Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thomas Gleixner | 1395 | 27.68% | 37 | 25.34% |
Paul E. McKenney | 904 | 17.94% | 10 | 6.85% |
John Stultz | 896 | 17.78% | 19 | 13.01% |
Martin Schwidefsky | 465 | 9.23% | 9 | 6.16% |
Baolin Wang | 375 | 7.44% | 4 | 2.74% |
Peter Zijlstra | 175 | 3.47% | 6 | 4.11% |
Adrian Hunter | 99 | 1.96% | 1 | 0.68% |
Vitaly Kuznetsov | 95 | 1.89% | 1 | 0.68% |
Waiman Long | 91 | 1.81% | 2 | 1.37% |
Feng Tang | 73 | 1.45% | 3 | 2.05% |
Jiri Wiesner | 66 | 1.31% | 1 | 0.68% |
Magnus Damm | 53 | 1.05% | 3 | 2.05% |
Miao Xie | 52 | 1.03% | 1 | 0.68% |
Jon Hunter | 38 | 0.75% | 1 | 0.68% |
Andi Kleen | 38 | 0.75% | 2 | 1.37% |
Stephen Boyd | 35 | 0.69% | 1 | 0.68% |
Kay Sievers | 28 | 0.56% | 2 | 1.37% |
Matthias Kaehlcke | 20 | 0.40% | 1 | 0.68% |
Kyle Walker | 15 | 0.30% | 1 | 0.68% |
Seiichi Ikarashi | 13 | 0.26% | 1 | 0.68% |
Joe Perches | 13 | 0.26% | 1 | 0.68% |
Konstantin Khlebnikov | 12 | 0.24% | 1 | 0.68% |
Jason Wessel | 10 | 0.20% | 1 | 0.68% |
Kees Cook | 9 | 0.18% | 2 | 1.37% |
Daniel Walker | 7 | 0.14% | 2 | 1.37% |
Murali Karicheri | 5 | 0.10% | 1 | 0.68% |
Mathieu Desnoyers | 4 | 0.08% | 1 | 0.68% |
Rusty Russell | 4 | 0.08% | 2 | 1.37% |
Mathieu Malaterre | 4 | 0.08% | 2 | 1.37% |
Minfei Huang | 4 | 0.08% | 1 | 0.68% |
Yury Norov | 3 | 0.06% | 2 | 1.37% |
Kusanagi Kouichi | 3 | 0.06% | 1 | 0.68% |
Jason A. Donenfeld | 3 | 0.06% | 2 | 1.37% |
Colin Cross | 3 | 0.06% | 1 | 0.68% |
Sebastian Andrzej Siewior | 3 | 0.06% | 1 | 0.68% |
Alok N Kataria | 3 | 0.06% | 1 | 0.68% |
Elad Wexler | 2 | 0.04% | 1 | 0.68% |
Ingo Molnar | 2 | 0.04% | 1 | 0.68% |
Guillaume Gomez | 2 | 0.04% | 1 | 0.68% |
Nico Pitre | 2 | 0.04% | 1 | 0.68% |
Patrick Ohly | 2 | 0.04% | 1 | 0.68% |
Zhen Lei | 1 | 0.02% | 1 | 0.68% |
Prarit Bhargava | 1 | 0.02% | 1 | 0.68% |
Mike Travis | 1 | 0.02% | 1 | 0.68% |
Andrew Morton | 1 | 0.02% | 1 | 0.68% |
Azeem Shaikh | 1 | 0.02% | 1 | 0.68% |
Li Zhijian | 1 | 0.02% | 1 | 0.68% |
Yunying Sun | 1 | 0.02% | 1 | 0.68% |
Uwe Kleine-König | 1 | 0.02% | 1 | 0.68% |
Jim Cromie | 1 | 0.02% | 1 | 0.68% |
James Hartley | 1 | 0.02% | 1 | 0.68% |
Patrick Palka | 1 | 0.02% | 1 | 0.68% |
Ricardo B. Marliere | 1 | 0.02% | 1 | 0.68% |
David S. Miller | 1 | 0.02% | 1 | 0.68% |
Total | 5039 | 146 |
// SPDX-License-Identifier: GPL-2.0+ /* * This file contains the functions which manage clocksource drivers. * * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/device.h> #include <linux/clocksource.h> #include <linux/init.h> #include <linux/module.h> #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ #include <linux/tick.h> #include <linux/kthread.h> #include <linux/prandom.h> #include <linux/cpu.h> #include "tick-internal.h" #include "timekeeping_internal.h" static noinline u64 cycles_to_nsec_safe(struct clocksource *cs, u64 start, u64 end) { u64 delta = clocksource_delta(end, start, cs->mask); if (likely(delta < cs->max_cycles)) return clocksource_cyc2ns(delta, cs->mult, cs->shift); return mul_u64_u32_shr(delta, cs->mult, cs->shift); } /** * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks * @mult: pointer to mult variable * @shift: pointer to shift variable * @from: frequency to convert from * @to: frequency to convert to * @maxsec: guaranteed runtime conversion range in seconds * * The function evaluates the shift/mult pair for the scaled math * operations of clocksources and clockevents. * * @to and @from are frequency values in HZ. For clock sources @to is * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock * event @to is the counter frequency and @from is NSEC_PER_SEC. * * The @maxsec conversion range argument controls the time frame in * seconds which must be covered by the runtime conversion with the * calculated mult and shift factors. This guarantees that no 64bit * overflow happens when the input value of the conversion is * multiplied with the calculated mult factor. Larger ranges may * reduce the conversion accuracy by choosing smaller mult and shift * factors. */ void clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec) { u64 tmp; u32 sft, sftacc= 32; /* * Calculate the shift factor which is limiting the conversion * range: */ tmp = ((u64)maxsec * from) >> 32; while (tmp) { tmp >>=1; sftacc--; } /* * Find the conversion shift/mult pair which has the best * accuracy and fits the maxsec conversion range: */ for (sft = 32; sft > 0; sft--) { tmp = (u64) to << sft; tmp += from / 2; do_div(tmp, from); if ((tmp >> sftacc) == 0) break; } *mult = tmp; *shift = sft; } EXPORT_SYMBOL_GPL(clocks_calc_mult_shift); /*[Clocksource internal variables]--------- * curr_clocksource: * currently selected clocksource. * suspend_clocksource: * used to calculate the suspend time. * clocksource_list: * linked list with the registered clocksources * clocksource_mutex: * protects manipulations to curr_clocksource and the clocksource_list * override_name: * Name of the user-specified clocksource. */ static struct clocksource *curr_clocksource; static struct clocksource *suspend_clocksource; static LIST_HEAD(clocksource_list); static DEFINE_MUTEX(clocksource_mutex); static char override_name[CS_NAME_LEN]; static int finished_booting; static u64 suspend_start; /* * Interval: 0.5sec. */ #define WATCHDOG_INTERVAL (HZ >> 1) #define WATCHDOG_INTERVAL_MAX_NS ((2 * WATCHDOG_INTERVAL) * (NSEC_PER_SEC / HZ)) /* * Threshold: 0.0312s, when doubled: 0.0625s. * Also a default for cs->uncertainty_margin when registering clocks. */ #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5) /* * Maximum permissible delay between two readouts of the watchdog * clocksource surrounding a read of the clocksource being validated. * This delay could be due to SMIs, NMIs, or to VCPU preemptions. Used as * a lower bound for cs->uncertainty_margin values when registering clocks. * * The default of 500 parts per million is based on NTP's limits. * If a clocksource is good enough for NTP, it is good enough for us! */ #ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US #define MAX_SKEW_USEC CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US #else #define MAX_SKEW_USEC (125 * WATCHDOG_INTERVAL / HZ) #endif #define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC) #ifdef CONFIG_CLOCKSOURCE_WATCHDOG static void clocksource_watchdog_work(struct work_struct *work); static void clocksource_select(void); static LIST_HEAD(watchdog_list); static struct clocksource *watchdog; static struct timer_list watchdog_timer; static DECLARE_WORK(watchdog_work, clocksource_watchdog_work); static DEFINE_SPINLOCK(watchdog_lock); static int watchdog_running; static atomic_t watchdog_reset_pending; static int64_t watchdog_max_interval; static inline void clocksource_watchdog_lock(unsigned long *flags) { spin_lock_irqsave(&watchdog_lock, *flags); } static inline void clocksource_watchdog_unlock(unsigned long *flags) { spin_unlock_irqrestore(&watchdog_lock, *flags); } static int clocksource_watchdog_kthread(void *data); static void __clocksource_change_rating(struct clocksource *cs, int rating); static void clocksource_watchdog_work(struct work_struct *work) { /* * We cannot directly run clocksource_watchdog_kthread() here, because * clocksource_select() calls timekeeping_notify() which uses * stop_machine(). One cannot use stop_machine() from a workqueue() due * lock inversions wrt CPU hotplug. * * Also, we only ever run this work once or twice during the lifetime * of the kernel, so there is no point in creating a more permanent * kthread for this. * * If kthread_run fails the next watchdog scan over the * watchdog_list will find the unstable clock again. */ kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog"); } static void __clocksource_unstable(struct clocksource *cs) { cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); cs->flags |= CLOCK_SOURCE_UNSTABLE; /* * If the clocksource is registered clocksource_watchdog_kthread() will * re-rate and re-select. */ if (list_empty(&cs->list)) { cs->rating = 0; return; } if (cs->mark_unstable) cs->mark_unstable(cs); /* kick clocksource_watchdog_kthread() */ if (finished_booting) schedule_work(&watchdog_work); } /** * clocksource_mark_unstable - mark clocksource unstable via watchdog * @cs: clocksource to be marked unstable * * This function is called by the x86 TSC code to mark clocksources as unstable; * it defers demotion and re-selection to a kthread. */ void clocksource_mark_unstable(struct clocksource *cs) { unsigned long flags; spin_lock_irqsave(&watchdog_lock, flags); if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) { if (!list_empty(&cs->list) && list_empty(&cs->wd_list)) list_add(&cs->wd_list, &watchdog_list); __clocksource_unstable(cs); } spin_unlock_irqrestore(&watchdog_lock, flags); } static int verify_n_cpus = 8; module_param(verify_n_cpus, int, 0644); enum wd_read_status { WD_READ_SUCCESS, WD_READ_UNSTABLE, WD_READ_SKIP }; static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow) { unsigned int nretries, max_retries; int64_t wd_delay, wd_seq_delay; u64 wd_end, wd_end2; max_retries = clocksource_get_max_watchdog_retry(); for (nretries = 0; nretries <= max_retries; nretries++) { local_irq_disable(); *wdnow = watchdog->read(watchdog); *csnow = cs->read(cs); wd_end = watchdog->read(watchdog); wd_end2 = watchdog->read(watchdog); local_irq_enable(); wd_delay = cycles_to_nsec_safe(watchdog, *wdnow, wd_end); if (wd_delay <= WATCHDOG_MAX_SKEW) { if (nretries > 1 && nretries >= max_retries) { pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n", smp_processor_id(), watchdog->name, nretries); } return WD_READ_SUCCESS; } /* * Now compute delay in consecutive watchdog read to see if * there is too much external interferences that cause * significant delay in reading both clocksource and watchdog. * * If consecutive WD read-back delay > WATCHDOG_MAX_SKEW/2, * report system busy, reinit the watchdog and skip the current * watchdog test. */ wd_seq_delay = cycles_to_nsec_safe(watchdog, wd_end, wd_end2); if (wd_seq_delay > WATCHDOG_MAX_SKEW/2) goto skip_test; } pr_warn("timekeeping watchdog on CPU%d: wd-%s-wd excessive read-back delay of %lldns vs. limit of %ldns, wd-wd read-back delay only %lldns, attempt %d, marking %s unstable\n", smp_processor_id(), cs->name, wd_delay, WATCHDOG_MAX_SKEW, wd_seq_delay, nretries, cs->name); return WD_READ_UNSTABLE; skip_test: pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n", smp_processor_id(), watchdog->name, wd_seq_delay); pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n", cs->name, wd_delay); return WD_READ_SKIP; } static u64 csnow_mid; static cpumask_t cpus_ahead; static cpumask_t cpus_behind; static cpumask_t cpus_chosen; static void clocksource_verify_choose_cpus(void) { int cpu, i, n = verify_n_cpus; if (n < 0) { /* Check all of the CPUs. */ cpumask_copy(&cpus_chosen, cpu_online_mask); cpumask_clear_cpu(smp_processor_id(), &cpus_chosen); return; } /* If no checking desired, or no other CPU to check, leave. */ cpumask_clear(&cpus_chosen); if (n == 0 || num_online_cpus() <= 1) return; /* Make sure to select at least one CPU other than the current CPU. */ cpu = cpumask_first(cpu_online_mask); if (cpu == smp_processor_id()) cpu = cpumask_next(cpu, cpu_online_mask); if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) return; cpumask_set_cpu(cpu, &cpus_chosen); /* Force a sane value for the boot parameter. */ if (n > nr_cpu_ids) n = nr_cpu_ids; /* * Randomly select the specified number of CPUs. If the same * CPU is selected multiple times, that CPU is checked only once, * and no replacement CPU is selected. This gracefully handles * situations where verify_n_cpus is greater than the number of * CPUs that are currently online. */ for (i = 1; i < n; i++) { cpu = get_random_u32_below(nr_cpu_ids); cpu = cpumask_next(cpu - 1, cpu_online_mask); if (cpu >= nr_cpu_ids) cpu = cpumask_first(cpu_online_mask); if (!WARN_ON_ONCE(cpu >= nr_cpu_ids)) cpumask_set_cpu(cpu, &cpus_chosen); } /* Don't verify ourselves. */ cpumask_clear_cpu(smp_processor_id(), &cpus_chosen); } static void clocksource_verify_one_cpu(void *csin) { struct clocksource *cs = (struct clocksource *)csin; csnow_mid = cs->read(cs); } void clocksource_verify_percpu(struct clocksource *cs) { int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX; u64 csnow_begin, csnow_end; int cpu, testcpu; s64 delta; if (verify_n_cpus == 0) return; cpumask_clear(&cpus_ahead); cpumask_clear(&cpus_behind); cpus_read_lock(); preempt_disable(); clocksource_verify_choose_cpus(); if (cpumask_empty(&cpus_chosen)) { preempt_enable(); cpus_read_unlock(); pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name); return; } testcpu = smp_processor_id(); pr_warn("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", cs->name, testcpu, cpumask_pr_args(&cpus_chosen)); for_each_cpu(cpu, &cpus_chosen) { if (cpu == testcpu) continue; csnow_begin = cs->read(cs); smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1); csnow_end = cs->read(cs); delta = (s64)((csnow_mid - csnow_begin) & cs->mask); if (delta < 0) cpumask_set_cpu(cpu, &cpus_behind); delta = (csnow_end - csnow_mid) & cs->mask; if (delta < 0) cpumask_set_cpu(cpu, &cpus_ahead); cs_nsec = cycles_to_nsec_safe(cs, csnow_begin, csnow_end); if (cs_nsec > cs_nsec_max) cs_nsec_max = cs_nsec; if (cs_nsec < cs_nsec_min) cs_nsec_min = cs_nsec; } preempt_enable(); cpus_read_unlock(); if (!cpumask_empty(&cpus_ahead)) pr_warn(" CPUs %*pbl ahead of CPU %d for clocksource %s.\n", cpumask_pr_args(&cpus_ahead), testcpu, cs->name); if (!cpumask_empty(&cpus_behind)) pr_warn(" CPUs %*pbl behind CPU %d for clocksource %s.\n", cpumask_pr_args(&cpus_behind), testcpu, cs->name); if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind)) pr_warn(" CPU %d check durations %lldns - %lldns for clocksource %s.\n", testcpu, cs_nsec_min, cs_nsec_max, cs->name); } EXPORT_SYMBOL_GPL(clocksource_verify_percpu); static inline void clocksource_reset_watchdog(void) { struct clocksource *cs; list_for_each_entry(cs, &watchdog_list, wd_list) cs->flags &= ~CLOCK_SOURCE_WATCHDOG; } static void clocksource_watchdog(struct timer_list *unused) { int64_t wd_nsec, cs_nsec, interval; u64 csnow, wdnow, cslast, wdlast; int next_cpu, reset_pending; struct clocksource *cs; enum wd_read_status read_ret; unsigned long extra_wait = 0; u32 md; spin_lock(&watchdog_lock); if (!watchdog_running) goto out; reset_pending = atomic_read(&watchdog_reset_pending); list_for_each_entry(cs, &watchdog_list, wd_list) { /* Clocksource already marked unstable? */ if (cs->flags & CLOCK_SOURCE_UNSTABLE) { if (finished_booting) schedule_work(&watchdog_work); continue; } read_ret = cs_watchdog_read(cs, &csnow, &wdnow); if (read_ret == WD_READ_UNSTABLE) { /* Clock readout unreliable, so give it up. */ __clocksource_unstable(cs); continue; } /* * When WD_READ_SKIP is returned, it means the system is likely * under very heavy load, where the latency of reading * watchdog/clocksource is very big, and affect the accuracy of * watchdog check. So give system some space and suspend the * watchdog check for 5 minutes. */ if (read_ret == WD_READ_SKIP) { /* * As the watchdog timer will be suspended, and * cs->last could keep unchanged for 5 minutes, reset * the counters. */ clocksource_reset_watchdog(); extra_wait = HZ * 300; break; } /* Clocksource initialized ? */ if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) || atomic_read(&watchdog_reset_pending)) { cs->flags |= CLOCK_SOURCE_WATCHDOG; cs->wd_last = wdnow; cs->cs_last = csnow; continue; } wd_nsec = cycles_to_nsec_safe(watchdog, cs->wd_last, wdnow); cs_nsec = cycles_to_nsec_safe(cs, cs->cs_last, csnow); wdlast = cs->wd_last; /* save these in case we print them */ cslast = cs->cs_last; cs->cs_last = csnow; cs->wd_last = wdnow; if (atomic_read(&watchdog_reset_pending)) continue; /* * The processing of timer softirqs can get delayed (usually * on account of ksoftirqd not getting to run in a timely * manner), which causes the watchdog interval to stretch. * Skew detection may fail for longer watchdog intervals * on account of fixed margins being used. * Some clocksources, e.g. acpi_pm, cannot tolerate * watchdog intervals longer than a few seconds. */ interval = max(cs_nsec, wd_nsec); if (unlikely(interval > WATCHDOG_INTERVAL_MAX_NS)) { if (system_state > SYSTEM_SCHEDULING && interval > 2 * watchdog_max_interval) { watchdog_max_interval = interval; pr_warn("Long readout interval, skipping watchdog check: cs_nsec: %lld wd_nsec: %lld\n", cs_nsec, wd_nsec); } watchdog_timer.expires = jiffies; continue; } /* Check the deviation from the watchdog clocksource. */ md = cs->uncertainty_margin + watchdog->uncertainty_margin; if (abs(cs_nsec - wd_nsec) > md) { s64 cs_wd_msec; s64 wd_msec; u32 wd_rem; pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n", smp_processor_id(), cs->name); pr_warn(" '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n", watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask); pr_warn(" '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n", cs->name, cs_nsec, csnow, cslast, cs->mask); cs_wd_msec = div_s64_rem(cs_nsec - wd_nsec, 1000 * 1000, &wd_rem); wd_msec = div_s64_rem(wd_nsec, 1000 * 1000, &wd_rem); pr_warn(" Clocksource '%s' skewed %lld ns (%lld ms) over watchdog '%s' interval of %lld ns (%lld ms)\n", cs->name, cs_nsec - wd_nsec, cs_wd_msec, watchdog->name, wd_nsec, wd_msec); if (curr_clocksource == cs) pr_warn(" '%s' is current clocksource.\n", cs->name); else if (curr_clocksource) pr_warn(" '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name); else pr_warn(" No current clocksource.\n"); __clocksource_unstable(cs); continue; } if (cs == curr_clocksource && cs->tick_stable) cs->tick_stable(cs); if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { /* Mark it valid for high-res. */ cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; /* * clocksource_done_booting() will sort it if * finished_booting is not set yet. */ if (!finished_booting) continue; /* * If this is not the current clocksource let * the watchdog thread reselect it. Due to the * change to high res this clocksource might * be preferred now. If it is the current * clocksource let the tick code know about * that change. */ if (cs != curr_clocksource) { cs->flags |= CLOCK_SOURCE_RESELECT; schedule_work(&watchdog_work); } else { tick_clock_notify(); } } } /* * We only clear the watchdog_reset_pending, when we did a * full cycle through all clocksources. */ if (reset_pending) atomic_dec(&watchdog_reset_pending); /* * Cycle through CPUs to check if the CPUs stay synchronized * to each other. */ next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); if (next_cpu >= nr_cpu_ids) next_cpu = cpumask_first(cpu_online_mask); /* * Arm timer if not already pending: could race with concurrent * pair clocksource_stop_watchdog() clocksource_start_watchdog(). */ if (!timer_pending(&watchdog_timer)) { watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait; add_timer_on(&watchdog_timer, next_cpu); } out: spin_unlock(&watchdog_lock); } static inline void clocksource_start_watchdog(void) { if (watchdog_running || !watchdog || list_empty(&watchdog_list)) return; timer_setup(&watchdog_timer, clocksource_watchdog, 0); watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask)); watchdog_running = 1; } static inline void clocksource_stop_watchdog(void) { if (!watchdog_running || (watchdog && !list_empty(&watchdog_list))) return; del_timer(&watchdog_timer); watchdog_running = 0; } static void clocksource_resume_watchdog(void) { atomic_inc(&watchdog_reset_pending); } static void clocksource_enqueue_watchdog(struct clocksource *cs) { INIT_LIST_HEAD(&cs->wd_list); if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { /* cs is a clocksource to be watched. */ list_add(&cs->wd_list, &watchdog_list); cs->flags &= ~CLOCK_SOURCE_WATCHDOG; } else { /* cs is a watchdog. */ if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; } } static void clocksource_select_watchdog(bool fallback) { struct clocksource *cs, *old_wd; unsigned long flags; spin_lock_irqsave(&watchdog_lock, flags); /* save current watchdog */ old_wd = watchdog; if (fallback) watchdog = NULL; list_for_each_entry(cs, &clocksource_list, list) { /* cs is a clocksource to be watched. */ if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) continue; /* Skip current if we were requested for a fallback. */ if (fallback && cs == old_wd) continue; /* Pick the best watchdog. */ if (!watchdog || cs->rating > watchdog->rating) watchdog = cs; } /* If we failed to find a fallback restore the old one. */ if (!watchdog) watchdog = old_wd; /* If we changed the watchdog we need to reset cycles. */ if (watchdog != old_wd) clocksource_reset_watchdog(); /* Check if the watchdog timer needs to be started. */ clocksource_start_watchdog(); spin_unlock_irqrestore(&watchdog_lock, flags); } static void clocksource_dequeue_watchdog(struct clocksource *cs) { if (cs != watchdog) { if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { /* cs is a watched clocksource. */ list_del_init(&cs->wd_list); /* Check if the watchdog timer needs to be stopped. */ clocksource_stop_watchdog(); } } } static int __clocksource_watchdog_kthread(void) { struct clocksource *cs, *tmp; unsigned long flags; int select = 0; /* Do any required per-CPU skew verification. */ if (curr_clocksource && curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE && curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU) clocksource_verify_percpu(curr_clocksource); spin_lock_irqsave(&watchdog_lock, flags); list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) { if (cs->flags & CLOCK_SOURCE_UNSTABLE) { list_del_init(&cs->wd_list); __clocksource_change_rating(cs, 0); select = 1; } if (cs->flags & CLOCK_SOURCE_RESELECT) { cs->flags &= ~CLOCK_SOURCE_RESELECT; select = 1; } } /* Check if the watchdog timer needs to be stopped. */ clocksource_stop_watchdog(); spin_unlock_irqrestore(&watchdog_lock, flags); return select; } static int clocksource_watchdog_kthread(void *data) { mutex_lock(&clocksource_mutex); if (__clocksource_watchdog_kthread()) clocksource_select(); mutex_unlock(&clocksource_mutex); return 0; } static bool clocksource_is_watchdog(struct clocksource *cs) { return cs == watchdog; } #else /* CONFIG_CLOCKSOURCE_WATCHDOG */ static void clocksource_enqueue_watchdog(struct clocksource *cs) { if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; } static void clocksource_select_watchdog(bool fallback) { } static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { } static inline void clocksource_resume_watchdog(void) { } static inline int __clocksource_watchdog_kthread(void) { return 0; } static bool clocksource_is_watchdog(struct clocksource *cs) { return false; } void clocksource_mark_unstable(struct clocksource *cs) { } static inline void clocksource_watchdog_lock(unsigned long *flags) { } static inline void clocksource_watchdog_unlock(unsigned long *flags) { } #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */ static bool clocksource_is_suspend(struct clocksource *cs) { return cs == suspend_clocksource; } static void __clocksource_suspend_select(struct clocksource *cs) { /* * Skip the clocksource which will be stopped in suspend state. */ if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP)) return; /* * The nonstop clocksource can be selected as the suspend clocksource to * calculate the suspend time, so it should not supply suspend/resume * interfaces to suspend the nonstop clocksource when system suspends. */ if (cs->suspend || cs->resume) { pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n", cs->name); } /* Pick the best rating. */ if (!suspend_clocksource || cs->rating > suspend_clocksource->rating) suspend_clocksource = cs; } /** * clocksource_suspend_select - Select the best clocksource for suspend timing * @fallback: if select a fallback clocksource */ static void clocksource_suspend_select(bool fallback) { struct clocksource *cs, *old_suspend; old_suspend = suspend_clocksource; if (fallback) suspend_clocksource = NULL; list_for_each_entry(cs, &clocksource_list, list) { /* Skip current if we were requested for a fallback. */ if (fallback && cs == old_suspend) continue; __clocksource_suspend_select(cs); } } /** * clocksource_start_suspend_timing - Start measuring the suspend timing * @cs: current clocksource from timekeeping * @start_cycles: current cycles from timekeeping * * This function will save the start cycle values of suspend timer to calculate * the suspend time when resuming system. * * This function is called late in the suspend process from timekeeping_suspend(), * that means processes are frozen, non-boot cpus and interrupts are disabled * now. It is therefore possible to start the suspend timer without taking the * clocksource mutex. */ void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles) { if (!suspend_clocksource) return; /* * If current clocksource is the suspend timer, we should use the * tkr_mono.cycle_last value as suspend_start to avoid same reading * from suspend timer. */ if (clocksource_is_suspend(cs)) { suspend_start = start_cycles; return; } if (suspend_clocksource->enable && suspend_clocksource->enable(suspend_clocksource)) { pr_warn_once("Failed to enable the non-suspend-able clocksource.\n"); return; } suspend_start = suspend_clocksource->read(suspend_clocksource); } /** * clocksource_stop_suspend_timing - Stop measuring the suspend timing * @cs: current clocksource from timekeeping * @cycle_now: current cycles from timekeeping * * This function will calculate the suspend time from suspend timer. * * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource. * * This function is called early in the resume process from timekeeping_resume(), * that means there is only one cpu, no processes are running and the interrupts * are disabled. It is therefore possible to stop the suspend timer without * taking the clocksource mutex. */ u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now) { u64 now, nsec = 0; if (!suspend_clocksource) return 0; /* * If current clocksource is the suspend timer, we should use the * tkr_mono.cycle_last value from timekeeping as current cycle to * avoid same reading from suspend timer. */ if (clocksource_is_suspend(cs)) now = cycle_now; else now = suspend_clocksource->read(suspend_clocksource); if (now > suspend_start) nsec = cycles_to_nsec_safe(suspend_clocksource, suspend_start, now); /* * Disable the suspend timer to save power if current clocksource is * not the suspend timer. */ if (!clocksource_is_suspend(cs) && suspend_clocksource->disable) suspend_clocksource->disable(suspend_clocksource); return nsec; } /** * clocksource_suspend - suspend the clocksource(s) */ void clocksource_suspend(void) { struct clocksource *cs; list_for_each_entry_reverse(cs, &clocksource_list, list) if (cs->suspend) cs->suspend(cs); } /** * clocksource_resume - resume the clocksource(s) */ void clocksource_resume(void) { struct clocksource *cs; list_for_each_entry(cs, &clocksource_list, list) if (cs->resume) cs->resume(cs); clocksource_resume_watchdog(); } /** * clocksource_touch_watchdog - Update watchdog * * Update the watchdog after exception contexts such as kgdb so as not * to incorrectly trip the watchdog. This might fail when the kernel * was stopped in code which holds watchdog_lock. */ void clocksource_touch_watchdog(void) { clocksource_resume_watchdog(); } /** * clocksource_max_adjustment- Returns max adjustment amount * @cs: Pointer to clocksource * */ static u32 clocksource_max_adjustment(struct clocksource *cs) { u64 ret; /* * We won't try to correct for more than 11% adjustments (110,000 ppm), */ ret = (u64)cs->mult * 11; do_div(ret,100); return (u32)ret; } /** * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted * @mult: cycle to nanosecond multiplier * @shift: cycle to nanosecond divisor (power of two) * @maxadj: maximum adjustment value to mult (~11%) * @mask: bitmask for two's complement subtraction of non 64 bit counters * @max_cyc: maximum cycle value before potential overflow (does not include * any safety margin) * * NOTE: This function includes a safety margin of 50%, in other words, we * return half the number of nanoseconds the hardware counter can technically * cover. This is done so that we can potentially detect problems caused by * delayed timers or bad hardware, which might result in time intervals that * are larger than what the math used can handle without overflows. */ u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc) { u64 max_nsecs, max_cycles; /* * Calculate the maximum number of cycles that we can pass to the * cyc2ns() function without overflowing a 64-bit result. */ max_cycles = ULLONG_MAX; do_div(max_cycles, mult+maxadj); /* * The actual maximum number of cycles we can defer the clocksource is * determined by the minimum of max_cycles and mask. * Note: Here we subtract the maxadj to make sure we don't sleep for * too long if there's a large negative adjustment. */ max_cycles = min(max_cycles, mask); max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift); /* return the max_cycles value as well if requested */ if (max_cyc) *max_cyc = max_cycles; /* Return 50% of the actual maximum, so we can detect bad values */ max_nsecs >>= 1; return max_nsecs; } /** * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles * @cs: Pointer to clocksource to be updated * */ static inline void clocksource_update_max_deferment(struct clocksource *cs) { cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift, cs->maxadj, cs->mask, &cs->max_cycles); } static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur) { struct clocksource *cs; if (!finished_booting || list_empty(&clocksource_list)) return NULL; /* * We pick the clocksource with the highest rating. If oneshot * mode is active, we pick the highres valid clocksource with * the best rating. */ list_for_each_entry(cs, &clocksource_list, list) { if (skipcur && cs == curr_clocksource) continue; if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES)) continue; return cs; } return NULL; } static void __clocksource_select(bool skipcur) { bool oneshot = tick_oneshot_mode_active(); struct clocksource *best, *cs; /* Find the best suitable clocksource */ best = clocksource_find_best(oneshot, skipcur); if (!best) return; if (!strlen(override_name)) goto found; /* Check for the override clocksource. */ list_for_each_entry(cs, &clocksource_list, list) { if (skipcur && cs == curr_clocksource) continue; if (strcmp(cs->name, override_name) != 0) continue; /* * Check to make sure we don't switch to a non-highres * capable clocksource if the tick code is in oneshot * mode (highres or nohz) */ if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) { /* Override clocksource cannot be used. */ if (cs->flags & CLOCK_SOURCE_UNSTABLE) { pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n", cs->name); override_name[0] = 0; } else { /* * The override cannot be currently verified. * Deferring to let the watchdog check. */ pr_info("Override clocksource %s is not currently HRT compatible - deferring\n", cs->name); } } else /* Override clocksource can be used. */ best = cs; break; } found: if (curr_clocksource != best && !timekeeping_notify(best)) { pr_info("Switched to clocksource %s\n", best->name); curr_clocksource = best; } } /** * clocksource_select - Select the best clocksource available * * Private function. Must hold clocksource_mutex when called. * * Select the clocksource with the best rating, or the clocksource, * which is selected by userspace override. */ static void clocksource_select(void) { __clocksource_select(false); } static void clocksource_select_fallback(void) { __clocksource_select(true); } /* * clocksource_done_booting - Called near the end of core bootup * * Hack to avoid lots of clocksource churn at boot time. * We use fs_initcall because we want this to start before * device_initcall but after subsys_initcall. */ static int __init clocksource_done_booting(void) { mutex_lock(&clocksource_mutex); curr_clocksource = clocksource_default_clock(); finished_booting = 1; /* * Run the watchdog first to eliminate unstable clock sources */ __clocksource_watchdog_kthread(); clocksource_select(); mutex_unlock(&clocksource_mutex); return 0; } fs_initcall(clocksource_done_booting); /* * Enqueue the clocksource sorted by rating */ static void clocksource_enqueue(struct clocksource *cs) { struct list_head *entry = &clocksource_list; struct clocksource *tmp; list_for_each_entry(tmp, &clocksource_list, list) { /* Keep track of the place, where to insert */ if (tmp->rating < cs->rating) break; entry = &tmp->list; } list_add(&cs->list, entry); } /** * __clocksource_update_freq_scale - Used update clocksource with new freq * @cs: clocksource to be registered * @scale: Scale factor multiplied against freq to get clocksource hz * @freq: clocksource frequency (cycles per second) divided by scale * * This should only be called from the clocksource->enable() method. * * This *SHOULD NOT* be called directly! Please use the * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper * functions. */ void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq) { u64 sec; /* * Default clocksources are *special* and self-define their mult/shift. * But, you're not special, so you should specify a freq value. */ if (freq) { /* * Calc the maximum number of seconds which we can run before * wrapping around. For clocksources which have a mask > 32-bit * we need to limit the max sleep time to have a good * conversion precision. 10 minutes is still a reasonable * amount. That results in a shift value of 24 for a * clocksource with mask >= 40-bit and f >= 4GHz. That maps to * ~ 0.06ppm granularity for NTP. */ sec = cs->mask; do_div(sec, freq); do_div(sec, scale); if (!sec) sec = 1; else if (sec > 600 && cs->mask > UINT_MAX) sec = 600; clocks_calc_mult_shift(&cs->mult, &cs->shift, freq, NSEC_PER_SEC / scale, sec * scale); } /* * If the uncertainty margin is not specified, calculate it. * If both scale and freq are non-zero, calculate the clock * period, but bound below at 2*WATCHDOG_MAX_SKEW. However, * if either of scale or freq is zero, be very conservative and * take the tens-of-milliseconds WATCHDOG_THRESHOLD value for the * uncertainty margin. Allow stupidly small uncertainty margins * to be specified by the caller for testing purposes, but warn * to discourage production use of this capability. */ if (scale && freq && !cs->uncertainty_margin) { cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq); if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW) cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW; } else if (!cs->uncertainty_margin) { cs->uncertainty_margin = WATCHDOG_THRESHOLD; } WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW); /* * Ensure clocksources that have large 'mult' values don't overflow * when adjusted. */ cs->maxadj = clocksource_max_adjustment(cs); while (freq && ((cs->mult + cs->maxadj < cs->mult) || (cs->mult - cs->maxadj > cs->mult))) { cs->mult >>= 1; cs->shift--; cs->maxadj = clocksource_max_adjustment(cs); } /* * Only warn for *special* clocksources that self-define * their mult/shift values and don't specify a freq. */ WARN_ONCE(cs->mult + cs->maxadj < cs->mult, "timekeeping: Clocksource %s might overflow on 11%% adjustment\n", cs->name); clocksource_update_max_deferment(cs); pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n", cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns); } EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale); /** * __clocksource_register_scale - Used to install new clocksources * @cs: clocksource to be registered * @scale: Scale factor multiplied against freq to get clocksource hz * @freq: clocksource frequency (cycles per second) divided by scale * * Returns -EBUSY if registration fails, zero otherwise. * * This *SHOULD NOT* be called directly! Please use the * clocksource_register_hz() or clocksource_register_khz helper functions. */ int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq) { unsigned long flags; clocksource_arch_init(cs); if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX)) cs->id = CSID_GENERIC; if (cs->vdso_clock_mode < 0 || cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) { pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n", cs->name, cs->vdso_clock_mode); cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE; } /* Initialize mult/shift and max_idle_ns */ __clocksource_update_freq_scale(cs, scale, freq); /* Add clocksource to the clocksource list */ mutex_lock(&clocksource_mutex); clocksource_watchdog_lock(&flags); clocksource_enqueue(cs); clocksource_enqueue_watchdog(cs); clocksource_watchdog_unlock(&flags); clocksource_select(); clocksource_select_watchdog(false); __clocksource_suspend_select(cs); mutex_unlock(&clocksource_mutex); return 0; } EXPORT_SYMBOL_GPL(__clocksource_register_scale); static void __clocksource_change_rating(struct clocksource *cs, int rating) { list_del(&cs->list); cs->rating = rating; clocksource_enqueue(cs); } /** * clocksource_change_rating - Change the rating of a registered clocksource * @cs: clocksource to be changed * @rating: new rating */ void clocksource_change_rating(struct clocksource *cs, int rating) { unsigned long flags; mutex_lock(&clocksource_mutex); clocksource_watchdog_lock(&flags); __clocksource_change_rating(cs, rating); clocksource_watchdog_unlock(&flags); clocksource_select(); clocksource_select_watchdog(false); clocksource_suspend_select(false); mutex_unlock(&clocksource_mutex); } EXPORT_SYMBOL(clocksource_change_rating); /* * Unbind clocksource @cs. Called with clocksource_mutex held */ static int clocksource_unbind(struct clocksource *cs) { unsigned long flags; if (clocksource_is_watchdog(cs)) { /* Select and try to install a replacement watchdog. */ clocksource_select_watchdog(true); if (clocksource_is_watchdog(cs)) return -EBUSY; } if (cs == curr_clocksource) { /* Select and try to install a replacement clock source */ clocksource_select_fallback(); if (curr_clocksource == cs) return -EBUSY; } if (clocksource_is_suspend(cs)) { /* * Select and try to install a replacement suspend clocksource. * If no replacement suspend clocksource, we will just let the * clocksource go and have no suspend clocksource. */ clocksource_suspend_select(true); } clocksource_watchdog_lock(&flags); clocksource_dequeue_watchdog(cs); list_del_init(&cs->list); clocksource_watchdog_unlock(&flags); return 0; } /** * clocksource_unregister - remove a registered clocksource * @cs: clocksource to be unregistered */ int clocksource_unregister(struct clocksource *cs) { int ret = 0; mutex_lock(&clocksource_mutex); if (!list_empty(&cs->list)) ret = clocksource_unbind(cs); mutex_unlock(&clocksource_mutex); return ret; } EXPORT_SYMBOL(clocksource_unregister); #ifdef CONFIG_SYSFS /** * current_clocksource_show - sysfs interface for current clocksource * @dev: unused * @attr: unused * @buf: char buffer to be filled with clocksource list * * Provides sysfs interface for listing current clocksource. */ static ssize_t current_clocksource_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t count = 0; mutex_lock(&clocksource_mutex); count = sysfs_emit(buf, "%s\n", curr_clocksource->name); mutex_unlock(&clocksource_mutex); return count; } ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt) { size_t ret = cnt; /* strings from sysfs write are not 0 terminated! */ if (!cnt || cnt >= CS_NAME_LEN) return -EINVAL; /* strip of \n: */ if (buf[cnt-1] == '\n') cnt--; if (cnt > 0) memcpy(dst, buf, cnt); dst[cnt] = 0; return ret; } /** * current_clocksource_store - interface for manually overriding clocksource * @dev: unused * @attr: unused * @buf: name of override clocksource * @count: length of buffer * * Takes input from sysfs interface for manually overriding the default * clocksource selection. */ static ssize_t current_clocksource_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { ssize_t ret; mutex_lock(&clocksource_mutex); ret = sysfs_get_uname(buf, override_name, count); if (ret >= 0) clocksource_select(); mutex_unlock(&clocksource_mutex); return ret; } static DEVICE_ATTR_RW(current_clocksource); /** * unbind_clocksource_store - interface for manually unbinding clocksource * @dev: unused * @attr: unused * @buf: unused * @count: length of buffer * * Takes input from sysfs interface for manually unbinding a clocksource. */ static ssize_t unbind_clocksource_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct clocksource *cs; char name[CS_NAME_LEN]; ssize_t ret; ret = sysfs_get_uname(buf, name, count); if (ret < 0) return ret; ret = -ENODEV; mutex_lock(&clocksource_mutex); list_for_each_entry(cs, &clocksource_list, list) { if (strcmp(cs->name, name)) continue; ret = clocksource_unbind(cs); break; } mutex_unlock(&clocksource_mutex); return ret ? ret : count; } static DEVICE_ATTR_WO(unbind_clocksource); /** * available_clocksource_show - sysfs interface for listing clocksource * @dev: unused * @attr: unused * @buf: char buffer to be filled with clocksource list * * Provides sysfs interface for listing registered clocksources */ static ssize_t available_clocksource_show(struct device *dev, struct device_attribute *attr, char *buf) { struct clocksource *src; ssize_t count = 0; mutex_lock(&clocksource_mutex); list_for_each_entry(src, &clocksource_list, list) { /* * Don't show non-HRES clocksource if the tick code is * in one shot mode (highres=on or nohz=on) */ if (!tick_oneshot_mode_active() || (src->flags & CLOCK_SOURCE_VALID_FOR_HRES)) count += snprintf(buf + count, max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "%s ", src->name); } mutex_unlock(&clocksource_mutex); count += snprintf(buf + count, max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); return count; } static DEVICE_ATTR_RO(available_clocksource); static struct attribute *clocksource_attrs[] = { &dev_attr_current_clocksource.attr, &dev_attr_unbind_clocksource.attr, &dev_attr_available_clocksource.attr, NULL }; ATTRIBUTE_GROUPS(clocksource); static const struct bus_type clocksource_subsys = { .name = "clocksource", .dev_name = "clocksource", }; static struct device device_clocksource = { .id = 0, .bus = &clocksource_subsys, .groups = clocksource_groups, }; static int __init init_clocksource_sysfs(void) { int error = subsys_system_register(&clocksource_subsys, NULL); if (!error) error = device_register(&device_clocksource); return error; } device_initcall(init_clocksource_sysfs); #endif /* CONFIG_SYSFS */ /** * boot_override_clocksource - boot clock override * @str: override name * * Takes a clocksource= boot argument and uses it * as the clocksource override name. */ static int __init boot_override_clocksource(char* str) { mutex_lock(&clocksource_mutex); if (str) strscpy(override_name, str, sizeof(override_name)); mutex_unlock(&clocksource_mutex); return 1; } __setup("clocksource=", boot_override_clocksource); /** * boot_override_clock - Compatibility layer for deprecated boot option * @str: override name * * DEPRECATED! Takes a clock= boot argument and uses it * as the clocksource override name */ static int __init boot_override_clock(char* str) { if (!strcmp(str, "pmtmr")) { pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n"); return boot_override_clocksource("acpi_pm"); } pr_warn("clock= boot option is deprecated - use clocksource=xyz\n"); return boot_override_clocksource(str); } __setup("clock=", boot_override_clock);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1