Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ming Lei | 948 | 68.55% | 11 | 45.83% |
Thomas Gleixner | 201 | 14.53% | 2 | 8.33% |
Christoph Hellwig | 191 | 13.81% | 4 | 16.67% |
Jens Axboe | 25 | 1.81% | 1 | 4.17% |
Guilherme G. Piccoli | 5 | 0.36% | 1 | 4.17% |
Xie Yongji | 5 | 0.36% | 1 | 4.17% |
Matthew Wilcox | 3 | 0.22% | 1 | 4.17% |
Tom Rini | 2 | 0.14% | 1 | 4.17% |
Ingo Molnar | 2 | 0.14% | 1 | 4.17% |
Greg Kroah-Hartman | 1 | 0.07% | 1 | 4.17% |
Total | 1383 | 24 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2016 Thomas Gleixner. * Copyright (C) 2016-2017 Christoph Hellwig. */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/cpu.h> #include <linux/sort.h> #include <linux/group_cpus.h> #ifdef CONFIG_SMP static void grp_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk, unsigned int cpus_per_grp) { const struct cpumask *siblmsk; int cpu, sibl; for ( ; cpus_per_grp > 0; ) { cpu = cpumask_first(nmsk); /* Should not happen, but I'm too lazy to think about it */ if (cpu >= nr_cpu_ids) return; cpumask_clear_cpu(cpu, nmsk); cpumask_set_cpu(cpu, irqmsk); cpus_per_grp--; /* If the cpu has siblings, use them first */ siblmsk = topology_sibling_cpumask(cpu); for (sibl = -1; cpus_per_grp > 0; ) { sibl = cpumask_next(sibl, siblmsk); if (sibl >= nr_cpu_ids) break; if (!cpumask_test_and_clear_cpu(sibl, nmsk)) continue; cpumask_set_cpu(sibl, irqmsk); cpus_per_grp--; } } } static cpumask_var_t *alloc_node_to_cpumask(void) { cpumask_var_t *masks; int node; masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL); if (!masks) return NULL; for (node = 0; node < nr_node_ids; node++) { if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL)) goto out_unwind; } return masks; out_unwind: while (--node >= 0) free_cpumask_var(masks[node]); kfree(masks); return NULL; } static void free_node_to_cpumask(cpumask_var_t *masks) { int node; for (node = 0; node < nr_node_ids; node++) free_cpumask_var(masks[node]); kfree(masks); } static void build_node_to_cpumask(cpumask_var_t *masks) { int cpu; for_each_possible_cpu(cpu) cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]); } static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask, const struct cpumask *mask, nodemask_t *nodemsk) { int n, nodes = 0; /* Calculate the number of nodes in the supplied affinity mask */ for_each_node(n) { if (cpumask_intersects(mask, node_to_cpumask[n])) { node_set(n, *nodemsk); nodes++; } } return nodes; } struct node_groups { unsigned id; union { unsigned ngroups; unsigned ncpus; }; }; static int ncpus_cmp_func(const void *l, const void *r) { const struct node_groups *ln = l; const struct node_groups *rn = r; return ln->ncpus - rn->ncpus; } /* * Allocate group number for each node, so that for each node: * * 1) the allocated number is >= 1 * * 2) the allocated number is <= active CPU number of this node * * The actual allocated total groups may be less than @numgrps when * active total CPU number is less than @numgrps. * * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]' * for each node. */ static void alloc_nodes_groups(unsigned int numgrps, cpumask_var_t *node_to_cpumask, const struct cpumask *cpu_mask, const nodemask_t nodemsk, struct cpumask *nmsk, struct node_groups *node_groups) { unsigned n, remaining_ncpus = 0; for (n = 0; n < nr_node_ids; n++) { node_groups[n].id = n; node_groups[n].ncpus = UINT_MAX; } for_each_node_mask(n, nodemsk) { unsigned ncpus; cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]); ncpus = cpumask_weight(nmsk); if (!ncpus) continue; remaining_ncpus += ncpus; node_groups[n].ncpus = ncpus; } numgrps = min_t(unsigned, remaining_ncpus, numgrps); sort(node_groups, nr_node_ids, sizeof(node_groups[0]), ncpus_cmp_func, NULL); /* * Allocate groups for each node according to the ratio of this * node's nr_cpus to remaining un-assigned ncpus. 'numgrps' is * bigger than number of active numa nodes. Always start the * allocation from the node with minimized nr_cpus. * * This way guarantees that each active node gets allocated at * least one group, and the theory is simple: over-allocation * is only done when this node is assigned by one group, so * other nodes will be allocated >= 1 groups, since 'numgrps' is * bigger than number of numa nodes. * * One perfect invariant is that number of allocated groups for * each node is <= CPU count of this node: * * 1) suppose there are two nodes: A and B * ncpu(X) is CPU count of node X * grps(X) is the group count allocated to node X via this * algorithm * * ncpu(A) <= ncpu(B) * ncpu(A) + ncpu(B) = N * grps(A) + grps(B) = G * * grps(A) = max(1, round_down(G * ncpu(A) / N)) * grps(B) = G - grps(A) * * both N and G are integer, and 2 <= G <= N, suppose * G = N - delta, and 0 <= delta <= N - 2 * * 2) obviously grps(A) <= ncpu(A) because: * * if grps(A) is 1, then grps(A) <= ncpu(A) given * ncpu(A) >= 1 * * otherwise, * grps(A) <= G * ncpu(A) / N <= ncpu(A), given G <= N * * 3) prove how grps(B) <= ncpu(B): * * if round_down(G * ncpu(A) / N) == 0, vecs(B) won't be * over-allocated, so grps(B) <= ncpu(B), * * otherwise: * * grps(A) = * round_down(G * ncpu(A) / N) = * round_down((N - delta) * ncpu(A) / N) = * round_down((N * ncpu(A) - delta * ncpu(A)) / N) >= * round_down((N * ncpu(A) - delta * N) / N) = * cpu(A) - delta * * then: * * grps(A) - G >= ncpu(A) - delta - G * => * G - grps(A) <= G + delta - ncpu(A) * => * grps(B) <= N - ncpu(A) * => * grps(B) <= cpu(B) * * For nodes >= 3, it can be thought as one node and another big * node given that is exactly what this algorithm is implemented, * and we always re-calculate 'remaining_ncpus' & 'numgrps', and * finally for each node X: grps(X) <= ncpu(X). * */ for (n = 0; n < nr_node_ids; n++) { unsigned ngroups, ncpus; if (node_groups[n].ncpus == UINT_MAX) continue; WARN_ON_ONCE(numgrps == 0); ncpus = node_groups[n].ncpus; ngroups = max_t(unsigned, 1, numgrps * ncpus / remaining_ncpus); WARN_ON_ONCE(ngroups > ncpus); node_groups[n].ngroups = ngroups; remaining_ncpus -= ncpus; numgrps -= ngroups; } } static int __group_cpus_evenly(unsigned int startgrp, unsigned int numgrps, cpumask_var_t *node_to_cpumask, const struct cpumask *cpu_mask, struct cpumask *nmsk, struct cpumask *masks) { unsigned int i, n, nodes, cpus_per_grp, extra_grps, done = 0; unsigned int last_grp = numgrps; unsigned int curgrp = startgrp; nodemask_t nodemsk = NODE_MASK_NONE; struct node_groups *node_groups; if (cpumask_empty(cpu_mask)) return 0; nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk); /* * If the number of nodes in the mask is greater than or equal the * number of groups we just spread the groups across the nodes. */ if (numgrps <= nodes) { for_each_node_mask(n, nodemsk) { /* Ensure that only CPUs which are in both masks are set */ cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]); cpumask_or(&masks[curgrp], &masks[curgrp], nmsk); if (++curgrp == last_grp) curgrp = 0; } return numgrps; } node_groups = kcalloc(nr_node_ids, sizeof(struct node_groups), GFP_KERNEL); if (!node_groups) return -ENOMEM; /* allocate group number for each node */ alloc_nodes_groups(numgrps, node_to_cpumask, cpu_mask, nodemsk, nmsk, node_groups); for (i = 0; i < nr_node_ids; i++) { unsigned int ncpus, v; struct node_groups *nv = &node_groups[i]; if (nv->ngroups == UINT_MAX) continue; /* Get the cpus on this node which are in the mask */ cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]); ncpus = cpumask_weight(nmsk); if (!ncpus) continue; WARN_ON_ONCE(nv->ngroups > ncpus); /* Account for rounding errors */ extra_grps = ncpus - nv->ngroups * (ncpus / nv->ngroups); /* Spread allocated groups on CPUs of the current node */ for (v = 0; v < nv->ngroups; v++, curgrp++) { cpus_per_grp = ncpus / nv->ngroups; /* Account for extra groups to compensate rounding errors */ if (extra_grps) { cpus_per_grp++; --extra_grps; } /* * wrapping has to be considered given 'startgrp' * may start anywhere */ if (curgrp >= last_grp) curgrp = 0; grp_spread_init_one(&masks[curgrp], nmsk, cpus_per_grp); } done += nv->ngroups; } kfree(node_groups); return done; } /** * group_cpus_evenly - Group all CPUs evenly per NUMA/CPU locality * @numgrps: number of groups * * Return: cpumask array if successful, NULL otherwise. And each element * includes CPUs assigned to this group * * Try to put close CPUs from viewpoint of CPU and NUMA locality into * same group, and run two-stage grouping: * 1) allocate present CPUs on these groups evenly first * 2) allocate other possible CPUs on these groups evenly * * We guarantee in the resulted grouping that all CPUs are covered, and * no same CPU is assigned to multiple groups */ struct cpumask *group_cpus_evenly(unsigned int numgrps) { unsigned int curgrp = 0, nr_present = 0, nr_others = 0; cpumask_var_t *node_to_cpumask; cpumask_var_t nmsk, npresmsk; int ret = -ENOMEM; struct cpumask *masks = NULL; if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL)) return NULL; if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL)) goto fail_nmsk; node_to_cpumask = alloc_node_to_cpumask(); if (!node_to_cpumask) goto fail_npresmsk; masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL); if (!masks) goto fail_node_to_cpumask; build_node_to_cpumask(node_to_cpumask); /* * Make a local cache of 'cpu_present_mask', so the two stages * spread can observe consistent 'cpu_present_mask' without holding * cpu hotplug lock, then we can reduce deadlock risk with cpu * hotplug code. * * Here CPU hotplug may happen when reading `cpu_present_mask`, and * we can live with the case because it only affects that hotplug * CPU is handled in the 1st or 2nd stage, and either way is correct * from API user viewpoint since 2-stage spread is sort of * optimization. */ cpumask_copy(npresmsk, data_race(cpu_present_mask)); /* grouping present CPUs first */ ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask, npresmsk, nmsk, masks); if (ret < 0) goto fail_build_affinity; nr_present = ret; /* * Allocate non present CPUs starting from the next group to be * handled. If the grouping of present CPUs already exhausted the * group space, assign the non present CPUs to the already * allocated out groups. */ if (nr_present >= numgrps) curgrp = 0; else curgrp = nr_present; cpumask_andnot(npresmsk, cpu_possible_mask, npresmsk); ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask, npresmsk, nmsk, masks); if (ret >= 0) nr_others = ret; fail_build_affinity: if (ret >= 0) WARN_ON(nr_present + nr_others < numgrps); fail_node_to_cpumask: free_node_to_cpumask(node_to_cpumask); fail_npresmsk: free_cpumask_var(npresmsk); fail_nmsk: free_cpumask_var(nmsk); if (ret < 0) { kfree(masks); return NULL; } return masks; } #else /* CONFIG_SMP */ struct cpumask *group_cpus_evenly(unsigned int numgrps) { struct cpumask *masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL); if (!masks) return NULL; /* assign all CPUs(cpu 0) to the 1st group only */ cpumask_copy(&masks[0], cpu_possible_mask); return masks; } #endif /* CONFIG_SMP */ EXPORT_SYMBOL_GPL(group_cpus_evenly);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1