without_resched;
#endif

#ifdef CONFIG_MEMBARRIER
	int membarrier_state;
#endif

#ifdef CONFIG_SMP
	struct root_domain		*rd;
	struct sched_domain __rcu	*sd;

	unsigned long		cpu_capacity;

	struct balance_callback *balance_callback;

	unsigned char		nohz_idle_balance;
	unsigned char		idle_balance;

	unsigned long		misfit_task_load;

	/* For active balancing */
	int			active_balance;
	int			push_cpu;
	struct cpu_stop_work	active_balance_work;

	/* CPU of this runqueue: */
	int			cpu;
	int			online;

	struct list_head cfs_tasks;

	struct sched_avg	avg_rt;
	struct sched_avg	avg_dl;
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
	struct sched_avg	avg_irq;
#endif
#ifdef CONFIG_SCHED_HW_PRESSURE
	struct sched_avg	avg_hw;
#endif
	u64			idle_stamp;
	u64			avg_idle;

	/* This is used to determine avg_idle's max value */
	u64			max_idle_balance_cost;

#ifdef CONFIG_HOTPLUG_CPU
	struct rcuwait		hotplug_wait;
#endif
#endif /* CONFIG_SMP */

#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64			prev_irq_time;
	u64			psi_irq_time;
#endif
#ifdef CONFIG_PARAVIRT
	u64			prev_steal_time;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	u64			prev_steal_time_rq;
#endif

	/* calc_load related fields */
	unsigned long		calc_load_update;
	long			calc_load_active;

#ifdef CONFIG_SCHED_HRTICK
#ifdef CONFIG_SMP
	call_single_data_t	hrtick_csd;
#endif
	struct hrtimer		hrtick_timer;
	ktime_t			hrtick_time;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info	rq_sched_info;
	unsigned long long	rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */

	/* sys_sched_yield() stats */
	unsigned int		yld_count;

	/* schedule() stats */
	unsigned int		sched_count;
	unsigned int		sched_goidle;

	/* try_to_wake_up() stats */
	unsigned int		ttwu_count;
	unsigned int		ttwu_local;
#endif

#ifdef CONFIG_CPU_IDLE
	/* Must be inspected within a RCU lock section */
	struct cpuidle_state	*idle_state;
#endif

#ifdef CONFIG_SMP
	unsigned int		nr_pinned;
#endif
	unsigned int		push_busy;
	struct cpu_stop_work	push_work;

#ifdef CONFIG_SCHED_CORE
	/* per rq */
	struct rq		*core;
	struct task_struct	*core_pick;
	unsigned int		core_enabled;
	unsigned int		core_sched_seq;
	struct rb_root		core_tree;

	/* shared state -- careful with sched_core_cpu_deactivate() */
	unsigned int		core_task_seq;
	unsigned int		core_pick_seq;
	unsigned long		core_cookie;
	unsigned int		core_forceidle_count;
	unsigned int		core_forceidle_seq;
	unsigned int		core_forceidle_occupation;
	u64			core_forceidle_start;
#endif

	/* Scratch cpumask to be temporarily used under rq_lock */
	cpumask_var_t		scratch_mask;

#if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
	call_single_data_t	cfsb_csd;
	struct list_head	cfsb_csd_list;
#endif
};

#ifdef CONFIG_FAIR_GROUP_SCHED

/* CPU runqueue to which this cfs_rq is attached */
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rq;
}

#else

static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
}
#endif

static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

#define MDF_PUSH		0x01

static inline bool is_migration_disabled(struct task_struct *p)
{
#ifdef CONFIG_SMP
	return p->migration_disabled;
#else
	return false;
#endif
}

DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		this_cpu_ptr(&runqueues)
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
#define raw_rq()		raw_cpu_ptr(&runqueues)

#ifdef CONFIG_SCHED_CORE
static inline struct cpumask *sched_group_span(struct sched_group *sg);

DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);

static inline bool sched_core_enabled(struct rq *rq)
{
	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
}

static inline bool sched_core_disabled(void)
{
	return !static_branch_unlikely(&__sched_core_enabled);
}

/*
 * Be careful with this function; not for general use. The return value isn't
 * stable unless you actually hold a relevant rq->__lock.
 */
static inline raw_spinlock_t *rq_lockp(struct rq *rq)
{
	if (sched_core_enabled(rq))
		return &rq->core->__lock;

	return &rq->__lock;
}

static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
{
	if (rq->core_enabled)
		return &rq->core->__lock;

	return &rq->__lock;
}

extern bool
cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi);

extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);

/*
 * Helpers to check if the CPU's core cookie matches with the task's cookie
 * when core scheduling is enabled.
 * A special case is that the task's cookie always matches with CPU's core
 * cookie if the CPU is in an idle core.
 */
static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
{
	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
	if (!sched_core_enabled(rq))
		return true;

	return rq->core->core_cookie == p->core_cookie;
}

static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
{
	bool idle_core = true;
	int cpu;

	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
	if (!sched_core_enabled(rq))
		return true;

	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
		if (!available_idle_cpu(cpu)) {
			idle_core = false;
			break;
		}
	}

	/*
	 * A CPU in an idle core is always the best choice for tasks with
	 * cookies.
	 */
	return idle_core || rq->core->core_cookie == p->core_cookie;
}

static inline bool sched_group_cookie_match(struct rq *rq,
					    struct task_struct *p,
					    struct sched_group *group)
{
	int cpu;

	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
	if (!sched_core_enabled(rq))
		return true;

	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
		if (sched_core_cookie_match(cpu_rq(cpu), p))
			return true;
	}
	return false;
}

static inline bool sched_core_enqueued(struct task_struct *p)
{
	return !RB_EMPTY_NODE(&p->core_node);
}

extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);

extern void sched_core_get(void);
extern void sched_core_put(void);

#else /* !CONFIG_SCHED_CORE: */

static inline bool sched_core_enabled(struct rq *rq)
{
	return false;
}

static inline bool sched_core_disabled(void)
{
	return true;
}

static inline raw_spinlock_t *rq_lockp(struct rq *rq)
{
	return &rq->__lock;
}

static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
{
	return &rq->__lock;
}

static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
{
	return true;
}

static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
{
	return true;
}

static inline bool sched_group_cookie_match(struct rq *rq,
					    struct task_struct *p,
					    struct sched_group *group)
{
	return true;
}

#endif /* !CONFIG_SCHED_CORE */

static inline void lockdep_assert_rq_held(struct rq *rq)
{
	lockdep_assert_held(__rq_lockp(rq));
}

extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
extern bool raw_spin_rq_trylock(struct rq *rq);
extern void raw_spin_rq_unlock(struct rq *rq);

static inline void raw_spin_rq_lock(struct rq *rq)
{
	raw_spin_rq_lock_nested(rq, 0);
}

static inline void raw_spin_rq_lock_irq(struct rq *rq)
{
	local_irq_disable();
	raw_spin_rq_lock(rq);
}

static inline void raw_spin_rq_unlock_irq(struct rq *rq)
{
	raw_spin_rq_unlock(rq);
	local_irq_enable();
}

static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
{
	unsigned long flags;

	local_irq_save(flags);
	raw_spin_rq_lock(rq);

	return flags;
}

static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
{
	raw_spin_rq_unlock(rq);
	local_irq_restore(flags);
}

#define raw_spin_rq_lock_irqsave(rq, flags)	\
do {						\
	flags = _raw_spin_rq_lock_irqsave(rq);	\
} while (0)

#ifdef CONFIG_SCHED_SMT
extern void __update_idle_core(struct rq *rq);

static inline void update_idle_core(struct rq *rq)
{
	if (static_branch_unlikely(&sched_smt_present))
		__update_idle_core(rq);
}

#else
static inline void update_idle_core(struct rq *rq) { }
#endif

#ifdef CONFIG_FAIR_GROUP_SCHED

static inline struct task_struct *task_of(struct sched_entity *se)
{
	SCHED_WARN_ON(!entity_is_task(se));
	return container_of(se, struct task_struct, se);
}

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

#else /* !CONFIG_FAIR_GROUP_SCHED: */

#define task_of(_se)		container_of(_se, struct task_struct, se)

static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
{
	const struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

#endif /* !CONFIG_FAIR_GROUP_SCHED */

extern void update_rq_clock(struct rq *rq);

/*
 * rq::clock_update_flags bits
 *
 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
 *  call to __schedule(). This is an optimisation to avoid
 *  neighbouring rq clock updates.
 *
 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
 *  in effect and calls to update_rq_clock() are being ignored.
 *
 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
 *  made to update_rq_clock() since the last time rq::lock was pinned.
 *
 * If inside of __schedule(), clock_update_flags will have been
 * shifted left (a left shift is a cheap operation for the fast path
 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
 *
 *	if (rq-clock_update_flags >= RQCF_UPDATED)
 *
 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
 * one position though, because the next rq_unpin_lock() will shift it
 * back.
 */
#define RQCF_REQ_SKIP		0x01
#define RQCF_ACT_SKIP		0x02
#define RQCF_UPDATED		0x04

static inline void assert_clock_updated(struct rq *rq)
{
	/*
	 * The only reason for not seeing a clock update since the
	 * last rq_pin_lock() is if we're currently skipping updates.
	 */
	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
}

static inline u64 rq_clock(struct rq *rq)
{
	lockdep_assert_rq_held(rq);
	assert_clock_updated(rq);

	return rq->clock;
}

static inline u64 rq_clock_task(struct rq *rq)
{
	lockdep_assert_rq_held(rq);
	assert_clock_updated(rq);

	return rq->clock_task;
}

static inline void rq_clock_skip_update(struct rq *rq)
{
	lockdep_assert_rq_held(rq);
	rq->clock_update_flags |= RQCF_REQ_SKIP;
}

/*
 * See rt task throttling, which is the only time a skip
 * request is canceled.
 */
static inline void rq_clock_cancel_skipupdate(struct rq *rq)
{
	lockdep_assert_rq_held(rq);
	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
}

/*
 * During cpu offlining and rq wide unthrottling, we can trigger
 * an update_rq_clock() for several cfs and rt runqueues (Typically
 * when using list_for_each_entry_*)
 * rq_clock_start_loop_update() can be called after updating the clock
 * once and before iterating over the list to prevent multiple update.
 * After the iterative traversal, we need to call rq_clock_stop_loop_update()
 * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
 */
static inline void rq_clock_start_loop_update(struct rq *rq)
{
	lockdep_assert_rq_held(rq);
	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
	rq->clock_update_flags |= RQCF_ACT_SKIP;
}

static inline void rq_clock_stop_loop_update(struct rq *rq)
{
	lockdep_assert_rq_held(rq);
	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
}

struct rq_flags {
	unsigned long flags;
	struct pin_cookie cookie;
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
	 * current pin context is stashed here in case it needs to be
	 * restored in rq_repin_lock().
	 */
	unsigned int clock_update_flags;
#endif
};

extern struct balance_callback balance_push_callback;

/*
 * Lockdep annotation that avoids accidental unlocks; it's like a
 * sticky/continuous lockdep_assert_held().
 *
 * This avoids code that has access to 'struct rq *rq' (basically everything in
 * the scheduler) from accidentally unlocking the rq if they do not also have a
 * copy of the (on-stack) 'struct rq_flags rf'.
 *
 * Also see Documentation/locking/lockdep-design.rst.
 */
static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
{
	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));

#ifdef CONFIG_SCHED_DEBUG
	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
	rf->clock_update_flags = 0;
# ifdef CONFIG_SMP
	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
# endif
#endif
}

static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
{
#ifdef CONFIG_SCHED_DEBUG
	if (rq->clock_update_flags > RQCF_ACT_SKIP)
		rf->clock_update_flags = RQCF_UPDATED;
#endif

	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
}

static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
{
	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);

#ifdef CONFIG_SCHED_DEBUG
	/*
	 * Restore the value we stashed in @rf for this pin context.
	 */
	rq->clock_update_flags |= rf->clock_update_flags;
#endif
}

extern
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
	__acquires(rq->lock);

extern
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
	__acquires(p->pi_lock)
	__acquires(rq->lock);

static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
	__releases(rq->lock)
{
	rq_unpin_lock(rq, rf);
	raw_spin_rq_unlock(rq);
}

static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
	__releases(rq->lock)
	__releases(p->pi_lock)
{
	rq_unpin_lock(rq, rf);
	raw_spin_rq_unlock(rq);
	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
}

DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
		    _T->rq = task_rq_lock(_T->lock, &_T->rf),
		    task_rq_unlock(_T->rq, _T->lock, &_T->rf),
		    struct rq *rq; struct rq_flags rf)

static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
	__acquires(rq->lock)
{
	raw_spin_rq_lock_irqsave(rq, rf->flags);
	rq_pin_lock(rq, rf);
}

static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf)
	__acquires(rq->lock)
{
	raw_spin_rq_lock_irq(rq);
	rq_pin_lock(rq, rf);
}

static inline void rq_lock(struct rq *rq, struct rq_flags *rf)
	__acquires(rq->lock)
{
	raw_spin_rq_lock(rq);
	rq_pin_lock(rq, rf);
}

static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
	__releases(rq->lock)
{
	rq_unpin_lock(rq, rf);
	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
}

static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
	__releases(rq->lock)
{
	rq_unpin_lock(rq, rf);
	raw_spin_rq_unlock_irq(rq);
}

static inline void rq_unlock(struct rq *rq, struct rq_flags *rf)
	__releases(rq->lock)
{
	rq_unpin_lock(rq, rf);
	raw_spin_rq_unlock(rq);
}

DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
		    rq_lock(_T->lock, &_T->rf),
		    rq_unlock(_T->lock, &_T->rf),
		    struct rq_flags rf)

DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
		    rq_lock_irq(_T->lock, &_T->rf),
		    rq_unlock_irq(_T->lock, &_T->rf),
		    struct rq_flags rf)

DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
		    rq_lock_irqsave(_T->lock, &_T->rf),
		    rq_unlock_irqrestore(_T->lock, &_T->rf),
		    struct rq_flags rf)

static inline struct rq *this_rq_lock_irq(struct rq_flags *rf)
	__acquires(rq->lock)
{
	struct rq *rq;

	local_irq_disable();
	rq = this_rq();
	rq_lock(rq, rf);

	return rq;
}

#ifdef CONFIG_NUMA

enum numa_topology_type {
	NUMA_DIRECT,
	NUMA_GLUELESS_MESH,
	NUMA_BACKPLANE,
};

extern enum numa_topology_type sched_numa_topology_type;
extern int sched_max_numa_distance;
extern bool find_numa_distance(int distance);
extern void sched_init_numa(int offline_node);
extern void sched_update_numa(int cpu, bool online);
extern void sched_domains_numa_masks_set(unsigned int cpu);
extern void sched_domains_numa_masks_clear(unsigned int cpu);
extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);

#else /* !CONFIG_NUMA: */

static inline void sched_init_numa(int offline_node) { }
static inline void sched_update_numa(int cpu, bool online) { }
static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }

static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
{
	return nr_cpu_ids;
}

#endif /* !CONFIG_NUMA */

#ifdef CONFIG_NUMA_BALANCING

/* The regions in numa_faults array from task_struct */
enum numa_faults_stats {
	NUMA_MEM = 0,
	NUMA_CPU,
	NUMA_MEMBUF,
	NUMA_CPUBUF
};

extern void sched_setnuma(struct task_struct *p, int node);
extern int migrate_task_to(struct task_struct *p, int cpu);
extern int migrate_swap(struct task_struct *p, struct task_struct *t,
			int cpu, int scpu);
extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);

#else /* !CONFIG_NUMA_BALANCING: */

static inline void
init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
{
}

#endif /* !CONFIG_NUMA_BALANCING */

#ifdef CONFIG_SMP

static inline void
queue_balance_callback(struct rq *rq,
		       struct balance_callback *head,
		       void (*func)(struct rq *rq))
{
	lockdep_assert_rq_held(rq);

	/*
	 * Don't (re)queue an already queued item; nor queue anything when
	 * balance_push() is active, see the comment with
	 * balance_push_callback.
	 */
	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
		return;

	head->func = func;
	head->next = rq->balance_callback;
	rq->balance_callback = head;
}

#define rcu_dereference_check_sched_domain(p) \
	rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex))

/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 * See destroy_sched_domains: call_rcu for details.
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
			__sd; __sd = __sd->parent)

/* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
static const unsigned int SD_SHARED_CHILD_MASK =
#include <linux/sched/sd_flags.h>
0;
#undef SD_FLAG

/**
 * highest_flag_domain - Return highest sched_domain containing flag.
 * @cpu:	The CPU whose highest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the highest sched_domain
 *		for the given CPU.
 *
 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
 */
static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd, *hsd = NULL;

	for_each_domain(cpu, sd) {
		if (sd->flags & flag) {
			hsd = sd;
			continue;
		}

		/*
		 * Stop the search if @flag is known to be shared at lower
		 * levels. It will not be found further up.
		 */
		if (flag & SD_SHARED_CHILD_MASK)
			break;
	}

	return hsd;
}

static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		if (sd->flags & flag)
			break;
	}

	return sd;
}

DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
DECLARE_PER_CPU(int, sd_llc_size);
DECLARE_PER_CPU(int, sd_llc_id);
DECLARE_PER_CPU(int, sd_share_id);
DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);

extern struct static_key_false sched_asym_cpucapacity;
extern struct static_key_false sched_cluster_active;

static __always_inline bool sched_asym_cpucap_active(void)
{
	return static_branch_unlikely(&sched_asym_cpucapacity);
}

struct sched_group_capacity {
	atomic_t		ref;
	/*
	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
	 * for a single CPU.
	 */
	unsigned long		capacity;
	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
	unsigned long		next_update;
	int			imbalance;		/* XXX unrelated to capacity but shared group state */

#ifdef CONFIG_SCHED_DEBUG
	int			id;
#endif

	unsigned long		cpumask[];		/* Balance mask */
};

struct sched_group {
	struct sched_group	*next;			/* Must be a circular list */
	atomic_t		ref;

	unsigned int		group_weight;
	unsigned int		cores;
	struct sched_group_capacity *sgc;
	int			asym_prefer_cpu;	/* CPU of highest priority in group */
	int			flags;

	/*
	 * The CPUs this group covers.
	 *
	 * NOTE: this field is variable length. (Allocated dynamically
	 * by attaching extra space to the end of the structure,
	 * depending on how many CPUs the kernel has booted up with)
	 */
	unsigned long		cpumask[];
};

static inline struct cpumask *sched_group_span(struct sched_group *sg)
{
	return to_cpumask(sg->cpumask);
}

/*
 * See build_balance_mask().
 */
static inline struct cpumask *group_balance_mask(struct sched_group *sg)
{
	return to_cpumask(sg->sgc->cpumask);
}

extern int group_balance_cpu(struct sched_group *sg);

#ifdef CONFIG_SCHED_DEBUG
extern void update_sched_domain_debugfs(void);
extern void dirty_sched_domain_sysctl(int cpu);
#else
static inline void update_sched_domain_debugfs(void) { }
static inline void dirty_sched_domain_sysctl(int cpu) { }
#endif

extern int sched_update_scaling(void);

static inline const struct cpumask *task_user_cpus(struct task_struct *p)
{
	if (!p->user_cpus_ptr)
		return cpu_possible_mask; /* &init_task.cpus_mask */
	return p->user_cpus_ptr;
}

#endif /* CONFIG_SMP */

#include "stats.h"

#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)

extern void __sched_core_account_forceidle(struct rq *rq);

static inline void sched_core_account_forceidle(struct rq *rq)
{
	if (schedstat_enabled())
		__sched_core_account_forceidle(rq);
}

extern void __sched_core_tick(struct rq *rq);

static inline void sched_core_tick(struct rq *rq)
{
	if (sched_core_enabled(rq) && schedstat_enabled())
		__sched_core_tick(rq);
}

#else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */

static inline void sched_core_account_forceidle(struct rq *rq) { }

static inline void sched_core_tick(struct rq *rq) { }

#endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */

#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
 * We cannot use task_css() and friends because the cgroup subsystem
 * changes that value before the cgroup_subsys::attach() method is called,
 * therefore we cannot pin it and might observe the wrong value.
 *
 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 * core changes this before calling sched_move_task().
 *
 * Instead we use a 'copy' which is updated from sched_move_task() while
 * holding both task_struct::pi_lock and rq::lock.
 */
static inline struct task_group *task_group(struct task_struct *p)
{
	return p->sched_task_group;
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
	struct task_group *tg = task_group(p);
#endif

#ifdef CONFIG_FAIR_GROUP_SCHED
	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
	p->se.cfs_rq = tg->cfs_rq[cpu];
	p->se.parent = tg->se[cpu];
	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = tg->rt_rq[cpu];
	p->rt.parent = tg->rt_se[cpu];
#endif
}

#else /* !CONFIG_CGROUP_SCHED: */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }

static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* !CONFIG_CGROUP_SCHED */

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfully executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
	p->wake_cpu = cpu;
#endif
}

/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug const
#endif

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

enum {
#include "features.h"
	__SCHED_FEAT_NR,
};

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG

/*
 * To support run-time toggling of sched features, all the translation units
 * (but core.c) reference the sysctl_sched_features defined in core.c.
 */
extern const_debug unsigned int sysctl_sched_features;

#ifdef CONFIG_JUMP_LABEL

#define SCHED_FEAT(name, enabled)					\
static __always_inline bool static_branch_##name(struct static_key *key) \
{									\
	return static_key_##enabled(key);				\
}

#include "features.h"
#undef SCHED_FEAT

extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))

#else /* !CONFIG_JUMP_LABEL: */

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))

#endif /* !CONFIG_JUMP_LABEL */

#else /* !SCHED_DEBUG: */

/*
 * Each translation unit has its own copy of sysctl_sched_features to allow
 * constants propagation at compile time and compiler optimization based on
 * features default.
 */
#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |
static const_debug __maybe_unused unsigned int sysctl_sched_features =
#include "features.h"
	0;
#undef SCHED_FEAT

#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))

#endif /* !SCHED_DEBUG */

extern struct static_key_false sched_numa_balancing;
extern struct static_key_false sched_schedstats;

static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_runtime < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}

static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
{
#ifdef CONFIG_SMP
	return p->on_cpu;
#else
	return task_current(rq, p);
#endif
}

static inline int task_on_rq_queued(struct task_struct *p)
{
	return p->on_rq == TASK_ON_RQ_QUEUED;
}

static inline int task_on_rq_migrating(struct task_struct *p)
{
	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
}

/* Wake flags. The first three directly map to some SD flag value */
#define WF_EXEC			0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
#define WF_FORK			0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
#define WF_TTWU			0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */

#define WF_SYNC			0x10 /* Waker goes to sleep after wakeup */
#define WF_MIGRATED		0x20 /* Internal use, task got migrated */
#define WF_CURRENT_CPU		0x40 /* Prefer to move the wakee to the current CPU. */

#ifdef CONFIG_SMP
static_assert(WF_EXEC == SD_BALANCE_EXEC);
static_assert(WF_FORK == SD_BALANCE_FORK);
static_assert(WF_TTWU == SD_BALANCE_WAKE);
#endif

/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

#define WEIGHT_IDLEPRIO		3
#define WMULT_IDLEPRIO		1431655765

extern const int		sched_prio_to_weight[40];
extern const u32		sched_prio_to_wmult[40];

/*
 * {de,en}queue flags:
 *
 * DEQUEUE_SLEEP  - task is no longer runnable
 * ENQUEUE_WAKEUP - task just became runnable
 *
 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
 *                are in a known state which allows modification. Such pairs
 *                should preserve as much state as possible.
 *
 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
 *        in the runqueue.
 *
 * NOCLOCK - skip the update_rq_clock() (avoids double updates)
 *
 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
 *
 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
 *
 */

#define DEQUEUE_SLEEP		0x01
#define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
#define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
#define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
#define DEQUEUE_MIGRATING	0x100 /* Matches ENQUEUE_MIGRATING */

#define ENQUEUE_WAKEUP		0x01
#define ENQUEUE_RESTORE		0x02
#define ENQUEUE_MOVE		0x04
#define ENQUEUE_NOCLOCK		0x08

#define ENQUEUE_HEAD		0x10
#define ENQUEUE_REPLENISH	0x20
#ifdef CONFIG_SMP
#define ENQUEUE_MIGRATED	0x40
#else
#define ENQUEUE_MIGRATED	0x00
#endif
#define ENQUEUE_INITIAL		0x80
#define ENQUEUE_MIGRATING	0x100

#define RETRY_TASK		((void *)-1UL)

struct affinity_context {
	const struct cpumask	*new_mask;
	struct cpumask		*user_mask;
	unsigned int		flags;
};

extern s64 update_curr_common(struct rq *rq);

struct sched_class {

#ifdef CONFIG_UCLAMP_TASK
	int uclamp_enabled;
#endif

	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
	void (*yield_task)   (struct rq *rq);
	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);

	void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);

	struct task_struct *(*pick_next_task)(struct rq *rq);

	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);

#ifdef CONFIG_SMP
	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);

	struct task_struct * (*pick_task)(struct rq *rq);

	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);

	void (*task_woken)(struct rq *this_rq, struct task_struct *task);

	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);

	void (*rq_online)(struct rq *rq);
	void (*rq_offline)(struct rq *rq);

	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
#endif

	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
	void (*task_fork)(struct task_struct *p);
	void (*task_dead)(struct task_struct *p);

	/*
	 * The switched_from() call is allowed to drop rq->lock, therefore we
	 * cannot assume the switched_from/switched_to pair is serialized by
	 * rq->lock. They are however serialized by p->pi_lock.
	 */
	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
			      int oldprio);

	unsigned int (*get_rr_interval)(struct rq *rq,
					struct task_struct *task);

	void (*update_curr)(struct rq *rq);

#ifdef CONFIG_FAIR_GROUP_SCHED
	void (*task_change_group)(struct task_struct *p);
#endif

#ifdef CONFIG_SCHED_CORE
	int (*task_is_throttled)(struct task_struct *p, int cpu);
#endif
};

static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	WARN_ON_ONCE(rq->curr != prev);
	prev->sched_class->put_prev_task(rq, prev);
}

static inline void set_next_task(struct rq *rq, struct task_struct *next)
{
	next->sched_class->set_next_task(rq, next, false);
}


/*
 * Helper to define a sched_class instance; each one is placed in a separate
 * section which is ordered by the linker script:
 *
 *   include/asm-generic/vmlinux.lds.h
 *
 * *CAREFUL* they are laid out in *REVERSE* order!!!
 *
 * Also enforce alignment on the instance, not the type, to guarantee layout.
 */
#define DEFINE_SCHED_CLASS(name) \
const struct sched_class name##_sched_class \
	__aligned(__alignof__(struct sched_class)) \
	__section("__" #name "_sched_class")

/* Defined in include/asm-generic/vmlinux.lds.h */
extern struct sched_class __sched_class_highest[];
extern struct sched_class __sched_class_lowest[];

#define for_class_range(class, _from, _to) \
	for (class = (_from); class < (_to); class++)

#define for_each_class(class) \
	for_class_range(class, __sched_class_highest, __sched_class_lowest)

#define sched_class_above(_a, _b)	((_a) < (_b))

extern const struct sched_class stop_sched_class;
extern const struct sched_class dl_sched_class;
extern const struct sched_class rt_sched_class;
extern const struct sched_class fair_sched_class;
extern const struct sched_class idle_sched_class;

static inline bool sched_stop_runnable(struct rq *rq)
{
	return rq->stop && task_on_rq_queued(rq->stop);
}

static inline bool sched_dl_runnable(struct rq *rq)
{
	return rq->dl.dl_nr_running > 0;
}

static inline bool sched_rt_runnable(struct rq *rq)
{
	return rq->rt.rt_queued > 0;
}

static inline bool sched_fair_runnable(struct rq *rq)
{
	return rq->cfs.nr_running > 0;
}

extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
extern struct task_struct *pick_next_task_idle(struct rq *rq);

#define SCA_CHECK		0x01
#define SCA_MIGRATE_DISABLE	0x02
#define SCA_MIGRATE_ENABLE	0x04
#define SCA_USER		0x08

#ifdef CONFIG_SMP

extern void update_group_capacity(struct sched_domain *sd, int cpu);

extern void sched_balance_trigger(struct rq *rq);

extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx);
extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);

static inline cpumask_t *alloc_user_cpus_ptr(int node)
{
	/*
	 * See do_set_cpus_allowed() above for the rcu_head usage.
	 */
	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));

	return kmalloc_node(size, GFP_KERNEL, node);
}

static inline struct task_struct *get_push_task(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	lockdep_assert_rq_held(rq);

	if (rq->push_busy)
		return NULL;

	if (p->nr_cpus_allowed == 1)
		return NULL;

	if (p->migration_disabled)
		return NULL;

	rq->push_busy = true;
	return get_task_struct(p);
}

extern int push_cpu_stop(void *arg);

#else /* !CONFIG_SMP: */

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 struct affinity_context *ctx)
{
	return set_cpus_allowed_ptr(p, ctx->new_mask);
}

static inline cpumask_t *alloc_user_cpus_ptr(int node)
{
	return NULL;
}

#endif /* !CONFIG_SMP */

#ifdef CONFIG_CPU_IDLE

static inline void idle_set_state(struct rq *rq,
				  struct cpuidle_state *idle_state)
{
	rq->idle_state = idle_state;
}

static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
	SCHED_WARN_ON(!rcu_read_lock_held());

	return rq->idle_state;
}

#else /* !CONFIG_CPU_IDLE: */

static inline void idle_set_state(struct rq *rq,
				  struct cpuidle_state *idle_state)
{
}

static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
	return NULL;
}

#endif /* !CONFIG_CPU_IDLE */

extern void schedule_idle(void);
asmlinkage void schedule_user(void);

extern void sysrq_sched_debug_show(void);
extern void sched_init_granularity(void);
extern void update_max_interval(void);

extern void init_sched_dl_class(void);
extern void init_sched_rt_class(void);
extern void init_sched_fair_class(void);

extern void reweight_task(struct task_struct *p, const struct load_weight *lw);

extern void resched_curr(struct rq *rq);
extern void resched_cpu(int cpu);

extern struct rt_bandwidth def_rt_bandwidth;
extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);

extern void init_dl_entity(struct sched_dl_entity *dl_se);

#define BW_SHIFT		20
#define BW_UNIT			(1 << BW_SHIFT)
#define RATIO_SHIFT		8
#define MAX_BW_BITS		(64 - BW_SHIFT)
#define MAX_BW			((1ULL << MAX_BW_BITS) - 1)

extern unsigned long to_ratio(u64 period, u64 runtime);

extern void init_entity_runnable_average(struct sched_entity *se);
extern void post_init_entity_util_avg(struct task_struct *p);

#ifdef CONFIG_NO_HZ_FULL
extern bool sched_can_stop_tick(struct rq *rq);
extern int __init sched_tick_offload_init(void);

/*
 * Tick may be needed by tasks in the runqueue depending on their policy and
 * requirements. If tick is needed, lets send the target an IPI to kick it out of
 * nohz mode if necessary.
 */
static inline void sched_update_tick_dependency(struct rq *rq)
{
	int cpu = cpu_of(rq);

	if (!tick_nohz_full_cpu(cpu))
		return;

	if (sched_can_stop_tick(rq))
		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
	else
		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
}
#else /* !CONFIG_NO_HZ_FULL: */
static inline int sched_tick_offload_init(void) { return 0; }
static inline void sched_update_tick_dependency(struct rq *rq) { }
#endif /* !CONFIG_NO_HZ_FULL */

static inline void add_nr_running(struct rq *rq, unsigned count)
{
	unsigned prev_nr = rq->nr_running;

	rq->nr_running = prev_nr + count;
	if (trace_sched_update_nr_running_tp_enabled()) {
		call_trace_sched_update_nr_running(rq, count);
	}

#ifdef CONFIG_SMP
	if (prev_nr < 2 && rq->nr_running >= 2)
		set_rd_overloaded(rq->rd, 1);
#endif

	sched_update_tick_dependency(rq);
}

static inline void sub_nr_running(struct rq *rq, unsigned count)
{
	rq->nr_running -= count;
	if (trace_sched_update_nr_running_tp_enabled()) {
		call_trace_sched_update_nr_running(rq, -count);
	}

	/* Check if we still need preemption */
	sched_update_tick_dependency(rq);
}

extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);

extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);

#ifdef CONFIG_PREEMPT_RT
# define SCHED_NR_MIGRATE_BREAK 8
#else
# define SCHED_NR_MIGRATE_BREAK 32
#endif

extern const_debug unsigned int sysctl_sched_nr_migrate;
extern const_debug unsigned int sysctl_sched_migration_cost;

extern unsigned int sysctl_sched_base_slice;

#ifdef CONFIG_SCHED_DEBUG
extern int sysctl_resched_latency_warn_ms;
extern int sysctl_resched_latency_warn_once;

extern unsigned int sysctl_sched_tunable_scaling;

extern unsigned int sysctl_numa_balancing_scan_delay;
extern unsigned int sysctl_numa_balancing_scan_period_min;
extern unsigned int sysctl_numa_balancing_scan_period_max;
extern unsigned int sysctl_numa_balancing_scan_size;
extern unsigned int sysctl_numa_balancing_hot_threshold;
#endif

#ifdef CONFIG_SCHED_HRTICK

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!cpu_active(cpu_of(rq)))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static inline int hrtick_enabled_fair(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	return hrtick_enabled(rq);
}

static inline int hrtick_enabled_dl(struct rq *rq)
{
	if (!sched_feat(HRTICK_DL))
		return 0;
	return hrtick_enabled(rq);
}

extern void hrtick_start(struct rq *rq, u64 delay);

#else /* !CONFIG_SCHED_HRTICK: */

static inline int hrtick_enabled_fair(struct rq *rq)
{
	return 0;
}

static inline int hrtick_enabled_dl(struct rq *rq)
{
	return 0;
}

static inline int hrtick_enabled(struct rq *rq)
{
	return 0;
}

#endif /* !CONFIG_SCHED_HRTICK */

#ifndef arch_scale_freq_tick
static __always_inline void arch_scale_freq_tick(void) { }
#endif

#ifndef arch_scale_freq_capacity
/**
 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
 * @cpu: the CPU in question.
 *
 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
 *
 *     f_curr
 *     ------ * SCHED_CAPACITY_SCALE
 *     f_max
 */
static __always_inline
unsigned long arch_scale_freq_capacity(int cpu)
{
	return SCHED_CAPACITY_SCALE;
}
#endif

#ifdef CONFIG_SCHED_DEBUG
/*
 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
 * acquire rq lock instead of rq_lock(). So at the end of these two functions
 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
 */
static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
{
	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
#ifdef CONFIG_SMP
	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
#endif
}
#else
static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) { }
#endif

#define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)				\
__DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__)			\
static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2)	\
{ class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;			\
  _lock; return _t; }

#ifdef CONFIG_SMP

static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
{
#ifdef CONFIG_SCHED_CORE
	/*
	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
	 * order by core-id first and cpu-id second.
	 *
	 * Notably:
	 *
	 *	double_rq_lock(0,3); will take core-0, core-1 lock
	 *	double_rq_lock(1,2); will take core-1, core-0 lock
	 *
	 * when only cpu-id is considered.
	 */
	if (rq1->core->cpu < rq2->core->cpu)
		return true;
	if (rq1->core->cpu > rq2->core->cpu)
		return false;

	/*
	 * __sched_core_flip() relies on SMT having cpu-id lock order.
	 */
#endif
	return rq1->cpu < rq2->cpu;
}

extern void double_rq_lock(struct rq *rq1, struct rq *rq2);

#ifdef CONFIG_PREEMPTION

/*
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
 */
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	raw_spin_rq_unlock(this_rq);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else /* !CONFIG_PREEMPTION: */
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower CPU-ids and will
 * grant the double lock to lower CPUs over higher ids under contention,
 * regardless of entry order into the function.
 */
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
	    likely(raw_spin_rq_trylock(busiest))) {
		double_rq_clock_clear_update(this_rq, busiest);
		return 0;
	}

	if (rq_order_less(this_rq, busiest)) {
		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
		double_rq_clock_clear_update(this_rq, busiest);
		return 0;
	}

	raw_spin_rq_unlock(this_rq);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#endif /* !CONFIG_PREEMPTION */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	lockdep_assert_irqs_disabled();

	return _double_lock_balance(this_rq, busiest);
}

static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
		raw_spin_rq_unlock(busiest);
	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
}

static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	spin_lock(l1);
	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	spin_lock_irq(l1);
	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	raw_spin_lock(l1);
	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
{
	raw_spin_unlock(l1);
	raw_spin_unlock(l2);
}

DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
		    double_raw_lock(_T->lock, _T->lock2),
		    double_raw_unlock(_T->lock, _T->lock2))

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	if (__rq_lockp(rq1) != __rq_lockp(rq2))
		raw_spin_rq_unlock(rq2);
	else
		__release(rq2->lock);
	raw_spin_rq_unlock(rq1);
}

extern void set_rq_online (struct rq *rq);
extern void set_rq_offline(struct rq *rq);

extern bool sched_smp_initialized;

#else /* !CONFIG_SMP: */

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	WARN_ON_ONCE(!irqs_disabled());
	WARN_ON_ONCE(rq1 != rq2);
	raw_spin_rq_lock(rq1);
	__acquire(rq2->lock);	/* Fake it out ;) */
	double_rq_clock_clear_update(rq1, rq2);
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	WARN_ON_ONCE(rq1 != rq2);
	raw_spin_rq_unlock(rq1);
	__release(rq2->lock);
}

#endif /* !CONFIG_SMP */

DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
		    double_rq_lock(_T->lock, _T->lock2),
		    double_rq_unlock(_T->lock, _T->lock2))

extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);

#ifdef	CONFIG_SCHED_DEBUG
extern bool sched_debug_verbose;

extern void print_cfs_stats(struct seq_file *m, int cpu);
extern void print_rt_stats(struct seq_file *m, int cpu);
extern void print_dl_stats(struct seq_file *m, int cpu);
extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);

extern void resched_latency_warn(int cpu, u64 latency);
# ifdef CONFIG_NUMA_BALANCING
extern void show_numa_stats(struct task_struct *p, struct seq_file *m);
extern void
print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
		 unsigned long tpf, unsigned long gsf, unsigned long gpf);
# endif /* CONFIG_NUMA_BALANCING */
#else /* !CONFIG_SCHED_DEBUG: */
static inline void resched_latency_warn(int cpu, u64 latency) { }
#endif /* !CONFIG_SCHED_DEBUG */

extern void init_cfs_rq(struct cfs_rq *cfs_rq);
extern void init_rt_rq(struct rt_rq *rt_rq);
extern void init_dl_rq(struct dl_rq *dl_rq);

extern void cfs_bandwidth_usage_inc(void);
extern void cfs_bandwidth_usage_dec(void);

#ifdef CONFIG_NO_HZ_COMMON

#define NOHZ_BALANCE_KICK_BIT	0
#define NOHZ_STATS_KICK_BIT	1
#define NOHZ_NEWILB_KICK_BIT	2
#define NOHZ_NEXT_KICK_BIT	3

/* Run sched_balance_domains() */
#define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
/* Update blocked load */
#define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
/* Update blocked load when entering idle */
#define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
/* Update nohz.next_balance */
#define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)

#define NOHZ_KICK_MASK		(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)

#define nohz_flags(cpu)		(&cpu_rq(cpu)->nohz_flags)

extern void nohz_balance_exit_idle(struct rq *rq);
#else /* !CONFIG_NO_HZ_COMMON: */
static inline void nohz_balance_exit_idle(struct rq *rq) { }
#endif /* !CONFIG_NO_HZ_COMMON */

#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
extern void nohz_run_idle_balance(int cpu);
#else
static inline void nohz_run_idle_balance(int cpu) { }
#endif

#ifdef CONFIG_IRQ_TIME_ACCOUNTING

struct irqtime {
	u64			total;
	u64			tick_delta;
	u64			irq_start_time;
	struct u64_stats_sync	sync;
};

DECLARE_PER_CPU(struct irqtime, cpu_irqtime);

/*
 * Returns the irqtime minus the softirq time computed by ksoftirqd.
 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
 * and never move forward.
 */
static inline u64 irq_time_read(int cpu)
{
	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
	unsigned int seq;
	u64 total;

	do {
		seq = __u64_stats_fetch_begin(&irqtime->sync);
		total = irqtime->total;
	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));

	return total;
}

#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

#ifdef CONFIG_CPU_FREQ

DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);

/**
 * cpufreq_update_util - Take a note about CPU utilization changes.
 * @rq: Runqueue to carry out the update for.
 * @flags: Update reason flags.
 *
 * This function is called by the scheduler on the CPU whose utilization is
 * being updated.
 *
 * It can only be called from RCU-sched read-side critical sections.
 *
 * The way cpufreq is currently arranged requires it to evaluate the CPU
 * performance state (frequency/voltage) on a regular basis to prevent it from
 * being stuck in a completely inadequate performance level for too long.
 * That is not guaranteed to happen if the updates are only triggered from CFS
 * and DL, though, because they may not be coming in if only RT tasks are
 * active all the time (or there are RT tasks only).
 *
 * As a workaround for that issue, this function is called periodically by the
 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
 * but that really is a band-aid.  Going forward it should be replaced with
 * solutions targeted more specifically at RT tasks.
 */
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
{
	struct update_util_data *data;

	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
						  cpu_of(rq)));
	if (data)
		data->func(data, rq_clock(rq), flags);
}
#else /* !CONFIG_CPU_FREQ: */
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { }
#endif /* !CONFIG_CPU_FREQ */

#ifdef arch_scale_freq_capacity
# ifndef arch_scale_freq_invariant
#  define arch_scale_freq_invariant()	true
# endif
#else
# define arch_scale_freq_invariant()	false
#endif

#ifdef CONFIG_SMP

unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
				 unsigned long *min,
				 unsigned long *max);

unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
				 unsigned long min,
				 unsigned long max);


/*
 * Verify the fitness of task @p to run on @cpu taking into account the
 * CPU original capacity and the runtime/deadline ratio of the task.
 *
 * The function will return true if the original capacity of @cpu is
 * greater than or equal to task's deadline density right shifted by
 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
 */
static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
{
	unsigned long cap = arch_scale_cpu_capacity(cpu);

	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
}

static inline unsigned long cpu_bw_dl(struct rq *rq)
{
	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
}

static inline unsigned long cpu_util_dl(struct rq *rq)
{
	return READ_ONCE(rq->avg_dl.util_avg);
}


extern unsigned long cpu_util_cfs(int cpu);
extern unsigned long cpu_util_cfs_boost(int cpu);

static inline unsigned long cpu_util_rt(struct rq *rq)
{
	return READ_ONCE(rq->avg_rt.util_avg);
}

#endif /* CONFIG_SMP */

#ifdef CONFIG_UCLAMP_TASK

unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);

static inline unsigned long uclamp_rq_get(struct rq *rq,
					  enum uclamp_id clamp_id)
{
	return READ_ONCE(rq->uclamp[clamp_id].value);
}

static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
				 unsigned int value)
{
	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
}

static inline bool uclamp_rq_is_idle(struct rq *rq)
{
	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
}

/* Is the rq being capped/throttled by uclamp_max? */
static inline bool uclamp_rq_is_capped(struct rq *rq)
{
	unsigned long rq_util;
	unsigned long max_util;

	if (!static_branch_likely(&sched_uclamp_used))
		return false;

	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);

	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
}

/*
 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
 * by default in the fast path and only gets turned on once userspace performs
 * an operation that requires it.
 *
 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
 * hence is active.
 */
static inline bool uclamp_is_used(void)
{
	return static_branch_likely(&sched_uclamp_used);
}

#define for_each_clamp_id(clamp_id) \
	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)

extern unsigned int sysctl_sched_uclamp_util_min_rt_default;


static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
{
	if (clamp_id == UCLAMP_MIN)
		return 0;
	return SCHED_CAPACITY_SCALE;
}

/* Integer rounded range for each bucket */
#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)

static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
{
	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
}

static inline void
uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined)
{
	uc_se->value = value;
	uc_se->bucket_id = uclamp_bucket_id(value);
	uc_se->user_defined = user_defined;
}

#else /* !CONFIG_UCLAMP_TASK: */

static inline unsigned long
uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
{
	if (clamp_id == UCLAMP_MIN)
		return 0;

	return SCHED_CAPACITY_SCALE;
}

static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }

static inline bool uclamp_is_used(void)
{
	return false;
}

static inline unsigned long
uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id)
{
	if (clamp_id == UCLAMP_MIN)
		return 0;

	return SCHED_CAPACITY_SCALE;
}

static inline void
uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value)
{
}

static inline bool uclamp_rq_is_idle(struct rq *rq)
{
	return false;
}

#endif /* !CONFIG_UCLAMP_TASK */

#ifdef CONFIG_HAVE_SCHED_AVG_IRQ

static inline unsigned long cpu_util_irq(struct rq *rq)
{
	return READ_ONCE(rq->avg_irq.util_avg);
}

static inline
unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
{
	util *= (max - irq);
	util /= max;

	return util;

}

#else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */

static inline unsigned long cpu_util_irq(struct rq *rq)
{
	return 0;
}

static inline
unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
{
	return util;
}

#endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */

#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)

#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))

DECLARE_STATIC_KEY_FALSE(sched_energy_present);

static inline bool sched_energy_enabled(void)
{
	return static_branch_unlikely(&sched_energy_present);
}

extern struct cpufreq_governor schedutil_gov;

#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */

#define perf_domain_span(pd) NULL

static inline bool sched_energy_enabled(void) { return false; }

#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */

#ifdef CONFIG_MEMBARRIER

/*
 * The scheduler provides memory barriers required by membarrier between:
 * - prior user-space memory accesses and store to rq->membarrier_state,
 * - store to rq->membarrier_state and following user-space memory accesses.
 * In the same way it provides those guarantees around store to rq->curr.
 */
static inline void membarrier_switch_mm(struct rq *rq,
					struct mm_struct *prev_mm,
					struct mm_struct *next_mm)
{
	int membarrier_state;

	if (prev_mm == next_mm)
		return;

	membarrier_state = atomic_read(&next_mm->membarrier_state);
	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
		return;

	WRITE_ONCE(rq->membarrier_state, membarrier_state);
}

#else /* !CONFIG_MEMBARRIER :*/

static inline void membarrier_switch_mm(struct rq *rq,
					struct mm_struct *prev_mm,
					struct mm_struct *next_mm)
{
}

#endif /* !CONFIG_MEMBARRIER */

#ifdef CONFIG_SMP
static inline bool is_per_cpu_kthread(struct task_struct *p)
{
	if (!(p->flags & PF_KTHREAD))
		return false;

	if (p->nr_cpus_allowed != 1)
		return false;

	return true;
}
#endif

extern void swake_up_all_locked(struct swait_queue_head *q);
extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);

extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);

#ifdef CONFIG_PREEMPT_DYNAMIC
extern int preempt_dynamic_mode;
extern int sched_dynamic_mode(const char *str);
extern void sched_dynamic_update(int mode);
#endif

#ifdef CONFIG_SCHED_MM_CID

#define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
#define MM_CID_SCAN_DELAY	100			/* 100ms */

extern raw_spinlock_t cid_lock;
extern int use_cid_lock;

extern void sched_mm_cid_migrate_from(struct task_struct *t);
extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
extern void init_sched_mm_cid(struct task_struct *t);

static inline void __mm_cid_put(struct mm_struct *mm, int cid)
{
	if (cid < 0)
		return;
	cpumask_clear_cpu(cid, mm_cidmask(mm));
}

/*
 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
 * be held to transition to other states.
 *
 * State transitions synchronized with cmpxchg or try_cmpxchg need to be
 * consistent across CPUs, which prevents use of this_cpu_cmpxchg.
 */
static inline void mm_cid_put_lazy(struct task_struct *t)
{
	struct mm_struct *mm = t->mm;
	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
	int cid;

	lockdep_assert_irqs_disabled();
	cid = __this_cpu_read(pcpu_cid->cid);
	if (!mm_cid_is_lazy_put(cid) ||
	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
		return;
	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
}

static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
{
	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
	int cid, res;

	lockdep_assert_irqs_disabled();
	cid = __this_cpu_read(pcpu_cid->cid);
	for (;;) {
		if (mm_cid_is_unset(cid))
			return MM_CID_UNSET;
		/*
		 * Attempt transition from valid or lazy-put to unset.
		 */
		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
		if (res == cid)
			break;
		cid = res;
	}
	return cid;
}

static inline void mm_cid_put(struct mm_struct *mm)
{
	int cid;

	lockdep_assert_irqs_disabled();
	cid = mm_cid_pcpu_unset(mm);
	if (cid == MM_CID_UNSET)
		return;
	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
}

static inline int __mm_cid_try_get(struct mm_struct *mm)
{
	struct cpumask *cpumask;
	int cid;

	cpumask = mm_cidmask(mm);
	/*
	 * Retry finding first zero bit if the mask is temporarily
	 * filled. This only happens during concurrent remote-clear
	 * which owns a cid without holding a rq lock.
	 */
	for (;;) {
		cid = cpumask_first_zero(cpumask);
		if (cid < nr_cpu_ids)
			break;
		cpu_relax();
	}
	if (cpumask_test_and_set_cpu(cid, cpumask))
		return -1;

	return cid;
}

/*
 * Save a snapshot of the current runqueue time of this cpu
 * with the per-cpu cid value, allowing to estimate how recently it was used.
 */
static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
{
	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));

	lockdep_assert_rq_held(rq);
	WRITE_ONCE(pcpu_cid->time, rq->clock);
}

static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
{
	int cid;

	/*
	 * All allocations (even those using the cid_lock) are lock-free. If
	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
	 * guarantee forward progress.
	 */
	if (!READ_ONCE(use_cid_lock)) {
		cid = __mm_cid_try_get(mm);
		if (cid >= 0)
			goto end;
		raw_spin_lock(&cid_lock);
	} else {
		raw_spin_lock(&cid_lock);
		cid = __mm_cid_try_get(mm);
		if (cid >= 0)
			goto unlock;
	}

	/*
	 * cid concurrently allocated. Retry while forcing following
	 * allocations to use the cid_lock to ensure forward progress.
	 */
	WRITE_ONCE(use_cid_lock, 1);
	/*
	 * Set use_cid_lock before allocation. Only care about program order
	 * because this is only required for forward progress.
	 */
	barrier();
	/*
	 * Retry until it succeeds. It is guaranteed to eventually succeed once
	 * all newcoming allocations observe the use_cid_lock flag set.
	 */
	do {
		cid = __mm_cid_try_get(mm);
		cpu_relax();
	} while (cid < 0);
	/*
	 * Allocate before clearing use_cid_lock. Only care about
	 * program order because this is for forward progress.
	 */
	barrier();
	WRITE_ONCE(use_cid_lock, 0);
unlock:
	raw_spin_unlock(&cid_lock);
end:
	mm_cid_snapshot_time(rq, mm);

	return cid;
}

static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
{
	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
	struct cpumask *cpumask;
	int cid;

	lockdep_assert_rq_held(rq);
	cpumask = mm_cidmask(mm);
	cid = __this_cpu_read(pcpu_cid->cid);
	if (mm_cid_is_valid(cid)) {
		mm_cid_snapshot_time(rq, mm);
		return cid;
	}
	if (mm_cid_is_lazy_put(cid)) {
		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
	}
	cid = __mm_cid_get(rq, mm);
	__this_cpu_write(pcpu_cid->cid, cid);

	return cid;
}

static inline void switch_mm_cid(struct rq *rq,
				 struct task_struct *prev,
				 struct task_struct *next)
{
	/*
	 * Provide a memory barrier between rq->curr store and load of
	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
	 *
	 * Should be adapted if context_switch() is modified.
	 */
	if (!next->mm) {                                // to kernel
		/*
		 * user -> kernel transition does not guarantee a barrier, but
		 * we can use the fact that it performs an atomic operation in
		 * mmgrab().
		 */
		if (prev->mm)                           // from user
			smp_mb__after_mmgrab();
		/*
		 * kernel -> kernel transition does not change rq->curr->mm
		 * state. It stays NULL.
		 */
	} else {                                        // to user
		/*
		 * kernel -> user transition does not provide a barrier
		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
		 * Provide it here.
		 */
		if (!prev->mm) {                        // from kernel
			smp_mb();
		} else {				// from user
			/*
			 * user->user transition relies on an implicit
			 * memory barrier in switch_mm() when
			 * current->mm changes. If the architecture
			 * switch_mm() does not have an implicit memory
			 * barrier, it is emitted here.  If current->mm
			 * is unchanged, no barrier is needed.
			 */
			smp_mb__after_switch_mm();
		}
	}
	if (prev->mm_cid_active) {
		mm_cid_snapshot_time(rq, prev->mm);
		mm_cid_put_lazy(prev);
		prev->mm_cid = -1;
	}
	if (next->mm_cid_active)
		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
}

#else /* !CONFIG_SCHED_MM_CID: */
static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
static inline void init_sched_mm_cid(struct task_struct *t) { }
#endif /* !CONFIG_SCHED_MM_CID */

extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);

#ifdef CONFIG_RT_MUTEXES

static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
{
	if (pi_task)
		prio = min(prio, pi_task->prio);

	return prio;
}

static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	struct task_struct *pi_task = rt_mutex_get_top_task(p);

	return __rt_effective_prio(pi_task, prio);
}

#else /* !CONFIG_RT_MUTEXES: */

static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	return prio;
}

#endif /* !CONFIG_RT_MUTEXES */

extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi);
extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
extern void __setscheduler_prio(struct task_struct *p, int prio);
extern void set_load_weight(struct task_struct *p, bool update_load);
extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
extern void dequeue_task(struct rq *rq, struct task_struct *p, int flags);

extern void check_class_changed(struct rq *rq, struct task_struct *p,
				const struct sched_class *prev_class,
				int oldprio);

#ifdef CONFIG_SMP
extern struct balance_callback *splice_balance_callbacks(struct rq *rq);
extern void balance_callbacks(struct rq *rq, struct balance_callback *head);
#else

static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
{
	return NULL;
}

static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
{
}

#endif

#endif /* _KERNEL_SCHED_SCHED_H */