Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds | 1189 | 61.73% | 8 | 29.63% |
Logan Gunthorpe | 423 | 21.96% | 2 | 7.41% |
Alexander Potapenko | 177 | 9.19% | 1 | 3.70% |
James Bottomley | 73 | 3.79% | 1 | 3.70% |
Krzysztof Kozlowski | 15 | 0.78% | 1 | 3.70% |
Linus Torvalds (pre-git) | 14 | 0.73% | 3 | 11.11% |
Jonas Bonn | 12 | 0.62% | 1 | 3.70% |
Björn Helgaas | 7 | 0.36% | 1 | 3.70% |
David S. Miller | 4 | 0.21% | 1 | 3.70% |
Arjan van de Ven | 3 | 0.16% | 1 | 3.70% |
Andrew Morton | 2 | 0.10% | 1 | 3.70% |
Uwe Kleine-König | 2 | 0.10% | 1 | 3.70% |
Tejun Heo | 1 | 0.05% | 1 | 3.70% |
Greg Kroah-Hartman | 1 | 0.05% | 1 | 3.70% |
Paul Gortmaker | 1 | 0.05% | 1 | 3.70% |
Michael S. Tsirkin | 1 | 0.05% | 1 | 3.70% |
René Herman | 1 | 0.05% | 1 | 3.70% |
Total | 1926 | 27 |
// SPDX-License-Identifier: GPL-2.0 /* * Implement the default iomap interfaces * * (C) Copyright 2004 Linus Torvalds */ #include <linux/pci.h> #include <linux/io.h> #include <linux/kmsan-checks.h> #include <linux/export.h> /* * Read/write from/to an (offsettable) iomem cookie. It might be a PIO * access or a MMIO access, these functions don't care. The info is * encoded in the hardware mapping set up by the mapping functions * (or the cookie itself, depending on implementation and hw). * * The generic routines don't assume any hardware mappings, and just * encode the PIO/MMIO as part of the cookie. They coldly assume that * the MMIO IO mappings are not in the low address range. * * Architectures for which this is not true can't use this generic * implementation and should do their own copy. */ #ifndef HAVE_ARCH_PIO_SIZE /* * We encode the physical PIO addresses (0-0xffff) into the * pointer by offsetting them with a constant (0x10000) and * assuming that all the low addresses are always PIO. That means * we can do some sanity checks on the low bits, and don't * need to just take things for granted. */ #define PIO_OFFSET 0x10000UL #define PIO_MASK 0x0ffffUL #define PIO_RESERVED 0x40000UL #endif static void bad_io_access(unsigned long port, const char *access) { static int count = 10; if (count) { count--; WARN(1, KERN_ERR "Bad IO access at port %#lx (%s)\n", port, access); } } /* * Ugly macros are a way of life. */ #define IO_COND(addr, is_pio, is_mmio) do { \ unsigned long port = (unsigned long __force)addr; \ if (port >= PIO_RESERVED) { \ is_mmio; \ } else if (port > PIO_OFFSET) { \ port &= PIO_MASK; \ is_pio; \ } else \ bad_io_access(port, #is_pio ); \ } while (0) #ifndef pio_read16be #define pio_read16be(port) swab16(inw(port)) #define pio_read32be(port) swab32(inl(port)) #endif #ifndef mmio_read16be #define mmio_read16be(addr) swab16(readw(addr)) #define mmio_read32be(addr) swab32(readl(addr)) #define mmio_read64be(addr) swab64(readq(addr)) #endif /* * Here and below, we apply __no_kmsan_checks to functions reading data from * hardware, to ensure that KMSAN marks their return values as initialized. */ __no_kmsan_checks unsigned int ioread8(const void __iomem *addr) { IO_COND(addr, return inb(port), return readb(addr)); return 0xff; } __no_kmsan_checks unsigned int ioread16(const void __iomem *addr) { IO_COND(addr, return inw(port), return readw(addr)); return 0xffff; } __no_kmsan_checks unsigned int ioread16be(const void __iomem *addr) { IO_COND(addr, return pio_read16be(port), return mmio_read16be(addr)); return 0xffff; } __no_kmsan_checks unsigned int ioread32(const void __iomem *addr) { IO_COND(addr, return inl(port), return readl(addr)); return 0xffffffff; } __no_kmsan_checks unsigned int ioread32be(const void __iomem *addr) { IO_COND(addr, return pio_read32be(port), return mmio_read32be(addr)); return 0xffffffff; } EXPORT_SYMBOL(ioread8); EXPORT_SYMBOL(ioread16); EXPORT_SYMBOL(ioread16be); EXPORT_SYMBOL(ioread32); EXPORT_SYMBOL(ioread32be); #ifdef readq static u64 pio_read64_lo_hi(unsigned long port) { u64 lo, hi; lo = inl(port); hi = inl(port + sizeof(u32)); return lo | (hi << 32); } static u64 pio_read64_hi_lo(unsigned long port) { u64 lo, hi; hi = inl(port + sizeof(u32)); lo = inl(port); return lo | (hi << 32); } static u64 pio_read64be_lo_hi(unsigned long port) { u64 lo, hi; lo = pio_read32be(port + sizeof(u32)); hi = pio_read32be(port); return lo | (hi << 32); } static u64 pio_read64be_hi_lo(unsigned long port) { u64 lo, hi; hi = pio_read32be(port); lo = pio_read32be(port + sizeof(u32)); return lo | (hi << 32); } __no_kmsan_checks u64 ioread64_lo_hi(const void __iomem *addr) { IO_COND(addr, return pio_read64_lo_hi(port), return readq(addr)); return 0xffffffffffffffffULL; } __no_kmsan_checks u64 ioread64_hi_lo(const void __iomem *addr) { IO_COND(addr, return pio_read64_hi_lo(port), return readq(addr)); return 0xffffffffffffffffULL; } __no_kmsan_checks u64 ioread64be_lo_hi(const void __iomem *addr) { IO_COND(addr, return pio_read64be_lo_hi(port), return mmio_read64be(addr)); return 0xffffffffffffffffULL; } __no_kmsan_checks u64 ioread64be_hi_lo(const void __iomem *addr) { IO_COND(addr, return pio_read64be_hi_lo(port), return mmio_read64be(addr)); return 0xffffffffffffffffULL; } EXPORT_SYMBOL(ioread64_lo_hi); EXPORT_SYMBOL(ioread64_hi_lo); EXPORT_SYMBOL(ioread64be_lo_hi); EXPORT_SYMBOL(ioread64be_hi_lo); #endif /* readq */ #ifndef pio_write16be #define pio_write16be(val,port) outw(swab16(val),port) #define pio_write32be(val,port) outl(swab32(val),port) #endif #ifndef mmio_write16be #define mmio_write16be(val,port) writew(swab16(val),port) #define mmio_write32be(val,port) writel(swab32(val),port) #define mmio_write64be(val,port) writeq(swab64(val),port) #endif void iowrite8(u8 val, void __iomem *addr) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(&val, sizeof(val)); IO_COND(addr, outb(val,port), writeb(val, addr)); } void iowrite16(u16 val, void __iomem *addr) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(&val, sizeof(val)); IO_COND(addr, outw(val,port), writew(val, addr)); } void iowrite16be(u16 val, void __iomem *addr) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(&val, sizeof(val)); IO_COND(addr, pio_write16be(val,port), mmio_write16be(val, addr)); } void iowrite32(u32 val, void __iomem *addr) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(&val, sizeof(val)); IO_COND(addr, outl(val,port), writel(val, addr)); } void iowrite32be(u32 val, void __iomem *addr) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(&val, sizeof(val)); IO_COND(addr, pio_write32be(val,port), mmio_write32be(val, addr)); } EXPORT_SYMBOL(iowrite8); EXPORT_SYMBOL(iowrite16); EXPORT_SYMBOL(iowrite16be); EXPORT_SYMBOL(iowrite32); EXPORT_SYMBOL(iowrite32be); #ifdef writeq static void pio_write64_lo_hi(u64 val, unsigned long port) { outl(val, port); outl(val >> 32, port + sizeof(u32)); } static void pio_write64_hi_lo(u64 val, unsigned long port) { outl(val >> 32, port + sizeof(u32)); outl(val, port); } static void pio_write64be_lo_hi(u64 val, unsigned long port) { pio_write32be(val, port + sizeof(u32)); pio_write32be(val >> 32, port); } static void pio_write64be_hi_lo(u64 val, unsigned long port) { pio_write32be(val >> 32, port); pio_write32be(val, port + sizeof(u32)); } void iowrite64_lo_hi(u64 val, void __iomem *addr) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(&val, sizeof(val)); IO_COND(addr, pio_write64_lo_hi(val, port), writeq(val, addr)); } void iowrite64_hi_lo(u64 val, void __iomem *addr) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(&val, sizeof(val)); IO_COND(addr, pio_write64_hi_lo(val, port), writeq(val, addr)); } void iowrite64be_lo_hi(u64 val, void __iomem *addr) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(&val, sizeof(val)); IO_COND(addr, pio_write64be_lo_hi(val, port), mmio_write64be(val, addr)); } void iowrite64be_hi_lo(u64 val, void __iomem *addr) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(&val, sizeof(val)); IO_COND(addr, pio_write64be_hi_lo(val, port), mmio_write64be(val, addr)); } EXPORT_SYMBOL(iowrite64_lo_hi); EXPORT_SYMBOL(iowrite64_hi_lo); EXPORT_SYMBOL(iowrite64be_lo_hi); EXPORT_SYMBOL(iowrite64be_hi_lo); #endif /* readq */ /* * These are the "repeat MMIO read/write" functions. * Note the "__raw" accesses, since we don't want to * convert to CPU byte order. We write in "IO byte * order" (we also don't have IO barriers). */ #ifndef mmio_insb static inline void mmio_insb(const void __iomem *addr, u8 *dst, int count) { while (--count >= 0) { u8 data = __raw_readb(addr); *dst = data; dst++; } } static inline void mmio_insw(const void __iomem *addr, u16 *dst, int count) { while (--count >= 0) { u16 data = __raw_readw(addr); *dst = data; dst++; } } static inline void mmio_insl(const void __iomem *addr, u32 *dst, int count) { while (--count >= 0) { u32 data = __raw_readl(addr); *dst = data; dst++; } } #endif #ifndef mmio_outsb static inline void mmio_outsb(void __iomem *addr, const u8 *src, int count) { while (--count >= 0) { __raw_writeb(*src, addr); src++; } } static inline void mmio_outsw(void __iomem *addr, const u16 *src, int count) { while (--count >= 0) { __raw_writew(*src, addr); src++; } } static inline void mmio_outsl(void __iomem *addr, const u32 *src, int count) { while (--count >= 0) { __raw_writel(*src, addr); src++; } } #endif void ioread8_rep(const void __iomem *addr, void *dst, unsigned long count) { IO_COND(addr, insb(port,dst,count), mmio_insb(addr, dst, count)); /* KMSAN must treat values read from devices as initialized. */ kmsan_unpoison_memory(dst, count); } void ioread16_rep(const void __iomem *addr, void *dst, unsigned long count) { IO_COND(addr, insw(port,dst,count), mmio_insw(addr, dst, count)); /* KMSAN must treat values read from devices as initialized. */ kmsan_unpoison_memory(dst, count * 2); } void ioread32_rep(const void __iomem *addr, void *dst, unsigned long count) { IO_COND(addr, insl(port,dst,count), mmio_insl(addr, dst, count)); /* KMSAN must treat values read from devices as initialized. */ kmsan_unpoison_memory(dst, count * 4); } EXPORT_SYMBOL(ioread8_rep); EXPORT_SYMBOL(ioread16_rep); EXPORT_SYMBOL(ioread32_rep); void iowrite8_rep(void __iomem *addr, const void *src, unsigned long count) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(src, count); IO_COND(addr, outsb(port, src, count), mmio_outsb(addr, src, count)); } void iowrite16_rep(void __iomem *addr, const void *src, unsigned long count) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(src, count * 2); IO_COND(addr, outsw(port, src, count), mmio_outsw(addr, src, count)); } void iowrite32_rep(void __iomem *addr, const void *src, unsigned long count) { /* Make sure uninitialized memory isn't copied to devices. */ kmsan_check_memory(src, count * 4); IO_COND(addr, outsl(port, src,count), mmio_outsl(addr, src, count)); } EXPORT_SYMBOL(iowrite8_rep); EXPORT_SYMBOL(iowrite16_rep); EXPORT_SYMBOL(iowrite32_rep); #ifdef CONFIG_HAS_IOPORT_MAP /* Create a virtual mapping cookie for an IO port range */ void __iomem *ioport_map(unsigned long port, unsigned int nr) { if (port > PIO_MASK) return NULL; return (void __iomem *) (unsigned long) (port + PIO_OFFSET); } void ioport_unmap(void __iomem *addr) { /* Nothing to do */ } EXPORT_SYMBOL(ioport_map); EXPORT_SYMBOL(ioport_unmap); #endif /* CONFIG_HAS_IOPORT_MAP */ #ifdef CONFIG_PCI /* Hide the details if this is a MMIO or PIO address space and just do what * you expect in the correct way. */ void pci_iounmap(struct pci_dev *dev, void __iomem * addr) { IO_COND(addr, /* nothing */, iounmap(addr)); } EXPORT_SYMBOL(pci_iounmap); #endif /* CONFIG_PCI */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1