Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tianjia Zhang | 8501 | 99.45% | 3 | 50.00% |
Marcelo H. Cerri | 27 | 0.32% | 1 | 16.67% |
Dmitry Kasatkin | 12 | 0.14% | 1 | 16.67% |
Jiapeng Chong | 8 | 0.09% | 1 | 16.67% |
Total | 8548 | 6 |
/* ec.c - Elliptic Curve functions * Copyright (C) 2007 Free Software Foundation, Inc. * Copyright (C) 2013 g10 Code GmbH * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see <http://www.gnu.org/licenses/>. */ #include "mpi-internal.h" #include "longlong.h" #define point_init(a) mpi_point_init((a)) #define point_free(a) mpi_point_free_parts((a)) #define log_error(fmt, ...) pr_err(fmt, ##__VA_ARGS__) #define log_fatal(fmt, ...) pr_err(fmt, ##__VA_ARGS__) #define DIM(v) (sizeof(v)/sizeof((v)[0])) /* Create a new point option. NBITS gives the size in bits of one * coordinate; it is only used to pre-allocate some resources and * might also be passed as 0 to use a default value. */ MPI_POINT mpi_point_new(unsigned int nbits) { MPI_POINT p; (void)nbits; /* Currently not used. */ p = kmalloc(sizeof(*p), GFP_KERNEL); if (p) mpi_point_init(p); return p; } EXPORT_SYMBOL_GPL(mpi_point_new); /* Release the point object P. P may be NULL. */ void mpi_point_release(MPI_POINT p) { if (p) { mpi_point_free_parts(p); kfree(p); } } EXPORT_SYMBOL_GPL(mpi_point_release); /* Initialize the fields of a point object. gcry_mpi_point_free_parts * may be used to release the fields. */ void mpi_point_init(MPI_POINT p) { p->x = mpi_new(0); p->y = mpi_new(0); p->z = mpi_new(0); } EXPORT_SYMBOL_GPL(mpi_point_init); /* Release the parts of a point object. */ void mpi_point_free_parts(MPI_POINT p) { mpi_free(p->x); p->x = NULL; mpi_free(p->y); p->y = NULL; mpi_free(p->z); p->z = NULL; } EXPORT_SYMBOL_GPL(mpi_point_free_parts); /* Set the value from S into D. */ static void point_set(MPI_POINT d, MPI_POINT s) { mpi_set(d->x, s->x); mpi_set(d->y, s->y); mpi_set(d->z, s->z); } static void point_resize(MPI_POINT p, struct mpi_ec_ctx *ctx) { size_t nlimbs = ctx->p->nlimbs; mpi_resize(p->x, nlimbs); p->x->nlimbs = nlimbs; mpi_resize(p->z, nlimbs); p->z->nlimbs = nlimbs; if (ctx->model != MPI_EC_MONTGOMERY) { mpi_resize(p->y, nlimbs); p->y->nlimbs = nlimbs; } } static void point_swap_cond(MPI_POINT d, MPI_POINT s, unsigned long swap, struct mpi_ec_ctx *ctx) { mpi_swap_cond(d->x, s->x, swap); if (ctx->model != MPI_EC_MONTGOMERY) mpi_swap_cond(d->y, s->y, swap); mpi_swap_cond(d->z, s->z, swap); } /* W = W mod P. */ static void ec_mod(MPI w, struct mpi_ec_ctx *ec) { if (ec->t.p_barrett) mpi_mod_barrett(w, w, ec->t.p_barrett); else mpi_mod(w, w, ec->p); } static void ec_addm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) { mpi_add(w, u, v); ec_mod(w, ctx); } static void ec_subm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ec) { mpi_sub(w, u, v); while (w->sign) mpi_add(w, w, ec->p); /*ec_mod(w, ec);*/ } static void ec_mulm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) { mpi_mul(w, u, v); ec_mod(w, ctx); } /* W = 2 * U mod P. */ static void ec_mul2(MPI w, MPI u, struct mpi_ec_ctx *ctx) { mpi_lshift(w, u, 1); ec_mod(w, ctx); } static void ec_powm(MPI w, const MPI b, const MPI e, struct mpi_ec_ctx *ctx) { mpi_powm(w, b, e, ctx->p); /* mpi_abs(w); */ } /* Shortcut for * ec_powm(B, B, mpi_const(MPI_C_TWO), ctx); * for easier optimization. */ static void ec_pow2(MPI w, const MPI b, struct mpi_ec_ctx *ctx) { /* Using mpi_mul is slightly faster (at least on amd64). */ /* mpi_powm(w, b, mpi_const(MPI_C_TWO), ctx->p); */ ec_mulm(w, b, b, ctx); } /* Shortcut for * ec_powm(B, B, mpi_const(MPI_C_THREE), ctx); * for easier optimization. */ static void ec_pow3(MPI w, const MPI b, struct mpi_ec_ctx *ctx) { mpi_powm(w, b, mpi_const(MPI_C_THREE), ctx->p); } static void ec_invm(MPI x, MPI a, struct mpi_ec_ctx *ctx) { if (!mpi_invm(x, a, ctx->p)) log_error("ec_invm: inverse does not exist:\n"); } static void mpih_set_cond(mpi_ptr_t wp, mpi_ptr_t up, mpi_size_t usize, unsigned long set) { mpi_size_t i; mpi_limb_t mask = ((mpi_limb_t)0) - set; mpi_limb_t x; for (i = 0; i < usize; i++) { x = mask & (wp[i] ^ up[i]); wp[i] = wp[i] ^ x; } } /* Routines for 2^255 - 19. */ #define LIMB_SIZE_25519 ((256+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB) static void ec_addm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) { mpi_ptr_t wp, up, vp; mpi_size_t wsize = LIMB_SIZE_25519; mpi_limb_t n[LIMB_SIZE_25519]; mpi_limb_t borrow; if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize) log_bug("addm_25519: different sizes\n"); memset(n, 0, sizeof(n)); up = u->d; vp = v->d; wp = w->d; mpihelp_add_n(wp, up, vp, wsize); borrow = mpihelp_sub_n(wp, wp, ctx->p->d, wsize); mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL)); mpihelp_add_n(wp, wp, n, wsize); wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB)); } static void ec_subm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) { mpi_ptr_t wp, up, vp; mpi_size_t wsize = LIMB_SIZE_25519; mpi_limb_t n[LIMB_SIZE_25519]; mpi_limb_t borrow; if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize) log_bug("subm_25519: different sizes\n"); memset(n, 0, sizeof(n)); up = u->d; vp = v->d; wp = w->d; borrow = mpihelp_sub_n(wp, up, vp, wsize); mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL)); mpihelp_add_n(wp, wp, n, wsize); wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB)); } static void ec_mulm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) { mpi_ptr_t wp, up, vp; mpi_size_t wsize = LIMB_SIZE_25519; mpi_limb_t n[LIMB_SIZE_25519*2]; mpi_limb_t m[LIMB_SIZE_25519+1]; mpi_limb_t cy; int msb; (void)ctx; if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize) log_bug("mulm_25519: different sizes\n"); up = u->d; vp = v->d; wp = w->d; mpihelp_mul_n(n, up, vp, wsize); memcpy(wp, n, wsize * BYTES_PER_MPI_LIMB); wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB)); memcpy(m, n+LIMB_SIZE_25519-1, (wsize+1) * BYTES_PER_MPI_LIMB); mpihelp_rshift(m, m, LIMB_SIZE_25519+1, (255 % BITS_PER_MPI_LIMB)); memcpy(n, m, wsize * BYTES_PER_MPI_LIMB); cy = mpihelp_lshift(m, m, LIMB_SIZE_25519, 4); m[LIMB_SIZE_25519] = cy; cy = mpihelp_add_n(m, m, n, wsize); m[LIMB_SIZE_25519] += cy; cy = mpihelp_add_n(m, m, n, wsize); m[LIMB_SIZE_25519] += cy; cy = mpihelp_add_n(m, m, n, wsize); m[LIMB_SIZE_25519] += cy; cy = mpihelp_add_n(wp, wp, m, wsize); m[LIMB_SIZE_25519] += cy; memset(m, 0, wsize * BYTES_PER_MPI_LIMB); msb = (wp[LIMB_SIZE_25519-1] >> (255 % BITS_PER_MPI_LIMB)); m[0] = (m[LIMB_SIZE_25519] * 2 + msb) * 19; wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB)); mpihelp_add_n(wp, wp, m, wsize); m[0] = 0; cy = mpihelp_sub_n(wp, wp, ctx->p->d, wsize); mpih_set_cond(m, ctx->p->d, wsize, (cy != 0UL)); mpihelp_add_n(wp, wp, m, wsize); } static void ec_mul2_25519(MPI w, MPI u, struct mpi_ec_ctx *ctx) { ec_addm_25519(w, u, u, ctx); } static void ec_pow2_25519(MPI w, const MPI b, struct mpi_ec_ctx *ctx) { ec_mulm_25519(w, b, b, ctx); } /* Routines for 2^448 - 2^224 - 1. */ #define LIMB_SIZE_448 ((448+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB) #define LIMB_SIZE_HALF_448 ((LIMB_SIZE_448+1)/2) static void ec_addm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) { mpi_ptr_t wp, up, vp; mpi_size_t wsize = LIMB_SIZE_448; mpi_limb_t n[LIMB_SIZE_448]; mpi_limb_t cy; if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize) log_bug("addm_448: different sizes\n"); memset(n, 0, sizeof(n)); up = u->d; vp = v->d; wp = w->d; cy = mpihelp_add_n(wp, up, vp, wsize); mpih_set_cond(n, ctx->p->d, wsize, (cy != 0UL)); mpihelp_sub_n(wp, wp, n, wsize); } static void ec_subm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) { mpi_ptr_t wp, up, vp; mpi_size_t wsize = LIMB_SIZE_448; mpi_limb_t n[LIMB_SIZE_448]; mpi_limb_t borrow; if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize) log_bug("subm_448: different sizes\n"); memset(n, 0, sizeof(n)); up = u->d; vp = v->d; wp = w->d; borrow = mpihelp_sub_n(wp, up, vp, wsize); mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL)); mpihelp_add_n(wp, wp, n, wsize); } static void ec_mulm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) { mpi_ptr_t wp, up, vp; mpi_size_t wsize = LIMB_SIZE_448; mpi_limb_t n[LIMB_SIZE_448*2]; mpi_limb_t a2[LIMB_SIZE_HALF_448]; mpi_limb_t a3[LIMB_SIZE_HALF_448]; mpi_limb_t b0[LIMB_SIZE_HALF_448]; mpi_limb_t b1[LIMB_SIZE_HALF_448]; mpi_limb_t cy; int i; #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) mpi_limb_t b1_rest, a3_rest; #endif if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize) log_bug("mulm_448: different sizes\n"); up = u->d; vp = v->d; wp = w->d; mpihelp_mul_n(n, up, vp, wsize); for (i = 0; i < (wsize + 1) / 2; i++) { b0[i] = n[i]; b1[i] = n[i+wsize/2]; a2[i] = n[i+wsize]; a3[i] = n[i+wsize+wsize/2]; } #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) b0[LIMB_SIZE_HALF_448-1] &= ((mpi_limb_t)1UL << 32)-1; a2[LIMB_SIZE_HALF_448-1] &= ((mpi_limb_t)1UL << 32)-1; b1_rest = 0; a3_rest = 0; for (i = (wsize + 1) / 2 - 1; i >= 0; i--) { mpi_limb_t b1v, a3v; b1v = b1[i]; a3v = a3[i]; b1[i] = (b1_rest << 32) | (b1v >> 32); a3[i] = (a3_rest << 32) | (a3v >> 32); b1_rest = b1v & (((mpi_limb_t)1UL << 32)-1); a3_rest = a3v & (((mpi_limb_t)1UL << 32)-1); } #endif cy = mpihelp_add_n(b0, b0, a2, LIMB_SIZE_HALF_448); cy += mpihelp_add_n(b0, b0, a3, LIMB_SIZE_HALF_448); for (i = 0; i < (wsize + 1) / 2; i++) wp[i] = b0[i]; #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) wp[LIMB_SIZE_HALF_448-1] &= (((mpi_limb_t)1UL << 32)-1); #endif #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) cy = b0[LIMB_SIZE_HALF_448-1] >> 32; #endif cy = mpihelp_add_1(b1, b1, LIMB_SIZE_HALF_448, cy); cy += mpihelp_add_n(b1, b1, a2, LIMB_SIZE_HALF_448); cy += mpihelp_add_n(b1, b1, a3, LIMB_SIZE_HALF_448); cy += mpihelp_add_n(b1, b1, a3, LIMB_SIZE_HALF_448); #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) b1_rest = 0; for (i = (wsize + 1) / 2 - 1; i >= 0; i--) { mpi_limb_t b1v = b1[i]; b1[i] = (b1_rest << 32) | (b1v >> 32); b1_rest = b1v & (((mpi_limb_t)1UL << 32)-1); } wp[LIMB_SIZE_HALF_448-1] |= (b1_rest << 32); #endif for (i = 0; i < wsize / 2; i++) wp[i+(wsize + 1) / 2] = b1[i]; #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) cy = b1[LIMB_SIZE_HALF_448-1]; #endif memset(n, 0, wsize * BYTES_PER_MPI_LIMB); #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) n[LIMB_SIZE_HALF_448-1] = cy << 32; #else n[LIMB_SIZE_HALF_448] = cy; #endif n[0] = cy; mpihelp_add_n(wp, wp, n, wsize); memset(n, 0, wsize * BYTES_PER_MPI_LIMB); cy = mpihelp_sub_n(wp, wp, ctx->p->d, wsize); mpih_set_cond(n, ctx->p->d, wsize, (cy != 0UL)); mpihelp_add_n(wp, wp, n, wsize); } static void ec_mul2_448(MPI w, MPI u, struct mpi_ec_ctx *ctx) { ec_addm_448(w, u, u, ctx); } static void ec_pow2_448(MPI w, const MPI b, struct mpi_ec_ctx *ctx) { ec_mulm_448(w, b, b, ctx); } struct field_table { const char *p; /* computation routines for the field. */ void (*addm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx); void (*subm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx); void (*mulm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx); void (*mul2)(MPI w, MPI u, struct mpi_ec_ctx *ctx); void (*pow2)(MPI w, const MPI b, struct mpi_ec_ctx *ctx); }; static const struct field_table field_table[] = { { "0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED", ec_addm_25519, ec_subm_25519, ec_mulm_25519, ec_mul2_25519, ec_pow2_25519 }, { "0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE" "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", ec_addm_448, ec_subm_448, ec_mulm_448, ec_mul2_448, ec_pow2_448 }, { NULL, NULL, NULL, NULL, NULL, NULL }, }; /* Force recomputation of all helper variables. */ static void mpi_ec_get_reset(struct mpi_ec_ctx *ec) { ec->t.valid.a_is_pminus3 = 0; ec->t.valid.two_inv_p = 0; } /* Accessor for helper variable. */ static int ec_get_a_is_pminus3(struct mpi_ec_ctx *ec) { MPI tmp; if (!ec->t.valid.a_is_pminus3) { ec->t.valid.a_is_pminus3 = 1; tmp = mpi_alloc_like(ec->p); mpi_sub_ui(tmp, ec->p, 3); ec->t.a_is_pminus3 = !mpi_cmp(ec->a, tmp); mpi_free(tmp); } return ec->t.a_is_pminus3; } /* Accessor for helper variable. */ static MPI ec_get_two_inv_p(struct mpi_ec_ctx *ec) { if (!ec->t.valid.two_inv_p) { ec->t.valid.two_inv_p = 1; if (!ec->t.two_inv_p) ec->t.two_inv_p = mpi_alloc(0); ec_invm(ec->t.two_inv_p, mpi_const(MPI_C_TWO), ec); } return ec->t.two_inv_p; } static const char *const curve25519_bad_points[] = { "0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed", "0x0000000000000000000000000000000000000000000000000000000000000000", "0x0000000000000000000000000000000000000000000000000000000000000001", "0x00b8495f16056286fdb1329ceb8d09da6ac49ff1fae35616aeb8413b7c7aebe0", "0x57119fd0dd4e22d8868e1c58c45c44045bef839c55b1d0b1248c50a3bc959c5f", "0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec", "0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffee", NULL }; static const char *const curve448_bad_points[] = { "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffe" "ffffffffffffffffffffffffffffffffffffffffffffffffffffffff", "0x00000000000000000000000000000000000000000000000000000000" "00000000000000000000000000000000000000000000000000000000", "0x00000000000000000000000000000000000000000000000000000000" "00000000000000000000000000000000000000000000000000000001", "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffe" "fffffffffffffffffffffffffffffffffffffffffffffffffffffffe", "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff" "00000000000000000000000000000000000000000000000000000000", NULL }; static const char *const *bad_points_table[] = { curve25519_bad_points, curve448_bad_points, }; static void mpi_ec_coefficient_normalize(MPI a, MPI p) { if (a->sign) { mpi_resize(a, p->nlimbs); mpihelp_sub_n(a->d, p->d, a->d, p->nlimbs); a->nlimbs = p->nlimbs; a->sign = 0; } } /* This function initialized a context for elliptic curve based on the * field GF(p). P is the prime specifying this field, A is the first * coefficient. CTX is expected to be zeroized. */ void mpi_ec_init(struct mpi_ec_ctx *ctx, enum gcry_mpi_ec_models model, enum ecc_dialects dialect, int flags, MPI p, MPI a, MPI b) { int i; static int use_barrett = -1 /* TODO: 1 or -1 */; mpi_ec_coefficient_normalize(a, p); mpi_ec_coefficient_normalize(b, p); /* Fixme: Do we want to check some constraints? e.g. a < p */ ctx->model = model; ctx->dialect = dialect; ctx->flags = flags; if (dialect == ECC_DIALECT_ED25519) ctx->nbits = 256; else ctx->nbits = mpi_get_nbits(p); ctx->p = mpi_copy(p); ctx->a = mpi_copy(a); ctx->b = mpi_copy(b); ctx->d = NULL; ctx->t.two_inv_p = NULL; ctx->t.p_barrett = use_barrett > 0 ? mpi_barrett_init(ctx->p, 0) : NULL; mpi_ec_get_reset(ctx); if (model == MPI_EC_MONTGOMERY) { for (i = 0; i < DIM(bad_points_table); i++) { MPI p_candidate = mpi_scanval(bad_points_table[i][0]); int match_p = !mpi_cmp(ctx->p, p_candidate); int j; mpi_free(p_candidate); if (!match_p) continue; for (j = 0; i < DIM(ctx->t.scratch) && bad_points_table[i][j]; j++) ctx->t.scratch[j] = mpi_scanval(bad_points_table[i][j]); } } else { /* Allocate scratch variables. */ for (i = 0; i < DIM(ctx->t.scratch); i++) ctx->t.scratch[i] = mpi_alloc_like(ctx->p); } ctx->addm = ec_addm; ctx->subm = ec_subm; ctx->mulm = ec_mulm; ctx->mul2 = ec_mul2; ctx->pow2 = ec_pow2; for (i = 0; field_table[i].p; i++) { MPI f_p; f_p = mpi_scanval(field_table[i].p); if (!f_p) break; if (!mpi_cmp(p, f_p)) { ctx->addm = field_table[i].addm; ctx->subm = field_table[i].subm; ctx->mulm = field_table[i].mulm; ctx->mul2 = field_table[i].mul2; ctx->pow2 = field_table[i].pow2; mpi_free(f_p); mpi_resize(ctx->a, ctx->p->nlimbs); ctx->a->nlimbs = ctx->p->nlimbs; mpi_resize(ctx->b, ctx->p->nlimbs); ctx->b->nlimbs = ctx->p->nlimbs; for (i = 0; i < DIM(ctx->t.scratch) && ctx->t.scratch[i]; i++) ctx->t.scratch[i]->nlimbs = ctx->p->nlimbs; break; } mpi_free(f_p); } } EXPORT_SYMBOL_GPL(mpi_ec_init); void mpi_ec_deinit(struct mpi_ec_ctx *ctx) { int i; mpi_barrett_free(ctx->t.p_barrett); /* Domain parameter. */ mpi_free(ctx->p); mpi_free(ctx->a); mpi_free(ctx->b); mpi_point_release(ctx->G); mpi_free(ctx->n); /* The key. */ mpi_point_release(ctx->Q); mpi_free(ctx->d); /* Private data of ec.c. */ mpi_free(ctx->t.two_inv_p); for (i = 0; i < DIM(ctx->t.scratch); i++) mpi_free(ctx->t.scratch[i]); } EXPORT_SYMBOL_GPL(mpi_ec_deinit); /* Compute the affine coordinates from the projective coordinates in * POINT. Set them into X and Y. If one coordinate is not required, * X or Y may be passed as NULL. CTX is the usual context. Returns: 0 * on success or !0 if POINT is at infinity. */ int mpi_ec_get_affine(MPI x, MPI y, MPI_POINT point, struct mpi_ec_ctx *ctx) { if (!mpi_cmp_ui(point->z, 0)) return -1; switch (ctx->model) { case MPI_EC_WEIERSTRASS: /* Using Jacobian coordinates. */ { MPI z1, z2, z3; z1 = mpi_new(0); z2 = mpi_new(0); ec_invm(z1, point->z, ctx); /* z1 = z^(-1) mod p */ ec_mulm(z2, z1, z1, ctx); /* z2 = z^(-2) mod p */ if (x) ec_mulm(x, point->x, z2, ctx); if (y) { z3 = mpi_new(0); ec_mulm(z3, z2, z1, ctx); /* z3 = z^(-3) mod p */ ec_mulm(y, point->y, z3, ctx); mpi_free(z3); } mpi_free(z2); mpi_free(z1); } return 0; case MPI_EC_MONTGOMERY: { if (x) mpi_set(x, point->x); if (y) { log_fatal("%s: Getting Y-coordinate on %s is not supported\n", "mpi_ec_get_affine", "Montgomery"); return -1; } } return 0; case MPI_EC_EDWARDS: { MPI z; z = mpi_new(0); ec_invm(z, point->z, ctx); mpi_resize(z, ctx->p->nlimbs); z->nlimbs = ctx->p->nlimbs; if (x) { mpi_resize(x, ctx->p->nlimbs); x->nlimbs = ctx->p->nlimbs; ctx->mulm(x, point->x, z, ctx); } if (y) { mpi_resize(y, ctx->p->nlimbs); y->nlimbs = ctx->p->nlimbs; ctx->mulm(y, point->y, z, ctx); } mpi_free(z); } return 0; default: return -1; } } EXPORT_SYMBOL_GPL(mpi_ec_get_affine); /* RESULT = 2 * POINT (Weierstrass version). */ static void dup_point_weierstrass(MPI_POINT result, MPI_POINT point, struct mpi_ec_ctx *ctx) { #define x3 (result->x) #define y3 (result->y) #define z3 (result->z) #define t1 (ctx->t.scratch[0]) #define t2 (ctx->t.scratch[1]) #define t3 (ctx->t.scratch[2]) #define l1 (ctx->t.scratch[3]) #define l2 (ctx->t.scratch[4]) #define l3 (ctx->t.scratch[5]) if (!mpi_cmp_ui(point->y, 0) || !mpi_cmp_ui(point->z, 0)) { /* P_y == 0 || P_z == 0 => [1:1:0] */ mpi_set_ui(x3, 1); mpi_set_ui(y3, 1); mpi_set_ui(z3, 0); } else { if (ec_get_a_is_pminus3(ctx)) { /* Use the faster case. */ /* L1 = 3(X - Z^2)(X + Z^2) */ /* T1: used for Z^2. */ /* T2: used for the right term. */ ec_pow2(t1, point->z, ctx); ec_subm(l1, point->x, t1, ctx); ec_mulm(l1, l1, mpi_const(MPI_C_THREE), ctx); ec_addm(t2, point->x, t1, ctx); ec_mulm(l1, l1, t2, ctx); } else { /* Standard case. */ /* L1 = 3X^2 + aZ^4 */ /* T1: used for aZ^4. */ ec_pow2(l1, point->x, ctx); ec_mulm(l1, l1, mpi_const(MPI_C_THREE), ctx); ec_powm(t1, point->z, mpi_const(MPI_C_FOUR), ctx); ec_mulm(t1, t1, ctx->a, ctx); ec_addm(l1, l1, t1, ctx); } /* Z3 = 2YZ */ ec_mulm(z3, point->y, point->z, ctx); ec_mul2(z3, z3, ctx); /* L2 = 4XY^2 */ /* T2: used for Y2; required later. */ ec_pow2(t2, point->y, ctx); ec_mulm(l2, t2, point->x, ctx); ec_mulm(l2, l2, mpi_const(MPI_C_FOUR), ctx); /* X3 = L1^2 - 2L2 */ /* T1: used for L2^2. */ ec_pow2(x3, l1, ctx); ec_mul2(t1, l2, ctx); ec_subm(x3, x3, t1, ctx); /* L3 = 8Y^4 */ /* T2: taken from above. */ ec_pow2(t2, t2, ctx); ec_mulm(l3, t2, mpi_const(MPI_C_EIGHT), ctx); /* Y3 = L1(L2 - X3) - L3 */ ec_subm(y3, l2, x3, ctx); ec_mulm(y3, y3, l1, ctx); ec_subm(y3, y3, l3, ctx); } #undef x3 #undef y3 #undef z3 #undef t1 #undef t2 #undef t3 #undef l1 #undef l2 #undef l3 } /* RESULT = 2 * POINT (Montgomery version). */ static void dup_point_montgomery(MPI_POINT result, MPI_POINT point, struct mpi_ec_ctx *ctx) { (void)result; (void)point; (void)ctx; log_fatal("%s: %s not yet supported\n", "mpi_ec_dup_point", "Montgomery"); } /* RESULT = 2 * POINT (Twisted Edwards version). */ static void dup_point_edwards(MPI_POINT result, MPI_POINT point, struct mpi_ec_ctx *ctx) { #define X1 (point->x) #define Y1 (point->y) #define Z1 (point->z) #define X3 (result->x) #define Y3 (result->y) #define Z3 (result->z) #define B (ctx->t.scratch[0]) #define C (ctx->t.scratch[1]) #define D (ctx->t.scratch[2]) #define E (ctx->t.scratch[3]) #define F (ctx->t.scratch[4]) #define H (ctx->t.scratch[5]) #define J (ctx->t.scratch[6]) /* Compute: (X_3 : Y_3 : Z_3) = 2( X_1 : Y_1 : Z_1 ) */ /* B = (X_1 + Y_1)^2 */ ctx->addm(B, X1, Y1, ctx); ctx->pow2(B, B, ctx); /* C = X_1^2 */ /* D = Y_1^2 */ ctx->pow2(C, X1, ctx); ctx->pow2(D, Y1, ctx); /* E = aC */ if (ctx->dialect == ECC_DIALECT_ED25519) ctx->subm(E, ctx->p, C, ctx); else ctx->mulm(E, ctx->a, C, ctx); /* F = E + D */ ctx->addm(F, E, D, ctx); /* H = Z_1^2 */ ctx->pow2(H, Z1, ctx); /* J = F - 2H */ ctx->mul2(J, H, ctx); ctx->subm(J, F, J, ctx); /* X_3 = (B - C - D) · J */ ctx->subm(X3, B, C, ctx); ctx->subm(X3, X3, D, ctx); ctx->mulm(X3, X3, J, ctx); /* Y_3 = F · (E - D) */ ctx->subm(Y3, E, D, ctx); ctx->mulm(Y3, Y3, F, ctx); /* Z_3 = F · J */ ctx->mulm(Z3, F, J, ctx); #undef X1 #undef Y1 #undef Z1 #undef X3 #undef Y3 #undef Z3 #undef B #undef C #undef D #undef E #undef F #undef H #undef J } /* RESULT = 2 * POINT */ static void mpi_ec_dup_point(MPI_POINT result, MPI_POINT point, struct mpi_ec_ctx *ctx) { switch (ctx->model) { case MPI_EC_WEIERSTRASS: dup_point_weierstrass(result, point, ctx); break; case MPI_EC_MONTGOMERY: dup_point_montgomery(result, point, ctx); break; case MPI_EC_EDWARDS: dup_point_edwards(result, point, ctx); break; } } /* RESULT = P1 + P2 (Weierstrass version).*/ static void add_points_weierstrass(MPI_POINT result, MPI_POINT p1, MPI_POINT p2, struct mpi_ec_ctx *ctx) { #define x1 (p1->x) #define y1 (p1->y) #define z1 (p1->z) #define x2 (p2->x) #define y2 (p2->y) #define z2 (p2->z) #define x3 (result->x) #define y3 (result->y) #define z3 (result->z) #define l1 (ctx->t.scratch[0]) #define l2 (ctx->t.scratch[1]) #define l3 (ctx->t.scratch[2]) #define l4 (ctx->t.scratch[3]) #define l5 (ctx->t.scratch[4]) #define l6 (ctx->t.scratch[5]) #define l7 (ctx->t.scratch[6]) #define l8 (ctx->t.scratch[7]) #define l9 (ctx->t.scratch[8]) #define t1 (ctx->t.scratch[9]) #define t2 (ctx->t.scratch[10]) if ((!mpi_cmp(x1, x2)) && (!mpi_cmp(y1, y2)) && (!mpi_cmp(z1, z2))) { /* Same point; need to call the duplicate function. */ mpi_ec_dup_point(result, p1, ctx); } else if (!mpi_cmp_ui(z1, 0)) { /* P1 is at infinity. */ mpi_set(x3, p2->x); mpi_set(y3, p2->y); mpi_set(z3, p2->z); } else if (!mpi_cmp_ui(z2, 0)) { /* P2 is at infinity. */ mpi_set(x3, p1->x); mpi_set(y3, p1->y); mpi_set(z3, p1->z); } else { int z1_is_one = !mpi_cmp_ui(z1, 1); int z2_is_one = !mpi_cmp_ui(z2, 1); /* l1 = x1 z2^2 */ /* l2 = x2 z1^2 */ if (z2_is_one) mpi_set(l1, x1); else { ec_pow2(l1, z2, ctx); ec_mulm(l1, l1, x1, ctx); } if (z1_is_one) mpi_set(l2, x2); else { ec_pow2(l2, z1, ctx); ec_mulm(l2, l2, x2, ctx); } /* l3 = l1 - l2 */ ec_subm(l3, l1, l2, ctx); /* l4 = y1 z2^3 */ ec_powm(l4, z2, mpi_const(MPI_C_THREE), ctx); ec_mulm(l4, l4, y1, ctx); /* l5 = y2 z1^3 */ ec_powm(l5, z1, mpi_const(MPI_C_THREE), ctx); ec_mulm(l5, l5, y2, ctx); /* l6 = l4 - l5 */ ec_subm(l6, l4, l5, ctx); if (!mpi_cmp_ui(l3, 0)) { if (!mpi_cmp_ui(l6, 0)) { /* P1 and P2 are the same - use duplicate function. */ mpi_ec_dup_point(result, p1, ctx); } else { /* P1 is the inverse of P2. */ mpi_set_ui(x3, 1); mpi_set_ui(y3, 1); mpi_set_ui(z3, 0); } } else { /* l7 = l1 + l2 */ ec_addm(l7, l1, l2, ctx); /* l8 = l4 + l5 */ ec_addm(l8, l4, l5, ctx); /* z3 = z1 z2 l3 */ ec_mulm(z3, z1, z2, ctx); ec_mulm(z3, z3, l3, ctx); /* x3 = l6^2 - l7 l3^2 */ ec_pow2(t1, l6, ctx); ec_pow2(t2, l3, ctx); ec_mulm(t2, t2, l7, ctx); ec_subm(x3, t1, t2, ctx); /* l9 = l7 l3^2 - 2 x3 */ ec_mul2(t1, x3, ctx); ec_subm(l9, t2, t1, ctx); /* y3 = (l9 l6 - l8 l3^3)/2 */ ec_mulm(l9, l9, l6, ctx); ec_powm(t1, l3, mpi_const(MPI_C_THREE), ctx); /* fixme: Use saved value*/ ec_mulm(t1, t1, l8, ctx); ec_subm(y3, l9, t1, ctx); ec_mulm(y3, y3, ec_get_two_inv_p(ctx), ctx); } } #undef x1 #undef y1 #undef z1 #undef x2 #undef y2 #undef z2 #undef x3 #undef y3 #undef z3 #undef l1 #undef l2 #undef l3 #undef l4 #undef l5 #undef l6 #undef l7 #undef l8 #undef l9 #undef t1 #undef t2 } /* RESULT = P1 + P2 (Montgomery version).*/ static void add_points_montgomery(MPI_POINT result, MPI_POINT p1, MPI_POINT p2, struct mpi_ec_ctx *ctx) { (void)result; (void)p1; (void)p2; (void)ctx; log_fatal("%s: %s not yet supported\n", "mpi_ec_add_points", "Montgomery"); } /* RESULT = P1 + P2 (Twisted Edwards version).*/ static void add_points_edwards(MPI_POINT result, MPI_POINT p1, MPI_POINT p2, struct mpi_ec_ctx *ctx) { #define X1 (p1->x) #define Y1 (p1->y) #define Z1 (p1->z) #define X2 (p2->x) #define Y2 (p2->y) #define Z2 (p2->z) #define X3 (result->x) #define Y3 (result->y) #define Z3 (result->z) #define A (ctx->t.scratch[0]) #define B (ctx->t.scratch[1]) #define C (ctx->t.scratch[2]) #define D (ctx->t.scratch[3]) #define E (ctx->t.scratch[4]) #define F (ctx->t.scratch[5]) #define G (ctx->t.scratch[6]) #define tmp (ctx->t.scratch[7]) point_resize(result, ctx); /* Compute: (X_3 : Y_3 : Z_3) = (X_1 : Y_1 : Z_1) + (X_2 : Y_2 : Z_3) */ /* A = Z1 · Z2 */ ctx->mulm(A, Z1, Z2, ctx); /* B = A^2 */ ctx->pow2(B, A, ctx); /* C = X1 · X2 */ ctx->mulm(C, X1, X2, ctx); /* D = Y1 · Y2 */ ctx->mulm(D, Y1, Y2, ctx); /* E = d · C · D */ ctx->mulm(E, ctx->b, C, ctx); ctx->mulm(E, E, D, ctx); /* F = B - E */ ctx->subm(F, B, E, ctx); /* G = B + E */ ctx->addm(G, B, E, ctx); /* X_3 = A · F · ((X_1 + Y_1) · (X_2 + Y_2) - C - D) */ ctx->addm(tmp, X1, Y1, ctx); ctx->addm(X3, X2, Y2, ctx); ctx->mulm(X3, X3, tmp, ctx); ctx->subm(X3, X3, C, ctx); ctx->subm(X3, X3, D, ctx); ctx->mulm(X3, X3, F, ctx); ctx->mulm(X3, X3, A, ctx); /* Y_3 = A · G · (D - aC) */ if (ctx->dialect == ECC_DIALECT_ED25519) { ctx->addm(Y3, D, C, ctx); } else { ctx->mulm(Y3, ctx->a, C, ctx); ctx->subm(Y3, D, Y3, ctx); } ctx->mulm(Y3, Y3, G, ctx); ctx->mulm(Y3, Y3, A, ctx); /* Z_3 = F · G */ ctx->mulm(Z3, F, G, ctx); #undef X1 #undef Y1 #undef Z1 #undef X2 #undef Y2 #undef Z2 #undef X3 #undef Y3 #undef Z3 #undef A #undef B #undef C #undef D #undef E #undef F #undef G #undef tmp } /* Compute a step of Montgomery Ladder (only use X and Z in the point). * Inputs: P1, P2, and x-coordinate of DIF = P1 - P1. * Outputs: PRD = 2 * P1 and SUM = P1 + P2. */ static void montgomery_ladder(MPI_POINT prd, MPI_POINT sum, MPI_POINT p1, MPI_POINT p2, MPI dif_x, struct mpi_ec_ctx *ctx) { ctx->addm(sum->x, p2->x, p2->z, ctx); ctx->subm(p2->z, p2->x, p2->z, ctx); ctx->addm(prd->x, p1->x, p1->z, ctx); ctx->subm(p1->z, p1->x, p1->z, ctx); ctx->mulm(p2->x, p1->z, sum->x, ctx); ctx->mulm(p2->z, prd->x, p2->z, ctx); ctx->pow2(p1->x, prd->x, ctx); ctx->pow2(p1->z, p1->z, ctx); ctx->addm(sum->x, p2->x, p2->z, ctx); ctx->subm(p2->z, p2->x, p2->z, ctx); ctx->mulm(prd->x, p1->x, p1->z, ctx); ctx->subm(p1->z, p1->x, p1->z, ctx); ctx->pow2(sum->x, sum->x, ctx); ctx->pow2(sum->z, p2->z, ctx); ctx->mulm(prd->z, p1->z, ctx->a, ctx); /* CTX->A: (a-2)/4 */ ctx->mulm(sum->z, sum->z, dif_x, ctx); ctx->addm(prd->z, p1->x, prd->z, ctx); ctx->mulm(prd->z, prd->z, p1->z, ctx); } /* RESULT = P1 + P2 */ void mpi_ec_add_points(MPI_POINT result, MPI_POINT p1, MPI_POINT p2, struct mpi_ec_ctx *ctx) { switch (ctx->model) { case MPI_EC_WEIERSTRASS: add_points_weierstrass(result, p1, p2, ctx); break; case MPI_EC_MONTGOMERY: add_points_montgomery(result, p1, p2, ctx); break; case MPI_EC_EDWARDS: add_points_edwards(result, p1, p2, ctx); break; } } EXPORT_SYMBOL_GPL(mpi_ec_add_points); /* Scalar point multiplication - the main function for ECC. If takes * an integer SCALAR and a POINT as well as the usual context CTX. * RESULT will be set to the resulting point. */ void mpi_ec_mul_point(MPI_POINT result, MPI scalar, MPI_POINT point, struct mpi_ec_ctx *ctx) { MPI x1, y1, z1, k, h, yy; unsigned int i, loops; struct gcry_mpi_point p1, p2, p1inv; if (ctx->model == MPI_EC_EDWARDS) { /* Simple left to right binary method. Algorithm 3.27 from * {author={Hankerson, Darrel and Menezes, Alfred J. and Vanstone, Scott}, * title = {Guide to Elliptic Curve Cryptography}, * year = {2003}, isbn = {038795273X}, * url = {http://www.cacr.math.uwaterloo.ca/ecc/}, * publisher = {Springer-Verlag New York, Inc.}} */ unsigned int nbits; int j; if (mpi_cmp(scalar, ctx->p) >= 0) nbits = mpi_get_nbits(scalar); else nbits = mpi_get_nbits(ctx->p); mpi_set_ui(result->x, 0); mpi_set_ui(result->y, 1); mpi_set_ui(result->z, 1); point_resize(point, ctx); point_resize(result, ctx); point_resize(point, ctx); for (j = nbits-1; j >= 0; j--) { mpi_ec_dup_point(result, result, ctx); if (mpi_test_bit(scalar, j)) mpi_ec_add_points(result, result, point, ctx); } return; } else if (ctx->model == MPI_EC_MONTGOMERY) { unsigned int nbits; int j; struct gcry_mpi_point p1_, p2_; MPI_POINT q1, q2, prd, sum; unsigned long sw; mpi_size_t rsize; /* Compute scalar point multiplication with Montgomery Ladder. * Note that we don't use Y-coordinate in the points at all. * RESULT->Y will be filled by zero. */ nbits = mpi_get_nbits(scalar); point_init(&p1); point_init(&p2); point_init(&p1_); point_init(&p2_); mpi_set_ui(p1.x, 1); mpi_free(p2.x); p2.x = mpi_copy(point->x); mpi_set_ui(p2.z, 1); point_resize(&p1, ctx); point_resize(&p2, ctx); point_resize(&p1_, ctx); point_resize(&p2_, ctx); mpi_resize(point->x, ctx->p->nlimbs); point->x->nlimbs = ctx->p->nlimbs; q1 = &p1; q2 = &p2; prd = &p1_; sum = &p2_; for (j = nbits-1; j >= 0; j--) { sw = mpi_test_bit(scalar, j); point_swap_cond(q1, q2, sw, ctx); montgomery_ladder(prd, sum, q1, q2, point->x, ctx); point_swap_cond(prd, sum, sw, ctx); swap(q1, prd); swap(q2, sum); } mpi_clear(result->y); sw = (nbits & 1); point_swap_cond(&p1, &p1_, sw, ctx); rsize = p1.z->nlimbs; MPN_NORMALIZE(p1.z->d, rsize); if (rsize == 0) { mpi_set_ui(result->x, 1); mpi_set_ui(result->z, 0); } else { z1 = mpi_new(0); ec_invm(z1, p1.z, ctx); ec_mulm(result->x, p1.x, z1, ctx); mpi_set_ui(result->z, 1); mpi_free(z1); } point_free(&p1); point_free(&p2); point_free(&p1_); point_free(&p2_); return; } x1 = mpi_alloc_like(ctx->p); y1 = mpi_alloc_like(ctx->p); h = mpi_alloc_like(ctx->p); k = mpi_copy(scalar); yy = mpi_copy(point->y); if (mpi_has_sign(k)) { k->sign = 0; ec_invm(yy, yy, ctx); } if (!mpi_cmp_ui(point->z, 1)) { mpi_set(x1, point->x); mpi_set(y1, yy); } else { MPI z2, z3; z2 = mpi_alloc_like(ctx->p); z3 = mpi_alloc_like(ctx->p); ec_mulm(z2, point->z, point->z, ctx); ec_mulm(z3, point->z, z2, ctx); ec_invm(z2, z2, ctx); ec_mulm(x1, point->x, z2, ctx); ec_invm(z3, z3, ctx); ec_mulm(y1, yy, z3, ctx); mpi_free(z2); mpi_free(z3); } z1 = mpi_copy(mpi_const(MPI_C_ONE)); mpi_mul(h, k, mpi_const(MPI_C_THREE)); /* h = 3k */ loops = mpi_get_nbits(h); if (loops < 2) { /* If SCALAR is zero, the above mpi_mul sets H to zero and thus * LOOPs will be zero. To avoid an underflow of I in the main * loop we set LOOP to 2 and the result to (0,0,0). */ loops = 2; mpi_clear(result->x); mpi_clear(result->y); mpi_clear(result->z); } else { mpi_set(result->x, point->x); mpi_set(result->y, yy); mpi_set(result->z, point->z); } mpi_free(yy); yy = NULL; p1.x = x1; x1 = NULL; p1.y = y1; y1 = NULL; p1.z = z1; z1 = NULL; point_init(&p2); point_init(&p1inv); /* Invert point: y = p - y mod p */ point_set(&p1inv, &p1); ec_subm(p1inv.y, ctx->p, p1inv.y, ctx); for (i = loops-2; i > 0; i--) { mpi_ec_dup_point(result, result, ctx); if (mpi_test_bit(h, i) == 1 && mpi_test_bit(k, i) == 0) { point_set(&p2, result); mpi_ec_add_points(result, &p2, &p1, ctx); } if (mpi_test_bit(h, i) == 0 && mpi_test_bit(k, i) == 1) { point_set(&p2, result); mpi_ec_add_points(result, &p2, &p1inv, ctx); } } point_free(&p1); point_free(&p2); point_free(&p1inv); mpi_free(h); mpi_free(k); } EXPORT_SYMBOL_GPL(mpi_ec_mul_point); /* Return true if POINT is on the curve described by CTX. */ int mpi_ec_curve_point(MPI_POINT point, struct mpi_ec_ctx *ctx) { int res = 0; MPI x, y, w; x = mpi_new(0); y = mpi_new(0); w = mpi_new(0); /* Check that the point is in range. This needs to be done here and * not after conversion to affine coordinates. */ if (mpi_cmpabs(point->x, ctx->p) >= 0) goto leave; if (mpi_cmpabs(point->y, ctx->p) >= 0) goto leave; if (mpi_cmpabs(point->z, ctx->p) >= 0) goto leave; switch (ctx->model) { case MPI_EC_WEIERSTRASS: { MPI xxx; if (mpi_ec_get_affine(x, y, point, ctx)) goto leave; xxx = mpi_new(0); /* y^2 == x^3 + a·x + b */ ec_pow2(y, y, ctx); ec_pow3(xxx, x, ctx); ec_mulm(w, ctx->a, x, ctx); ec_addm(w, w, ctx->b, ctx); ec_addm(w, w, xxx, ctx); if (!mpi_cmp(y, w)) res = 1; mpi_free(xxx); } break; case MPI_EC_MONTGOMERY: { #define xx y /* With Montgomery curve, only X-coordinate is valid. */ if (mpi_ec_get_affine(x, NULL, point, ctx)) goto leave; /* The equation is: b * y^2 == x^3 + a · x^2 + x */ /* We check if right hand is quadratic residue or not by * Euler's criterion. */ /* CTX->A has (a-2)/4 and CTX->B has b^-1 */ ec_mulm(w, ctx->a, mpi_const(MPI_C_FOUR), ctx); ec_addm(w, w, mpi_const(MPI_C_TWO), ctx); ec_mulm(w, w, x, ctx); ec_pow2(xx, x, ctx); ec_addm(w, w, xx, ctx); ec_addm(w, w, mpi_const(MPI_C_ONE), ctx); ec_mulm(w, w, x, ctx); ec_mulm(w, w, ctx->b, ctx); #undef xx /* Compute Euler's criterion: w^(p-1)/2 */ #define p_minus1 y ec_subm(p_minus1, ctx->p, mpi_const(MPI_C_ONE), ctx); mpi_rshift(p_minus1, p_minus1, 1); ec_powm(w, w, p_minus1, ctx); res = !mpi_cmp_ui(w, 1); #undef p_minus1 } break; case MPI_EC_EDWARDS: { if (mpi_ec_get_affine(x, y, point, ctx)) goto leave; mpi_resize(w, ctx->p->nlimbs); w->nlimbs = ctx->p->nlimbs; /* a · x^2 + y^2 - 1 - b · x^2 · y^2 == 0 */ ctx->pow2(x, x, ctx); ctx->pow2(y, y, ctx); if (ctx->dialect == ECC_DIALECT_ED25519) ctx->subm(w, ctx->p, x, ctx); else ctx->mulm(w, ctx->a, x, ctx); ctx->addm(w, w, y, ctx); ctx->mulm(x, x, y, ctx); ctx->mulm(x, x, ctx->b, ctx); ctx->subm(w, w, x, ctx); if (!mpi_cmp_ui(w, 1)) res = 1; } break; } leave: mpi_free(w); mpi_free(x); mpi_free(y); return res; } EXPORT_SYMBOL_GPL(mpi_ec_curve_point);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1