Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Bitao Hu | 825 | 20.55% | 2 | 1.16% |
Don Zickus | 642 | 15.99% | 10 | 5.78% |
Thomas Gleixner | 437 | 10.88% | 26 | 15.03% |
Doug Anderson | 356 | 8.87% | 16 | 9.25% |
Peter Zijlstra | 208 | 5.18% | 4 | 2.31% |
nixiaoming | 195 | 4.86% | 1 | 0.58% |
Ulrich Obergfell | 153 | 3.81% | 12 | 6.94% |
Eric Dumazet | 150 | 3.74% | 1 | 0.58% |
Lecopzer Chen | 136 | 3.39% | 2 | 1.16% |
Chris Metcalf | 101 | 2.52% | 2 | 1.16% |
Petr Mladek | 92 | 2.29% | 7 | 4.05% |
Aaron Tomlin | 56 | 1.39% | 2 | 1.16% |
Christoph Hellwig | 54 | 1.34% | 1 | 0.58% |
Eric W. Biedermann | 48 | 1.20% | 5 | 2.89% |
Nicholas Piggin | 41 | 1.02% | 3 | 1.73% |
Mandeep Singh Baines | 40 | 1.00% | 4 | 2.31% |
Song Liu | 39 | 0.97% | 2 | 1.16% |
Frédéric Weisbecker | 38 | 0.95% | 6 | 3.47% |
Babu Moger | 37 | 0.92% | 2 | 1.16% |
Linus Torvalds (pre-git) | 30 | 0.75% | 8 | 4.62% |
Hideaki Yoshifuji / 吉藤英明 | 27 | 0.67% | 1 | 0.58% |
Laurent Dufour | 23 | 0.57% | 1 | 0.58% |
Tejun Heo | 23 | 0.57% | 2 | 1.16% |
Krister Johansen | 19 | 0.47% | 1 | 0.58% |
Christoph Lameter | 19 | 0.47% | 2 | 1.16% |
Ingo Molnar | 18 | 0.45% | 5 | 2.89% |
Michal Hocko | 18 | 0.45% | 2 | 1.16% |
Laurence Oberman | 16 | 0.40% | 1 | 0.58% |
Cédric Le Goater | 15 | 0.37% | 1 | 0.58% |
Li Zhe | 15 | 0.37% | 1 | 0.58% |
Chuansheng Liu | 15 | 0.37% | 2 | 1.16% |
Linus Torvalds | 14 | 0.35% | 2 | 1.16% |
Matteo Croce | 10 | 0.25% | 1 | 0.58% |
Rasmus Villemoes | 8 | 0.20% | 1 | 0.58% |
Serge E. Hallyn | 8 | 0.20% | 1 | 0.58% |
Joshua Hunt | 8 | 0.20% | 2 | 1.16% |
Thomas Weißschuh | 7 | 0.17% | 1 | 0.58% |
Andrew Morton | 7 | 0.17% | 2 | 1.16% |
Joel Granados | 7 | 0.17% | 2 | 1.16% |
Jason Wessel | 6 | 0.15% | 1 | 0.58% |
Jiri Kosina | 6 | 0.15% | 1 | 0.58% |
Art Haas | 6 | 0.15% | 1 | 0.58% |
Wang Qing | 6 | 0.15% | 2 | 1.16% |
Vincent Whitchurch | 3 | 0.07% | 1 | 0.58% |
Masoud Asgharifard Sharbiani | 3 | 0.07% | 1 | 0.58% |
Hidehiro Kawai | 3 | 0.07% | 2 | 1.16% |
Namhyung Kim | 3 | 0.07% | 1 | 0.58% |
Rusty Russell | 2 | 0.05% | 1 | 0.58% |
Alexey Dobriyan | 2 | 0.05% | 1 | 0.58% |
Valdis Kletnieks | 2 | 0.05% | 1 | 0.58% |
Fernando Luis Vázquez Cao | 2 | 0.05% | 1 | 0.58% |
Arjan van de Ven | 2 | 0.05% | 1 | 0.58% |
Eric B Munson | 2 | 0.05% | 1 | 0.58% |
Sebastian Andrzej Siewior | 2 | 0.05% | 1 | 0.58% |
Guilherme G. Piccoli | 2 | 0.05% | 1 | 0.58% |
Ben Zhang | 1 | 0.02% | 1 | 0.58% |
Fabian Frederick | 1 | 0.02% | 1 | 0.58% |
Greg Kroah-Hartman | 1 | 0.02% | 1 | 0.58% |
Sergey Senozhatsky | 1 | 0.02% | 1 | 0.58% |
Cyril Bur | 1 | 0.02% | 1 | 0.58% |
Kefeng Wang | 1 | 0.02% | 1 | 0.58% |
Marcin Ślusarz | 1 | 0.02% | 1 | 0.58% |
Yaowei Bai | 1 | 0.02% | 1 | 0.58% |
Total | 4015 | 173 |
// SPDX-License-Identifier: GPL-2.0 /* * Detect hard and soft lockups on a system * * started by Don Zickus, Copyright (C) 2010 Red Hat, Inc. * * Note: Most of this code is borrowed heavily from the original softlockup * detector, so thanks to Ingo for the initial implementation. * Some chunks also taken from the old x86-specific nmi watchdog code, thanks * to those contributors as well. */ #define pr_fmt(fmt) "watchdog: " fmt #include <linux/cpu.h> #include <linux/init.h> #include <linux/irq.h> #include <linux/irqdesc.h> #include <linux/kernel_stat.h> #include <linux/kvm_para.h> #include <linux/math64.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/nmi.h> #include <linux/stop_machine.h> #include <linux/sysctl.h> #include <linux/tick.h> #include <linux/sched/clock.h> #include <linux/sched/debug.h> #include <linux/sched/isolation.h> #include <asm/irq_regs.h> static DEFINE_MUTEX(watchdog_mutex); #if defined(CONFIG_HARDLOCKUP_DETECTOR) || defined(CONFIG_HARDLOCKUP_DETECTOR_SPARC64) # define WATCHDOG_HARDLOCKUP_DEFAULT 1 #else # define WATCHDOG_HARDLOCKUP_DEFAULT 0 #endif #define NUM_SAMPLE_PERIODS 5 unsigned long __read_mostly watchdog_enabled; int __read_mostly watchdog_user_enabled = 1; static int __read_mostly watchdog_hardlockup_user_enabled = WATCHDOG_HARDLOCKUP_DEFAULT; static int __read_mostly watchdog_softlockup_user_enabled = 1; int __read_mostly watchdog_thresh = 10; static int __read_mostly watchdog_hardlockup_available; struct cpumask watchdog_cpumask __read_mostly; unsigned long *watchdog_cpumask_bits = cpumask_bits(&watchdog_cpumask); #ifdef CONFIG_HARDLOCKUP_DETECTOR # ifdef CONFIG_SMP int __read_mostly sysctl_hardlockup_all_cpu_backtrace; # endif /* CONFIG_SMP */ /* * Should we panic when a soft-lockup or hard-lockup occurs: */ unsigned int __read_mostly hardlockup_panic = IS_ENABLED(CONFIG_BOOTPARAM_HARDLOCKUP_PANIC); /* * We may not want to enable hard lockup detection by default in all cases, * for example when running the kernel as a guest on a hypervisor. In these * cases this function can be called to disable hard lockup detection. This * function should only be executed once by the boot processor before the * kernel command line parameters are parsed, because otherwise it is not * possible to override this in hardlockup_panic_setup(). */ void __init hardlockup_detector_disable(void) { watchdog_hardlockup_user_enabled = 0; } static int __init hardlockup_panic_setup(char *str) { next: if (!strncmp(str, "panic", 5)) hardlockup_panic = 1; else if (!strncmp(str, "nopanic", 7)) hardlockup_panic = 0; else if (!strncmp(str, "0", 1)) watchdog_hardlockup_user_enabled = 0; else if (!strncmp(str, "1", 1)) watchdog_hardlockup_user_enabled = 1; else if (!strncmp(str, "r", 1)) hardlockup_config_perf_event(str + 1); while (*(str++)) { if (*str == ',') { str++; goto next; } } return 1; } __setup("nmi_watchdog=", hardlockup_panic_setup); #endif /* CONFIG_HARDLOCKUP_DETECTOR */ #if defined(CONFIG_HARDLOCKUP_DETECTOR_COUNTS_HRTIMER) static DEFINE_PER_CPU(atomic_t, hrtimer_interrupts); static DEFINE_PER_CPU(int, hrtimer_interrupts_saved); static DEFINE_PER_CPU(bool, watchdog_hardlockup_warned); static DEFINE_PER_CPU(bool, watchdog_hardlockup_touched); static unsigned long hard_lockup_nmi_warn; notrace void arch_touch_nmi_watchdog(void) { /* * Using __raw here because some code paths have * preemption enabled. If preemption is enabled * then interrupts should be enabled too, in which * case we shouldn't have to worry about the watchdog * going off. */ raw_cpu_write(watchdog_hardlockup_touched, true); } EXPORT_SYMBOL(arch_touch_nmi_watchdog); void watchdog_hardlockup_touch_cpu(unsigned int cpu) { per_cpu(watchdog_hardlockup_touched, cpu) = true; } static bool is_hardlockup(unsigned int cpu) { int hrint = atomic_read(&per_cpu(hrtimer_interrupts, cpu)); if (per_cpu(hrtimer_interrupts_saved, cpu) == hrint) return true; /* * NOTE: we don't need any fancy atomic_t or READ_ONCE/WRITE_ONCE * for hrtimer_interrupts_saved. hrtimer_interrupts_saved is * written/read by a single CPU. */ per_cpu(hrtimer_interrupts_saved, cpu) = hrint; return false; } static void watchdog_hardlockup_kick(void) { int new_interrupts; new_interrupts = atomic_inc_return(this_cpu_ptr(&hrtimer_interrupts)); watchdog_buddy_check_hardlockup(new_interrupts); } void watchdog_hardlockup_check(unsigned int cpu, struct pt_regs *regs) { if (per_cpu(watchdog_hardlockup_touched, cpu)) { per_cpu(watchdog_hardlockup_touched, cpu) = false; return; } /* * Check for a hardlockup by making sure the CPU's timer * interrupt is incrementing. The timer interrupt should have * fired multiple times before we overflow'd. If it hasn't * then this is a good indication the cpu is stuck */ if (is_hardlockup(cpu)) { unsigned int this_cpu = smp_processor_id(); unsigned long flags; /* Only print hardlockups once. */ if (per_cpu(watchdog_hardlockup_warned, cpu)) return; /* * Prevent multiple hard-lockup reports if one cpu is already * engaged in dumping all cpu back traces. */ if (sysctl_hardlockup_all_cpu_backtrace) { if (test_and_set_bit_lock(0, &hard_lockup_nmi_warn)) return; } /* * NOTE: we call printk_cpu_sync_get_irqsave() after printing * the lockup message. While it would be nice to serialize * that printout, we really want to make sure that if some * other CPU somehow locked up while holding the lock associated * with printk_cpu_sync_get_irqsave() that we can still at least * get the message about the lockup out. */ pr_emerg("Watchdog detected hard LOCKUP on cpu %d\n", cpu); printk_cpu_sync_get_irqsave(flags); print_modules(); print_irqtrace_events(current); if (cpu == this_cpu) { if (regs) show_regs(regs); else dump_stack(); printk_cpu_sync_put_irqrestore(flags); } else { printk_cpu_sync_put_irqrestore(flags); trigger_single_cpu_backtrace(cpu); } if (sysctl_hardlockup_all_cpu_backtrace) { trigger_allbutcpu_cpu_backtrace(cpu); if (!hardlockup_panic) clear_bit_unlock(0, &hard_lockup_nmi_warn); } if (hardlockup_panic) nmi_panic(regs, "Hard LOCKUP"); per_cpu(watchdog_hardlockup_warned, cpu) = true; } else { per_cpu(watchdog_hardlockup_warned, cpu) = false; } } #else /* CONFIG_HARDLOCKUP_DETECTOR_COUNTS_HRTIMER */ static inline void watchdog_hardlockup_kick(void) { } #endif /* !CONFIG_HARDLOCKUP_DETECTOR_COUNTS_HRTIMER */ /* * These functions can be overridden based on the configured hardlockdup detector. * * watchdog_hardlockup_enable/disable can be implemented to start and stop when * softlockup watchdog start and stop. The detector must select the * SOFTLOCKUP_DETECTOR Kconfig. */ void __weak watchdog_hardlockup_enable(unsigned int cpu) { } void __weak watchdog_hardlockup_disable(unsigned int cpu) { } /* * Watchdog-detector specific API. * * Return 0 when hardlockup watchdog is available, negative value otherwise. * Note that the negative value means that a delayed probe might * succeed later. */ int __weak __init watchdog_hardlockup_probe(void) { return -ENODEV; } /** * watchdog_hardlockup_stop - Stop the watchdog for reconfiguration * * The reconfiguration steps are: * watchdog_hardlockup_stop(); * update_variables(); * watchdog_hardlockup_start(); */ void __weak watchdog_hardlockup_stop(void) { } /** * watchdog_hardlockup_start - Start the watchdog after reconfiguration * * Counterpart to watchdog_hardlockup_stop(). * * The following variables have been updated in update_variables() and * contain the currently valid configuration: * - watchdog_enabled * - watchdog_thresh * - watchdog_cpumask */ void __weak watchdog_hardlockup_start(void) { } /** * lockup_detector_update_enable - Update the sysctl enable bit * * Caller needs to make sure that the hard watchdogs are off, so this * can't race with watchdog_hardlockup_disable(). */ static void lockup_detector_update_enable(void) { watchdog_enabled = 0; if (!watchdog_user_enabled) return; if (watchdog_hardlockup_available && watchdog_hardlockup_user_enabled) watchdog_enabled |= WATCHDOG_HARDLOCKUP_ENABLED; if (watchdog_softlockup_user_enabled) watchdog_enabled |= WATCHDOG_SOFTOCKUP_ENABLED; } #ifdef CONFIG_SOFTLOCKUP_DETECTOR /* * Delay the soflockup report when running a known slow code. * It does _not_ affect the timestamp of the last successdul reschedule. */ #define SOFTLOCKUP_DELAY_REPORT ULONG_MAX #ifdef CONFIG_SMP int __read_mostly sysctl_softlockup_all_cpu_backtrace; #endif static struct cpumask watchdog_allowed_mask __read_mostly; /* Global variables, exported for sysctl */ unsigned int __read_mostly softlockup_panic = IS_ENABLED(CONFIG_BOOTPARAM_SOFTLOCKUP_PANIC); static bool softlockup_initialized __read_mostly; static u64 __read_mostly sample_period; /* Timestamp taken after the last successful reschedule. */ static DEFINE_PER_CPU(unsigned long, watchdog_touch_ts); /* Timestamp of the last softlockup report. */ static DEFINE_PER_CPU(unsigned long, watchdog_report_ts); static DEFINE_PER_CPU(struct hrtimer, watchdog_hrtimer); static DEFINE_PER_CPU(bool, softlockup_touch_sync); static unsigned long soft_lockup_nmi_warn; static int __init softlockup_panic_setup(char *str) { softlockup_panic = simple_strtoul(str, NULL, 0); return 1; } __setup("softlockup_panic=", softlockup_panic_setup); static int __init nowatchdog_setup(char *str) { watchdog_user_enabled = 0; return 1; } __setup("nowatchdog", nowatchdog_setup); static int __init nosoftlockup_setup(char *str) { watchdog_softlockup_user_enabled = 0; return 1; } __setup("nosoftlockup", nosoftlockup_setup); static int __init watchdog_thresh_setup(char *str) { get_option(&str, &watchdog_thresh); return 1; } __setup("watchdog_thresh=", watchdog_thresh_setup); static void __lockup_detector_cleanup(void); #ifdef CONFIG_SOFTLOCKUP_DETECTOR_INTR_STORM enum stats_per_group { STATS_SYSTEM, STATS_SOFTIRQ, STATS_HARDIRQ, STATS_IDLE, NUM_STATS_PER_GROUP, }; static const enum cpu_usage_stat tracked_stats[NUM_STATS_PER_GROUP] = { CPUTIME_SYSTEM, CPUTIME_SOFTIRQ, CPUTIME_IRQ, CPUTIME_IDLE, }; static DEFINE_PER_CPU(u16, cpustat_old[NUM_STATS_PER_GROUP]); static DEFINE_PER_CPU(u8, cpustat_util[NUM_SAMPLE_PERIODS][NUM_STATS_PER_GROUP]); static DEFINE_PER_CPU(u8, cpustat_tail); /* * We don't need nanosecond resolution. A granularity of 16ms is * sufficient for our precision, allowing us to use u16 to store * cpustats, which will roll over roughly every ~1000 seconds. * 2^24 ~= 16 * 10^6 */ static u16 get_16bit_precision(u64 data_ns) { return data_ns >> 24LL; /* 2^24ns ~= 16.8ms */ } static void update_cpustat(void) { int i; u8 util; u16 old_stat, new_stat; struct kernel_cpustat kcpustat; u64 *cpustat = kcpustat.cpustat; u8 tail = __this_cpu_read(cpustat_tail); u16 sample_period_16 = get_16bit_precision(sample_period); kcpustat_cpu_fetch(&kcpustat, smp_processor_id()); for (i = 0; i < NUM_STATS_PER_GROUP; i++) { old_stat = __this_cpu_read(cpustat_old[i]); new_stat = get_16bit_precision(cpustat[tracked_stats[i]]); util = DIV_ROUND_UP(100 * (new_stat - old_stat), sample_period_16); __this_cpu_write(cpustat_util[tail][i], util); __this_cpu_write(cpustat_old[i], new_stat); } __this_cpu_write(cpustat_tail, (tail + 1) % NUM_SAMPLE_PERIODS); } static void print_cpustat(void) { int i, group; u8 tail = __this_cpu_read(cpustat_tail); u64 sample_period_second = sample_period; do_div(sample_period_second, NSEC_PER_SEC); /* * Outputting the "watchdog" prefix on every line is redundant and not * concise, and the original alarm information is sufficient for * positioning in logs, hence here printk() is used instead of pr_crit(). */ printk(KERN_CRIT "CPU#%d Utilization every %llus during lockup:\n", smp_processor_id(), sample_period_second); for (i = 0; i < NUM_SAMPLE_PERIODS; i++) { group = (tail + i) % NUM_SAMPLE_PERIODS; printk(KERN_CRIT "\t#%d: %3u%% system,\t%3u%% softirq,\t" "%3u%% hardirq,\t%3u%% idle\n", i + 1, __this_cpu_read(cpustat_util[group][STATS_SYSTEM]), __this_cpu_read(cpustat_util[group][STATS_SOFTIRQ]), __this_cpu_read(cpustat_util[group][STATS_HARDIRQ]), __this_cpu_read(cpustat_util[group][STATS_IDLE])); } } #define HARDIRQ_PERCENT_THRESH 50 #define NUM_HARDIRQ_REPORT 5 struct irq_counts { int irq; u32 counts; }; static DEFINE_PER_CPU(bool, snapshot_taken); /* Tabulate the most frequent interrupts. */ static void tabulate_irq_count(struct irq_counts *irq_counts, int irq, u32 counts, int rank) { int i; struct irq_counts new_count = {irq, counts}; for (i = 0; i < rank; i++) { if (counts > irq_counts[i].counts) swap(new_count, irq_counts[i]); } } /* * If the hardirq time exceeds HARDIRQ_PERCENT_THRESH% of the sample_period, * then the cause of softlockup might be interrupt storm. In this case, it * would be useful to start interrupt counting. */ static bool need_counting_irqs(void) { u8 util; int tail = __this_cpu_read(cpustat_tail); tail = (tail + NUM_HARDIRQ_REPORT - 1) % NUM_HARDIRQ_REPORT; util = __this_cpu_read(cpustat_util[tail][STATS_HARDIRQ]); return util > HARDIRQ_PERCENT_THRESH; } static void start_counting_irqs(void) { if (!__this_cpu_read(snapshot_taken)) { kstat_snapshot_irqs(); __this_cpu_write(snapshot_taken, true); } } static void stop_counting_irqs(void) { __this_cpu_write(snapshot_taken, false); } static void print_irq_counts(void) { unsigned int i, count; struct irq_counts irq_counts_sorted[NUM_HARDIRQ_REPORT] = { {-1, 0}, {-1, 0}, {-1, 0}, {-1, 0}, {-1, 0} }; if (__this_cpu_read(snapshot_taken)) { for_each_active_irq(i) { count = kstat_get_irq_since_snapshot(i); tabulate_irq_count(irq_counts_sorted, i, count, NUM_HARDIRQ_REPORT); } /* * Outputting the "watchdog" prefix on every line is redundant and not * concise, and the original alarm information is sufficient for * positioning in logs, hence here printk() is used instead of pr_crit(). */ printk(KERN_CRIT "CPU#%d Detect HardIRQ Time exceeds %d%%. Most frequent HardIRQs:\n", smp_processor_id(), HARDIRQ_PERCENT_THRESH); for (i = 0; i < NUM_HARDIRQ_REPORT; i++) { if (irq_counts_sorted[i].irq == -1) break; printk(KERN_CRIT "\t#%u: %-10u\tirq#%d\n", i + 1, irq_counts_sorted[i].counts, irq_counts_sorted[i].irq); } /* * If the hardirq time is less than HARDIRQ_PERCENT_THRESH% in the last * sample_period, then we suspect the interrupt storm might be subsiding. */ if (!need_counting_irqs()) stop_counting_irqs(); } } static void report_cpu_status(void) { print_cpustat(); print_irq_counts(); } #else static inline void update_cpustat(void) { } static inline void report_cpu_status(void) { } static inline bool need_counting_irqs(void) { return false; } static inline void start_counting_irqs(void) { } static inline void stop_counting_irqs(void) { } #endif /* * Hard-lockup warnings should be triggered after just a few seconds. Soft- * lockups can have false positives under extreme conditions. So we generally * want a higher threshold for soft lockups than for hard lockups. So we couple * the thresholds with a factor: we make the soft threshold twice the amount of * time the hard threshold is. */ static int get_softlockup_thresh(void) { return watchdog_thresh * 2; } /* * Returns seconds, approximately. We don't need nanosecond * resolution, and we don't need to waste time with a big divide when * 2^30ns == 1.074s. */ static unsigned long get_timestamp(void) { return running_clock() >> 30LL; /* 2^30 ~= 10^9 */ } static void set_sample_period(void) { /* * convert watchdog_thresh from seconds to ns * the divide by 5 is to give hrtimer several chances (two * or three with the current relation between the soft * and hard thresholds) to increment before the * hardlockup detector generates a warning */ sample_period = get_softlockup_thresh() * ((u64)NSEC_PER_SEC / NUM_SAMPLE_PERIODS); watchdog_update_hrtimer_threshold(sample_period); } static void update_report_ts(void) { __this_cpu_write(watchdog_report_ts, get_timestamp()); } /* Commands for resetting the watchdog */ static void update_touch_ts(void) { __this_cpu_write(watchdog_touch_ts, get_timestamp()); update_report_ts(); } /** * touch_softlockup_watchdog_sched - touch watchdog on scheduler stalls * * Call when the scheduler may have stalled for legitimate reasons * preventing the watchdog task from executing - e.g. the scheduler * entering idle state. This should only be used for scheduler events. * Use touch_softlockup_watchdog() for everything else. */ notrace void touch_softlockup_watchdog_sched(void) { /* * Preemption can be enabled. It doesn't matter which CPU's watchdog * report period gets restarted here, so use the raw_ operation. */ raw_cpu_write(watchdog_report_ts, SOFTLOCKUP_DELAY_REPORT); } notrace void touch_softlockup_watchdog(void) { touch_softlockup_watchdog_sched(); wq_watchdog_touch(raw_smp_processor_id()); } EXPORT_SYMBOL(touch_softlockup_watchdog); void touch_all_softlockup_watchdogs(void) { int cpu; /* * watchdog_mutex cannpt be taken here, as this might be called * from (soft)interrupt context, so the access to * watchdog_allowed_cpumask might race with a concurrent update. * * The watchdog time stamp can race against a concurrent real * update as well, the only side effect might be a cycle delay for * the softlockup check. */ for_each_cpu(cpu, &watchdog_allowed_mask) { per_cpu(watchdog_report_ts, cpu) = SOFTLOCKUP_DELAY_REPORT; wq_watchdog_touch(cpu); } } void touch_softlockup_watchdog_sync(void) { __this_cpu_write(softlockup_touch_sync, true); __this_cpu_write(watchdog_report_ts, SOFTLOCKUP_DELAY_REPORT); } static int is_softlockup(unsigned long touch_ts, unsigned long period_ts, unsigned long now) { if ((watchdog_enabled & WATCHDOG_SOFTOCKUP_ENABLED) && watchdog_thresh) { /* * If period_ts has not been updated during a sample_period, then * in the subsequent few sample_periods, period_ts might also not * be updated, which could indicate a potential softlockup. In * this case, if we suspect the cause of the potential softlockup * might be interrupt storm, then we need to count the interrupts * to find which interrupt is storming. */ if (time_after_eq(now, period_ts + get_softlockup_thresh() / NUM_SAMPLE_PERIODS) && need_counting_irqs()) start_counting_irqs(); /* Warn about unreasonable delays. */ if (time_after(now, period_ts + get_softlockup_thresh())) return now - touch_ts; } return 0; } /* watchdog detector functions */ static DEFINE_PER_CPU(struct completion, softlockup_completion); static DEFINE_PER_CPU(struct cpu_stop_work, softlockup_stop_work); /* * The watchdog feed function - touches the timestamp. * * It only runs once every sample_period seconds (4 seconds by * default) to reset the softlockup timestamp. If this gets delayed * for more than 2*watchdog_thresh seconds then the debug-printout * triggers in watchdog_timer_fn(). */ static int softlockup_fn(void *data) { update_touch_ts(); stop_counting_irqs(); complete(this_cpu_ptr(&softlockup_completion)); return 0; } /* watchdog kicker functions */ static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer) { unsigned long touch_ts, period_ts, now; struct pt_regs *regs = get_irq_regs(); int duration; int softlockup_all_cpu_backtrace = sysctl_softlockup_all_cpu_backtrace; unsigned long flags; if (!watchdog_enabled) return HRTIMER_NORESTART; watchdog_hardlockup_kick(); /* kick the softlockup detector */ if (completion_done(this_cpu_ptr(&softlockup_completion))) { reinit_completion(this_cpu_ptr(&softlockup_completion)); stop_one_cpu_nowait(smp_processor_id(), softlockup_fn, NULL, this_cpu_ptr(&softlockup_stop_work)); } /* .. and repeat */ hrtimer_forward_now(hrtimer, ns_to_ktime(sample_period)); /* * Read the current timestamp first. It might become invalid anytime * when a virtual machine is stopped by the host or when the watchog * is touched from NMI. */ now = get_timestamp(); /* * If a virtual machine is stopped by the host it can look to * the watchdog like a soft lockup. This function touches the watchdog. */ kvm_check_and_clear_guest_paused(); /* * The stored timestamp is comparable with @now only when not touched. * It might get touched anytime from NMI. Make sure that is_softlockup() * uses the same (valid) value. */ period_ts = READ_ONCE(*this_cpu_ptr(&watchdog_report_ts)); update_cpustat(); /* Reset the interval when touched by known problematic code. */ if (period_ts == SOFTLOCKUP_DELAY_REPORT) { if (unlikely(__this_cpu_read(softlockup_touch_sync))) { /* * If the time stamp was touched atomically * make sure the scheduler tick is up to date. */ __this_cpu_write(softlockup_touch_sync, false); sched_clock_tick(); } update_report_ts(); return HRTIMER_RESTART; } /* Check for a softlockup. */ touch_ts = __this_cpu_read(watchdog_touch_ts); duration = is_softlockup(touch_ts, period_ts, now); if (unlikely(duration)) { /* * Prevent multiple soft-lockup reports if one cpu is already * engaged in dumping all cpu back traces. */ if (softlockup_all_cpu_backtrace) { if (test_and_set_bit_lock(0, &soft_lockup_nmi_warn)) return HRTIMER_RESTART; } /* Start period for the next softlockup warning. */ update_report_ts(); printk_cpu_sync_get_irqsave(flags); pr_emerg("BUG: soft lockup - CPU#%d stuck for %us! [%s:%d]\n", smp_processor_id(), duration, current->comm, task_pid_nr(current)); report_cpu_status(); print_modules(); print_irqtrace_events(current); if (regs) show_regs(regs); else dump_stack(); printk_cpu_sync_put_irqrestore(flags); if (softlockup_all_cpu_backtrace) { trigger_allbutcpu_cpu_backtrace(smp_processor_id()); if (!softlockup_panic) clear_bit_unlock(0, &soft_lockup_nmi_warn); } add_taint(TAINT_SOFTLOCKUP, LOCKDEP_STILL_OK); if (softlockup_panic) panic("softlockup: hung tasks"); } return HRTIMER_RESTART; } static void watchdog_enable(unsigned int cpu) { struct hrtimer *hrtimer = this_cpu_ptr(&watchdog_hrtimer); struct completion *done = this_cpu_ptr(&softlockup_completion); WARN_ON_ONCE(cpu != smp_processor_id()); init_completion(done); complete(done); /* * Start the timer first to prevent the hardlockup watchdog triggering * before the timer has a chance to fire. */ hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); hrtimer->function = watchdog_timer_fn; hrtimer_start(hrtimer, ns_to_ktime(sample_period), HRTIMER_MODE_REL_PINNED_HARD); /* Initialize timestamp */ update_touch_ts(); /* Enable the hardlockup detector */ if (watchdog_enabled & WATCHDOG_HARDLOCKUP_ENABLED) watchdog_hardlockup_enable(cpu); } static void watchdog_disable(unsigned int cpu) { struct hrtimer *hrtimer = this_cpu_ptr(&watchdog_hrtimer); WARN_ON_ONCE(cpu != smp_processor_id()); /* * Disable the hardlockup detector first. That prevents that a large * delay between disabling the timer and disabling the hardlockup * detector causes a false positive. */ watchdog_hardlockup_disable(cpu); hrtimer_cancel(hrtimer); wait_for_completion(this_cpu_ptr(&softlockup_completion)); } static int softlockup_stop_fn(void *data) { watchdog_disable(smp_processor_id()); return 0; } static void softlockup_stop_all(void) { int cpu; if (!softlockup_initialized) return; for_each_cpu(cpu, &watchdog_allowed_mask) smp_call_on_cpu(cpu, softlockup_stop_fn, NULL, false); cpumask_clear(&watchdog_allowed_mask); } static int softlockup_start_fn(void *data) { watchdog_enable(smp_processor_id()); return 0; } static void softlockup_start_all(void) { int cpu; cpumask_copy(&watchdog_allowed_mask, &watchdog_cpumask); for_each_cpu(cpu, &watchdog_allowed_mask) smp_call_on_cpu(cpu, softlockup_start_fn, NULL, false); } int lockup_detector_online_cpu(unsigned int cpu) { if (cpumask_test_cpu(cpu, &watchdog_allowed_mask)) watchdog_enable(cpu); return 0; } int lockup_detector_offline_cpu(unsigned int cpu) { if (cpumask_test_cpu(cpu, &watchdog_allowed_mask)) watchdog_disable(cpu); return 0; } static void __lockup_detector_reconfigure(void) { cpus_read_lock(); watchdog_hardlockup_stop(); softlockup_stop_all(); set_sample_period(); lockup_detector_update_enable(); if (watchdog_enabled && watchdog_thresh) softlockup_start_all(); watchdog_hardlockup_start(); cpus_read_unlock(); /* * Must be called outside the cpus locked section to prevent * recursive locking in the perf code. */ __lockup_detector_cleanup(); } void lockup_detector_reconfigure(void) { mutex_lock(&watchdog_mutex); __lockup_detector_reconfigure(); mutex_unlock(&watchdog_mutex); } /* * Create the watchdog infrastructure and configure the detector(s). */ static __init void lockup_detector_setup(void) { /* * If sysctl is off and watchdog got disabled on the command line, * nothing to do here. */ lockup_detector_update_enable(); if (!IS_ENABLED(CONFIG_SYSCTL) && !(watchdog_enabled && watchdog_thresh)) return; mutex_lock(&watchdog_mutex); __lockup_detector_reconfigure(); softlockup_initialized = true; mutex_unlock(&watchdog_mutex); } #else /* CONFIG_SOFTLOCKUP_DETECTOR */ static void __lockup_detector_reconfigure(void) { cpus_read_lock(); watchdog_hardlockup_stop(); lockup_detector_update_enable(); watchdog_hardlockup_start(); cpus_read_unlock(); } void lockup_detector_reconfigure(void) { __lockup_detector_reconfigure(); } static inline void lockup_detector_setup(void) { __lockup_detector_reconfigure(); } #endif /* !CONFIG_SOFTLOCKUP_DETECTOR */ static void __lockup_detector_cleanup(void) { lockdep_assert_held(&watchdog_mutex); hardlockup_detector_perf_cleanup(); } /** * lockup_detector_cleanup - Cleanup after cpu hotplug or sysctl changes * * Caller must not hold the cpu hotplug rwsem. */ void lockup_detector_cleanup(void) { mutex_lock(&watchdog_mutex); __lockup_detector_cleanup(); mutex_unlock(&watchdog_mutex); } /** * lockup_detector_soft_poweroff - Interface to stop lockup detector(s) * * Special interface for parisc. It prevents lockup detector warnings from * the default pm_poweroff() function which busy loops forever. */ void lockup_detector_soft_poweroff(void) { watchdog_enabled = 0; } #ifdef CONFIG_SYSCTL /* Propagate any changes to the watchdog infrastructure */ static void proc_watchdog_update(void) { /* Remove impossible cpus to keep sysctl output clean. */ cpumask_and(&watchdog_cpumask, &watchdog_cpumask, cpu_possible_mask); __lockup_detector_reconfigure(); } /* * common function for watchdog, nmi_watchdog and soft_watchdog parameter * * caller | table->data points to | 'which' * -------------------|----------------------------------|------------------------------- * proc_watchdog | watchdog_user_enabled | WATCHDOG_HARDLOCKUP_ENABLED | * | | WATCHDOG_SOFTOCKUP_ENABLED * -------------------|----------------------------------|------------------------------- * proc_nmi_watchdog | watchdog_hardlockup_user_enabled | WATCHDOG_HARDLOCKUP_ENABLED * -------------------|----------------------------------|------------------------------- * proc_soft_watchdog | watchdog_softlockup_user_enabled | WATCHDOG_SOFTOCKUP_ENABLED */ static int proc_watchdog_common(int which, const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int err, old, *param = table->data; mutex_lock(&watchdog_mutex); if (!write) { /* * On read synchronize the userspace interface. This is a * racy snapshot. */ *param = (watchdog_enabled & which) != 0; err = proc_dointvec_minmax(table, write, buffer, lenp, ppos); } else { old = READ_ONCE(*param); err = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (!err && old != READ_ONCE(*param)) proc_watchdog_update(); } mutex_unlock(&watchdog_mutex); return err; } /* * /proc/sys/kernel/watchdog */ static int proc_watchdog(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { return proc_watchdog_common(WATCHDOG_HARDLOCKUP_ENABLED | WATCHDOG_SOFTOCKUP_ENABLED, table, write, buffer, lenp, ppos); } /* * /proc/sys/kernel/nmi_watchdog */ static int proc_nmi_watchdog(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { if (!watchdog_hardlockup_available && write) return -ENOTSUPP; return proc_watchdog_common(WATCHDOG_HARDLOCKUP_ENABLED, table, write, buffer, lenp, ppos); } #ifdef CONFIG_SOFTLOCKUP_DETECTOR /* * /proc/sys/kernel/soft_watchdog */ static int proc_soft_watchdog(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { return proc_watchdog_common(WATCHDOG_SOFTOCKUP_ENABLED, table, write, buffer, lenp, ppos); } #endif /* * /proc/sys/kernel/watchdog_thresh */ static int proc_watchdog_thresh(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int err, old; mutex_lock(&watchdog_mutex); old = READ_ONCE(watchdog_thresh); err = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (!err && write && old != READ_ONCE(watchdog_thresh)) proc_watchdog_update(); mutex_unlock(&watchdog_mutex); return err; } /* * The cpumask is the mask of possible cpus that the watchdog can run * on, not the mask of cpus it is actually running on. This allows the * user to specify a mask that will include cpus that have not yet * been brought online, if desired. */ static int proc_watchdog_cpumask(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int err; mutex_lock(&watchdog_mutex); err = proc_do_large_bitmap(table, write, buffer, lenp, ppos); if (!err && write) proc_watchdog_update(); mutex_unlock(&watchdog_mutex); return err; } static const int sixty = 60; static struct ctl_table watchdog_sysctls[] = { { .procname = "watchdog", .data = &watchdog_user_enabled, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_watchdog, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, { .procname = "watchdog_thresh", .data = &watchdog_thresh, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_watchdog_thresh, .extra1 = SYSCTL_ZERO, .extra2 = (void *)&sixty, }, { .procname = "watchdog_cpumask", .data = &watchdog_cpumask_bits, .maxlen = NR_CPUS, .mode = 0644, .proc_handler = proc_watchdog_cpumask, }, #ifdef CONFIG_SOFTLOCKUP_DETECTOR { .procname = "soft_watchdog", .data = &watchdog_softlockup_user_enabled, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_soft_watchdog, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, { .procname = "softlockup_panic", .data = &softlockup_panic, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, #ifdef CONFIG_SMP { .procname = "softlockup_all_cpu_backtrace", .data = &sysctl_softlockup_all_cpu_backtrace, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, #endif /* CONFIG_SMP */ #endif #ifdef CONFIG_HARDLOCKUP_DETECTOR { .procname = "hardlockup_panic", .data = &hardlockup_panic, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, #ifdef CONFIG_SMP { .procname = "hardlockup_all_cpu_backtrace", .data = &sysctl_hardlockup_all_cpu_backtrace, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, #endif /* CONFIG_SMP */ #endif }; static struct ctl_table watchdog_hardlockup_sysctl[] = { { .procname = "nmi_watchdog", .data = &watchdog_hardlockup_user_enabled, .maxlen = sizeof(int), .mode = 0444, .proc_handler = proc_nmi_watchdog, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, }; static void __init watchdog_sysctl_init(void) { register_sysctl_init("kernel", watchdog_sysctls); if (watchdog_hardlockup_available) watchdog_hardlockup_sysctl[0].mode = 0644; register_sysctl_init("kernel", watchdog_hardlockup_sysctl); } #else #define watchdog_sysctl_init() do { } while (0) #endif /* CONFIG_SYSCTL */ static void __init lockup_detector_delay_init(struct work_struct *work); static bool allow_lockup_detector_init_retry __initdata; static struct work_struct detector_work __initdata = __WORK_INITIALIZER(detector_work, lockup_detector_delay_init); static void __init lockup_detector_delay_init(struct work_struct *work) { int ret; ret = watchdog_hardlockup_probe(); if (ret) { pr_info("Delayed init of the lockup detector failed: %d\n", ret); pr_info("Hard watchdog permanently disabled\n"); return; } allow_lockup_detector_init_retry = false; watchdog_hardlockup_available = true; lockup_detector_setup(); } /* * lockup_detector_retry_init - retry init lockup detector if possible. * * Retry hardlockup detector init. It is useful when it requires some * functionality that has to be initialized later on a particular * platform. */ void __init lockup_detector_retry_init(void) { /* Must be called before late init calls */ if (!allow_lockup_detector_init_retry) return; schedule_work(&detector_work); } /* * Ensure that optional delayed hardlockup init is proceed before * the init code and memory is freed. */ static int __init lockup_detector_check(void) { /* Prevent any later retry. */ allow_lockup_detector_init_retry = false; /* Make sure no work is pending. */ flush_work(&detector_work); watchdog_sysctl_init(); return 0; } late_initcall_sync(lockup_detector_check); void __init lockup_detector_init(void) { if (tick_nohz_full_enabled()) pr_info("Disabling watchdog on nohz_full cores by default\n"); cpumask_copy(&watchdog_cpumask, housekeeping_cpumask(HK_TYPE_TIMER)); if (!watchdog_hardlockup_probe()) watchdog_hardlockup_available = true; else allow_lockup_detector_init_retry = true; lockup_detector_setup(); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1