Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Al Viro | 3197 | 41.63% | 76 | 46.91% |
David Howells | 2397 | 31.22% | 13 | 8.02% |
Jens Axboe | 407 | 5.30% | 8 | 4.94% |
Christoph Hellwig | 287 | 3.74% | 5 | 3.09% |
Keith Busch | 270 | 3.52% | 2 | 1.23% |
Matthew Wilcox | 165 | 2.15% | 5 | 3.09% |
David Laight | 164 | 2.14% | 1 | 0.62% |
Lorenzo Stoakes | 163 | 2.12% | 1 | 0.62% |
Dan J Williams | 102 | 1.33% | 5 | 3.09% |
Linus Torvalds | 93 | 1.21% | 5 | 3.09% |
Andreas Gruenbacher | 68 | 0.89% | 4 | 2.47% |
Nicholas Piggin | 56 | 0.73% | 2 | 1.23% |
Kent Overstreet | 55 | 0.72% | 1 | 0.62% |
Pavel Begunkov | 51 | 0.66% | 1 | 0.62% |
Eric Dumazet | 27 | 0.35% | 1 | 0.62% |
Albert van der Linde | 21 | 0.27% | 1 | 0.62% |
Alexander Potapenko | 17 | 0.22% | 1 | 0.62% |
Andrew Morton | 15 | 0.20% | 1 | 0.62% |
Linus Torvalds (pre-git) | 15 | 0.20% | 4 | 2.47% |
Arnaldo Carvalho de Melo | 12 | 0.16% | 1 | 0.62% |
Miklos Szeredi | 12 | 0.16% | 1 | 0.62% |
Petar Penkov | 11 | 0.14% | 1 | 0.62% |
Jeff Moyer | 9 | 0.12% | 1 | 0.62% |
Anton Altaparmakov | 8 | 0.10% | 1 | 0.62% |
Marco Elver | 8 | 0.10% | 1 | 0.62% |
Kefeng Wang | 7 | 0.09% | 1 | 0.62% |
Takashi Iwai | 5 | 0.07% | 1 | 0.62% |
Jakub Kiciński | 5 | 0.07% | 1 | 0.62% |
Arnd Bergmann | 4 | 0.05% | 1 | 0.62% |
Sagi Grimberg | 4 | 0.05% | 1 | 0.62% |
Kees Cook | 3 | 0.04% | 1 | 0.62% |
Maxim Patlasov | 3 | 0.04% | 1 | 0.62% |
Ira Weiny | 3 | 0.04% | 1 | 0.62% |
Omar Sandoval | 3 | 0.04% | 1 | 0.62% |
Rusty Russell | 2 | 0.03% | 1 | 0.62% |
Konstantin Khlebnikov | 2 | 0.03% | 1 | 0.62% |
Randy Dunlap | 1 | 0.01% | 1 | 0.62% |
Josh Poimboeuf | 1 | 0.01% | 1 | 0.62% |
Dan Carpenter | 1 | 0.01% | 1 | 0.62% |
Peter Zijlstra | 1 | 0.01% | 1 | 0.62% |
Thomas Gleixner | 1 | 0.01% | 1 | 0.62% |
Abhijith Das | 1 | 0.01% | 1 | 0.62% |
Paul Gortmaker | 1 | 0.01% | 1 | 0.62% |
Paul Mackerras | 1 | 0.01% | 1 | 0.62% |
Total | 7679 | 162 |
// SPDX-License-Identifier: GPL-2.0-only #include <linux/export.h> #include <linux/bvec.h> #include <linux/fault-inject-usercopy.h> #include <linux/uio.h> #include <linux/pagemap.h> #include <linux/highmem.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/splice.h> #include <linux/compat.h> #include <linux/scatterlist.h> #include <linux/instrumented.h> #include <linux/iov_iter.h> static __always_inline size_t copy_to_user_iter(void __user *iter_to, size_t progress, size_t len, void *from, void *priv2) { if (should_fail_usercopy()) return len; if (access_ok(iter_to, len)) { from += progress; instrument_copy_to_user(iter_to, from, len); len = raw_copy_to_user(iter_to, from, len); } return len; } static __always_inline size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress, size_t len, void *from, void *priv2) { ssize_t res; if (should_fail_usercopy()) return len; from += progress; res = copy_to_user_nofault(iter_to, from, len); return res < 0 ? len : res; } static __always_inline size_t copy_from_user_iter(void __user *iter_from, size_t progress, size_t len, void *to, void *priv2) { size_t res = len; if (should_fail_usercopy()) return len; if (access_ok(iter_from, len)) { to += progress; instrument_copy_from_user_before(to, iter_from, len); res = raw_copy_from_user(to, iter_from, len); instrument_copy_from_user_after(to, iter_from, len, res); } return res; } static __always_inline size_t memcpy_to_iter(void *iter_to, size_t progress, size_t len, void *from, void *priv2) { memcpy(iter_to, from + progress, len); return 0; } static __always_inline size_t memcpy_from_iter(void *iter_from, size_t progress, size_t len, void *to, void *priv2) { memcpy(to + progress, iter_from, len); return 0; } /* * fault_in_iov_iter_readable - fault in iov iterator for reading * @i: iterator * @size: maximum length * * Fault in one or more iovecs of the given iov_iter, to a maximum length of * @size. For each iovec, fault in each page that constitutes the iovec. * * Returns the number of bytes not faulted in (like copy_to_user() and * copy_from_user()). * * Always returns 0 for non-userspace iterators. */ size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size) { if (iter_is_ubuf(i)) { size_t n = min(size, iov_iter_count(i)); n -= fault_in_readable(i->ubuf + i->iov_offset, n); return size - n; } else if (iter_is_iovec(i)) { size_t count = min(size, iov_iter_count(i)); const struct iovec *p; size_t skip; size -= count; for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { size_t len = min(count, p->iov_len - skip); size_t ret; if (unlikely(!len)) continue; ret = fault_in_readable(p->iov_base + skip, len); count -= len - ret; if (ret) break; } return count + size; } return 0; } EXPORT_SYMBOL(fault_in_iov_iter_readable); /* * fault_in_iov_iter_writeable - fault in iov iterator for writing * @i: iterator * @size: maximum length * * Faults in the iterator using get_user_pages(), i.e., without triggering * hardware page faults. This is primarily useful when we already know that * some or all of the pages in @i aren't in memory. * * Returns the number of bytes not faulted in, like copy_to_user() and * copy_from_user(). * * Always returns 0 for non-user-space iterators. */ size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size) { if (iter_is_ubuf(i)) { size_t n = min(size, iov_iter_count(i)); n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n); return size - n; } else if (iter_is_iovec(i)) { size_t count = min(size, iov_iter_count(i)); const struct iovec *p; size_t skip; size -= count; for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { size_t len = min(count, p->iov_len - skip); size_t ret; if (unlikely(!len)) continue; ret = fault_in_safe_writeable(p->iov_base + skip, len); count -= len - ret; if (ret) break; } return count + size; } return 0; } EXPORT_SYMBOL(fault_in_iov_iter_writeable); void iov_iter_init(struct iov_iter *i, unsigned int direction, const struct iovec *iov, unsigned long nr_segs, size_t count) { WARN_ON(direction & ~(READ | WRITE)); *i = (struct iov_iter) { .iter_type = ITER_IOVEC, .nofault = false, .data_source = direction, .__iov = iov, .nr_segs = nr_segs, .iov_offset = 0, .count = count }; } EXPORT_SYMBOL(iov_iter_init); size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { if (WARN_ON_ONCE(i->data_source)) return 0; if (user_backed_iter(i)) might_fault(); return iterate_and_advance(i, bytes, (void *)addr, copy_to_user_iter, memcpy_to_iter); } EXPORT_SYMBOL(_copy_to_iter); #ifdef CONFIG_ARCH_HAS_COPY_MC static __always_inline size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress, size_t len, void *from, void *priv2) { if (access_ok(iter_to, len)) { from += progress; instrument_copy_to_user(iter_to, from, len); len = copy_mc_to_user(iter_to, from, len); } return len; } static __always_inline size_t memcpy_to_iter_mc(void *iter_to, size_t progress, size_t len, void *from, void *priv2) { return copy_mc_to_kernel(iter_to, from + progress, len); } /** * _copy_mc_to_iter - copy to iter with source memory error exception handling * @addr: source kernel address * @bytes: total transfer length * @i: destination iterator * * The pmem driver deploys this for the dax operation * (dax_copy_to_iter()) for dax reads (bypass page-cache and the * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes * successfully copied. * * The main differences between this and typical _copy_to_iter(). * * * Typical tail/residue handling after a fault retries the copy * byte-by-byte until the fault happens again. Re-triggering machine * checks is potentially fatal so the implementation uses source * alignment and poison alignment assumptions to avoid re-triggering * hardware exceptions. * * * ITER_KVEC and ITER_BVEC can return short copies. Compare to * copy_to_iter() where only ITER_IOVEC attempts might return a short copy. * * Return: number of bytes copied (may be %0) */ size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { if (WARN_ON_ONCE(i->data_source)) return 0; if (user_backed_iter(i)) might_fault(); return iterate_and_advance(i, bytes, (void *)addr, copy_to_user_iter_mc, memcpy_to_iter_mc); } EXPORT_SYMBOL_GPL(_copy_mc_to_iter); #endif /* CONFIG_ARCH_HAS_COPY_MC */ static __always_inline size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) { return iterate_and_advance(i, bytes, addr, copy_from_user_iter, memcpy_from_iter); } size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) { if (WARN_ON_ONCE(!i->data_source)) return 0; if (user_backed_iter(i)) might_fault(); return __copy_from_iter(addr, bytes, i); } EXPORT_SYMBOL(_copy_from_iter); static __always_inline size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress, size_t len, void *to, void *priv2) { return __copy_from_user_inatomic_nocache(to + progress, iter_from, len); } size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) { if (WARN_ON_ONCE(!i->data_source)) return 0; return iterate_and_advance(i, bytes, addr, copy_from_user_iter_nocache, memcpy_from_iter); } EXPORT_SYMBOL(_copy_from_iter_nocache); #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE static __always_inline size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress, size_t len, void *to, void *priv2) { return __copy_from_user_flushcache(to + progress, iter_from, len); } static __always_inline size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress, size_t len, void *to, void *priv2) { memcpy_flushcache(to + progress, iter_from, len); return 0; } /** * _copy_from_iter_flushcache - write destination through cpu cache * @addr: destination kernel address * @bytes: total transfer length * @i: source iterator * * The pmem driver arranges for filesystem-dax to use this facility via * dax_copy_from_iter() for ensuring that writes to persistent memory * are flushed through the CPU cache. It is differentiated from * _copy_from_iter_nocache() in that guarantees all data is flushed for * all iterator types. The _copy_from_iter_nocache() only attempts to * bypass the cache for the ITER_IOVEC case, and on some archs may use * instructions that strand dirty-data in the cache. * * Return: number of bytes copied (may be %0) */ size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) { if (WARN_ON_ONCE(!i->data_source)) return 0; return iterate_and_advance(i, bytes, addr, copy_from_user_iter_flushcache, memcpy_from_iter_flushcache); } EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); #endif static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) { struct page *head; size_t v = n + offset; /* * The general case needs to access the page order in order * to compute the page size. * However, we mostly deal with order-0 pages and thus can * avoid a possible cache line miss for requests that fit all * page orders. */ if (n <= v && v <= PAGE_SIZE) return true; head = compound_head(page); v += (page - head) << PAGE_SHIFT; if (WARN_ON(n > v || v > page_size(head))) return false; return true; } size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { size_t res = 0; if (!page_copy_sane(page, offset, bytes)) return 0; if (WARN_ON_ONCE(i->data_source)) return 0; page += offset / PAGE_SIZE; // first subpage offset %= PAGE_SIZE; while (1) { void *kaddr = kmap_local_page(page); size_t n = min(bytes, (size_t)PAGE_SIZE - offset); n = _copy_to_iter(kaddr + offset, n, i); kunmap_local(kaddr); res += n; bytes -= n; if (!bytes || !n) break; offset += n; if (offset == PAGE_SIZE) { page++; offset = 0; } } return res; } EXPORT_SYMBOL(copy_page_to_iter); size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes, struct iov_iter *i) { size_t res = 0; if (!page_copy_sane(page, offset, bytes)) return 0; if (WARN_ON_ONCE(i->data_source)) return 0; page += offset / PAGE_SIZE; // first subpage offset %= PAGE_SIZE; while (1) { void *kaddr = kmap_local_page(page); size_t n = min(bytes, (size_t)PAGE_SIZE - offset); n = iterate_and_advance(i, n, kaddr + offset, copy_to_user_iter_nofault, memcpy_to_iter); kunmap_local(kaddr); res += n; bytes -= n; if (!bytes || !n) break; offset += n; if (offset == PAGE_SIZE) { page++; offset = 0; } } return res; } EXPORT_SYMBOL(copy_page_to_iter_nofault); size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { size_t res = 0; if (!page_copy_sane(page, offset, bytes)) return 0; page += offset / PAGE_SIZE; // first subpage offset %= PAGE_SIZE; while (1) { void *kaddr = kmap_local_page(page); size_t n = min(bytes, (size_t)PAGE_SIZE - offset); n = _copy_from_iter(kaddr + offset, n, i); kunmap_local(kaddr); res += n; bytes -= n; if (!bytes || !n) break; offset += n; if (offset == PAGE_SIZE) { page++; offset = 0; } } return res; } EXPORT_SYMBOL(copy_page_from_iter); static __always_inline size_t zero_to_user_iter(void __user *iter_to, size_t progress, size_t len, void *priv, void *priv2) { return clear_user(iter_to, len); } static __always_inline size_t zero_to_iter(void *iter_to, size_t progress, size_t len, void *priv, void *priv2) { memset(iter_to, 0, len); return 0; } size_t iov_iter_zero(size_t bytes, struct iov_iter *i) { return iterate_and_advance(i, bytes, NULL, zero_to_user_iter, zero_to_iter); } EXPORT_SYMBOL(iov_iter_zero); size_t copy_page_from_iter_atomic(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { size_t n, copied = 0; if (!page_copy_sane(page, offset, bytes)) return 0; if (WARN_ON_ONCE(!i->data_source)) return 0; do { char *p; n = bytes - copied; if (PageHighMem(page)) { page += offset / PAGE_SIZE; offset %= PAGE_SIZE; n = min_t(size_t, n, PAGE_SIZE - offset); } p = kmap_atomic(page) + offset; n = __copy_from_iter(p, n, i); kunmap_atomic(p); copied += n; offset += n; } while (PageHighMem(page) && copied != bytes && n > 0); return copied; } EXPORT_SYMBOL(copy_page_from_iter_atomic); static void iov_iter_bvec_advance(struct iov_iter *i, size_t size) { const struct bio_vec *bvec, *end; if (!i->count) return; i->count -= size; size += i->iov_offset; for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) { if (likely(size < bvec->bv_len)) break; size -= bvec->bv_len; } i->iov_offset = size; i->nr_segs -= bvec - i->bvec; i->bvec = bvec; } static void iov_iter_iovec_advance(struct iov_iter *i, size_t size) { const struct iovec *iov, *end; if (!i->count) return; i->count -= size; size += i->iov_offset; // from beginning of current segment for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) { if (likely(size < iov->iov_len)) break; size -= iov->iov_len; } i->iov_offset = size; i->nr_segs -= iov - iter_iov(i); i->__iov = iov; } void iov_iter_advance(struct iov_iter *i, size_t size) { if (unlikely(i->count < size)) size = i->count; if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) { i->iov_offset += size; i->count -= size; } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) { /* iovec and kvec have identical layouts */ iov_iter_iovec_advance(i, size); } else if (iov_iter_is_bvec(i)) { iov_iter_bvec_advance(i, size); } else if (iov_iter_is_discard(i)) { i->count -= size; } } EXPORT_SYMBOL(iov_iter_advance); void iov_iter_revert(struct iov_iter *i, size_t unroll) { if (!unroll) return; if (WARN_ON(unroll > MAX_RW_COUNT)) return; i->count += unroll; if (unlikely(iov_iter_is_discard(i))) return; if (unroll <= i->iov_offset) { i->iov_offset -= unroll; return; } unroll -= i->iov_offset; if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) { BUG(); /* We should never go beyond the start of the specified * range since we might then be straying into pages that * aren't pinned. */ } else if (iov_iter_is_bvec(i)) { const struct bio_vec *bvec = i->bvec; while (1) { size_t n = (--bvec)->bv_len; i->nr_segs++; if (unroll <= n) { i->bvec = bvec; i->iov_offset = n - unroll; return; } unroll -= n; } } else { /* same logics for iovec and kvec */ const struct iovec *iov = iter_iov(i); while (1) { size_t n = (--iov)->iov_len; i->nr_segs++; if (unroll <= n) { i->__iov = iov; i->iov_offset = n - unroll; return; } unroll -= n; } } } EXPORT_SYMBOL(iov_iter_revert); /* * Return the count of just the current iov_iter segment. */ size_t iov_iter_single_seg_count(const struct iov_iter *i) { if (i->nr_segs > 1) { if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) return min(i->count, iter_iov(i)->iov_len - i->iov_offset); if (iov_iter_is_bvec(i)) return min(i->count, i->bvec->bv_len - i->iov_offset); } return i->count; } EXPORT_SYMBOL(iov_iter_single_seg_count); void iov_iter_kvec(struct iov_iter *i, unsigned int direction, const struct kvec *kvec, unsigned long nr_segs, size_t count) { WARN_ON(direction & ~(READ | WRITE)); *i = (struct iov_iter){ .iter_type = ITER_KVEC, .data_source = direction, .kvec = kvec, .nr_segs = nr_segs, .iov_offset = 0, .count = count }; } EXPORT_SYMBOL(iov_iter_kvec); void iov_iter_bvec(struct iov_iter *i, unsigned int direction, const struct bio_vec *bvec, unsigned long nr_segs, size_t count) { WARN_ON(direction & ~(READ | WRITE)); *i = (struct iov_iter){ .iter_type = ITER_BVEC, .data_source = direction, .bvec = bvec, .nr_segs = nr_segs, .iov_offset = 0, .count = count }; } EXPORT_SYMBOL(iov_iter_bvec); /** * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray * @i: The iterator to initialise. * @direction: The direction of the transfer. * @xarray: The xarray to access. * @start: The start file position. * @count: The size of the I/O buffer in bytes. * * Set up an I/O iterator to either draw data out of the pages attached to an * inode or to inject data into those pages. The pages *must* be prevented * from evaporation, either by taking a ref on them or locking them by the * caller. */ void iov_iter_xarray(struct iov_iter *i, unsigned int direction, struct xarray *xarray, loff_t start, size_t count) { BUG_ON(direction & ~1); *i = (struct iov_iter) { .iter_type = ITER_XARRAY, .data_source = direction, .xarray = xarray, .xarray_start = start, .count = count, .iov_offset = 0 }; } EXPORT_SYMBOL(iov_iter_xarray); /** * iov_iter_discard - Initialise an I/O iterator that discards data * @i: The iterator to initialise. * @direction: The direction of the transfer. * @count: The size of the I/O buffer in bytes. * * Set up an I/O iterator that just discards everything that's written to it. * It's only available as a READ iterator. */ void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) { BUG_ON(direction != READ); *i = (struct iov_iter){ .iter_type = ITER_DISCARD, .data_source = false, .count = count, .iov_offset = 0 }; } EXPORT_SYMBOL(iov_iter_discard); static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask, unsigned len_mask) { const struct iovec *iov = iter_iov(i); size_t size = i->count; size_t skip = i->iov_offset; do { size_t len = iov->iov_len - skip; if (len > size) len = size; if (len & len_mask) return false; if ((unsigned long)(iov->iov_base + skip) & addr_mask) return false; iov++; size -= len; skip = 0; } while (size); return true; } static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask, unsigned len_mask) { const struct bio_vec *bvec = i->bvec; unsigned skip = i->iov_offset; size_t size = i->count; do { size_t len = bvec->bv_len; if (len > size) len = size; if (len & len_mask) return false; if ((unsigned long)(bvec->bv_offset + skip) & addr_mask) return false; bvec++; size -= len; skip = 0; } while (size); return true; } /** * iov_iter_is_aligned() - Check if the addresses and lengths of each segments * are aligned to the parameters. * * @i: &struct iov_iter to restore * @addr_mask: bit mask to check against the iov element's addresses * @len_mask: bit mask to check against the iov element's lengths * * Return: false if any addresses or lengths intersect with the provided masks */ bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask, unsigned len_mask) { if (likely(iter_is_ubuf(i))) { if (i->count & len_mask) return false; if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask) return false; return true; } if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) return iov_iter_aligned_iovec(i, addr_mask, len_mask); if (iov_iter_is_bvec(i)) return iov_iter_aligned_bvec(i, addr_mask, len_mask); if (iov_iter_is_xarray(i)) { if (i->count & len_mask) return false; if ((i->xarray_start + i->iov_offset) & addr_mask) return false; } return true; } EXPORT_SYMBOL_GPL(iov_iter_is_aligned); static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i) { const struct iovec *iov = iter_iov(i); unsigned long res = 0; size_t size = i->count; size_t skip = i->iov_offset; do { size_t len = iov->iov_len - skip; if (len) { res |= (unsigned long)iov->iov_base + skip; if (len > size) len = size; res |= len; size -= len; } iov++; skip = 0; } while (size); return res; } static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i) { const struct bio_vec *bvec = i->bvec; unsigned res = 0; size_t size = i->count; unsigned skip = i->iov_offset; do { size_t len = bvec->bv_len - skip; res |= (unsigned long)bvec->bv_offset + skip; if (len > size) len = size; res |= len; bvec++; size -= len; skip = 0; } while (size); return res; } unsigned long iov_iter_alignment(const struct iov_iter *i) { if (likely(iter_is_ubuf(i))) { size_t size = i->count; if (size) return ((unsigned long)i->ubuf + i->iov_offset) | size; return 0; } /* iovec and kvec have identical layouts */ if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) return iov_iter_alignment_iovec(i); if (iov_iter_is_bvec(i)) return iov_iter_alignment_bvec(i); if (iov_iter_is_xarray(i)) return (i->xarray_start + i->iov_offset) | i->count; return 0; } EXPORT_SYMBOL(iov_iter_alignment); unsigned long iov_iter_gap_alignment(const struct iov_iter *i) { unsigned long res = 0; unsigned long v = 0; size_t size = i->count; unsigned k; if (iter_is_ubuf(i)) return 0; if (WARN_ON(!iter_is_iovec(i))) return ~0U; for (k = 0; k < i->nr_segs; k++) { const struct iovec *iov = iter_iov(i) + k; if (iov->iov_len) { unsigned long base = (unsigned long)iov->iov_base; if (v) // if not the first one res |= base | v; // this start | previous end v = base + iov->iov_len; if (size <= iov->iov_len) break; size -= iov->iov_len; } } return res; } EXPORT_SYMBOL(iov_iter_gap_alignment); static int want_pages_array(struct page ***res, size_t size, size_t start, unsigned int maxpages) { unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE); if (count > maxpages) count = maxpages; WARN_ON(!count); // caller should've prevented that if (!*res) { *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL); if (!*res) return 0; } return count; } static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa, pgoff_t index, unsigned int nr_pages) { XA_STATE(xas, xa, index); struct page *page; unsigned int ret = 0; rcu_read_lock(); for (page = xas_load(&xas); page; page = xas_next(&xas)) { if (xas_retry(&xas, page)) continue; /* Has the page moved or been split? */ if (unlikely(page != xas_reload(&xas))) { xas_reset(&xas); continue; } pages[ret] = find_subpage(page, xas.xa_index); get_page(pages[ret]); if (++ret == nr_pages) break; } rcu_read_unlock(); return ret; } static ssize_t iter_xarray_get_pages(struct iov_iter *i, struct page ***pages, size_t maxsize, unsigned maxpages, size_t *_start_offset) { unsigned nr, offset, count; pgoff_t index; loff_t pos; pos = i->xarray_start + i->iov_offset; index = pos >> PAGE_SHIFT; offset = pos & ~PAGE_MASK; *_start_offset = offset; count = want_pages_array(pages, maxsize, offset, maxpages); if (!count) return -ENOMEM; nr = iter_xarray_populate_pages(*pages, i->xarray, index, count); if (nr == 0) return 0; maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); i->iov_offset += maxsize; i->count -= maxsize; return maxsize; } /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */ static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size) { size_t skip; long k; if (iter_is_ubuf(i)) return (unsigned long)i->ubuf + i->iov_offset; for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) { const struct iovec *iov = iter_iov(i) + k; size_t len = iov->iov_len - skip; if (unlikely(!len)) continue; if (*size > len) *size = len; return (unsigned long)iov->iov_base + skip; } BUG(); // if it had been empty, we wouldn't get called } /* must be done on non-empty ITER_BVEC one */ static struct page *first_bvec_segment(const struct iov_iter *i, size_t *size, size_t *start) { struct page *page; size_t skip = i->iov_offset, len; len = i->bvec->bv_len - skip; if (*size > len) *size = len; skip += i->bvec->bv_offset; page = i->bvec->bv_page + skip / PAGE_SIZE; *start = skip % PAGE_SIZE; return page; } static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i, struct page ***pages, size_t maxsize, unsigned int maxpages, size_t *start) { unsigned int n, gup_flags = 0; if (maxsize > i->count) maxsize = i->count; if (!maxsize) return 0; if (maxsize > MAX_RW_COUNT) maxsize = MAX_RW_COUNT; if (likely(user_backed_iter(i))) { unsigned long addr; int res; if (iov_iter_rw(i) != WRITE) gup_flags |= FOLL_WRITE; if (i->nofault) gup_flags |= FOLL_NOFAULT; addr = first_iovec_segment(i, &maxsize); *start = addr % PAGE_SIZE; addr &= PAGE_MASK; n = want_pages_array(pages, maxsize, *start, maxpages); if (!n) return -ENOMEM; res = get_user_pages_fast(addr, n, gup_flags, *pages); if (unlikely(res <= 0)) return res; maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start); iov_iter_advance(i, maxsize); return maxsize; } if (iov_iter_is_bvec(i)) { struct page **p; struct page *page; page = first_bvec_segment(i, &maxsize, start); n = want_pages_array(pages, maxsize, *start, maxpages); if (!n) return -ENOMEM; p = *pages; for (int k = 0; k < n; k++) get_page(p[k] = page + k); maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start); i->count -= maxsize; i->iov_offset += maxsize; if (i->iov_offset == i->bvec->bv_len) { i->iov_offset = 0; i->bvec++; i->nr_segs--; } return maxsize; } if (iov_iter_is_xarray(i)) return iter_xarray_get_pages(i, pages, maxsize, maxpages, start); return -EFAULT; } ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages, size_t maxsize, unsigned maxpages, size_t *start) { if (!maxpages) return 0; BUG_ON(!pages); return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start); } EXPORT_SYMBOL(iov_iter_get_pages2); ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, struct page ***pages, size_t maxsize, size_t *start) { ssize_t len; *pages = NULL; len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start); if (len <= 0) { kvfree(*pages); *pages = NULL; } return len; } EXPORT_SYMBOL(iov_iter_get_pages_alloc2); static int iov_npages(const struct iov_iter *i, int maxpages) { size_t skip = i->iov_offset, size = i->count; const struct iovec *p; int npages = 0; for (p = iter_iov(i); size; skip = 0, p++) { unsigned offs = offset_in_page(p->iov_base + skip); size_t len = min(p->iov_len - skip, size); if (len) { size -= len; npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); if (unlikely(npages > maxpages)) return maxpages; } } return npages; } static int bvec_npages(const struct iov_iter *i, int maxpages) { size_t skip = i->iov_offset, size = i->count; const struct bio_vec *p; int npages = 0; for (p = i->bvec; size; skip = 0, p++) { unsigned offs = (p->bv_offset + skip) % PAGE_SIZE; size_t len = min(p->bv_len - skip, size); size -= len; npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); if (unlikely(npages > maxpages)) return maxpages; } return npages; } int iov_iter_npages(const struct iov_iter *i, int maxpages) { if (unlikely(!i->count)) return 0; if (likely(iter_is_ubuf(i))) { unsigned offs = offset_in_page(i->ubuf + i->iov_offset); int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE); return min(npages, maxpages); } /* iovec and kvec have identical layouts */ if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) return iov_npages(i, maxpages); if (iov_iter_is_bvec(i)) return bvec_npages(i, maxpages); if (iov_iter_is_xarray(i)) { unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE; int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); return min(npages, maxpages); } return 0; } EXPORT_SYMBOL(iov_iter_npages); const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) { *new = *old; if (iov_iter_is_bvec(new)) return new->bvec = kmemdup(new->bvec, new->nr_segs * sizeof(struct bio_vec), flags); else if (iov_iter_is_kvec(new) || iter_is_iovec(new)) /* iovec and kvec have identical layout */ return new->__iov = kmemdup(new->__iov, new->nr_segs * sizeof(struct iovec), flags); return NULL; } EXPORT_SYMBOL(dup_iter); static __noclone int copy_compat_iovec_from_user(struct iovec *iov, const struct iovec __user *uvec, u32 nr_segs) { const struct compat_iovec __user *uiov = (const struct compat_iovec __user *)uvec; int ret = -EFAULT; u32 i; if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) return -EFAULT; for (i = 0; i < nr_segs; i++) { compat_uptr_t buf; compat_ssize_t len; unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); /* check for compat_size_t not fitting in compat_ssize_t .. */ if (len < 0) { ret = -EINVAL; goto uaccess_end; } iov[i].iov_base = compat_ptr(buf); iov[i].iov_len = len; } ret = 0; uaccess_end: user_access_end(); return ret; } static __noclone int copy_iovec_from_user(struct iovec *iov, const struct iovec __user *uiov, unsigned long nr_segs) { int ret = -EFAULT; if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) return -EFAULT; do { void __user *buf; ssize_t len; unsafe_get_user(len, &uiov->iov_len, uaccess_end); unsafe_get_user(buf, &uiov->iov_base, uaccess_end); /* check for size_t not fitting in ssize_t .. */ if (unlikely(len < 0)) { ret = -EINVAL; goto uaccess_end; } iov->iov_base = buf; iov->iov_len = len; uiov++; iov++; } while (--nr_segs); ret = 0; uaccess_end: user_access_end(); return ret; } struct iovec *iovec_from_user(const struct iovec __user *uvec, unsigned long nr_segs, unsigned long fast_segs, struct iovec *fast_iov, bool compat) { struct iovec *iov = fast_iov; int ret; /* * SuS says "The readv() function *may* fail if the iovcnt argument was * less than or equal to 0, or greater than {IOV_MAX}. Linux has * traditionally returned zero for zero segments, so... */ if (nr_segs == 0) return iov; if (nr_segs > UIO_MAXIOV) return ERR_PTR(-EINVAL); if (nr_segs > fast_segs) { iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); if (!iov) return ERR_PTR(-ENOMEM); } if (unlikely(compat)) ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); else ret = copy_iovec_from_user(iov, uvec, nr_segs); if (ret) { if (iov != fast_iov) kfree(iov); return ERR_PTR(ret); } return iov; } /* * Single segment iovec supplied by the user, import it as ITER_UBUF. */ static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec, struct iovec **iovp, struct iov_iter *i, bool compat) { struct iovec *iov = *iovp; ssize_t ret; if (compat) ret = copy_compat_iovec_from_user(iov, uvec, 1); else ret = copy_iovec_from_user(iov, uvec, 1); if (unlikely(ret)) return ret; ret = import_ubuf(type, iov->iov_base, iov->iov_len, i); if (unlikely(ret)) return ret; *iovp = NULL; return i->count; } ssize_t __import_iovec(int type, const struct iovec __user *uvec, unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, struct iov_iter *i, bool compat) { ssize_t total_len = 0; unsigned long seg; struct iovec *iov; if (nr_segs == 1) return __import_iovec_ubuf(type, uvec, iovp, i, compat); iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat); if (IS_ERR(iov)) { *iovp = NULL; return PTR_ERR(iov); } /* * According to the Single Unix Specification we should return EINVAL if * an element length is < 0 when cast to ssize_t or if the total length * would overflow the ssize_t return value of the system call. * * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the * overflow case. */ for (seg = 0; seg < nr_segs; seg++) { ssize_t len = (ssize_t)iov[seg].iov_len; if (!access_ok(iov[seg].iov_base, len)) { if (iov != *iovp) kfree(iov); *iovp = NULL; return -EFAULT; } if (len > MAX_RW_COUNT - total_len) { len = MAX_RW_COUNT - total_len; iov[seg].iov_len = len; } total_len += len; } iov_iter_init(i, type, iov, nr_segs, total_len); if (iov == *iovp) *iovp = NULL; else *iovp = iov; return total_len; } /** * import_iovec() - Copy an array of &struct iovec from userspace * into the kernel, check that it is valid, and initialize a new * &struct iov_iter iterator to access it. * * @type: One of %READ or %WRITE. * @uvec: Pointer to the userspace array. * @nr_segs: Number of elements in userspace array. * @fast_segs: Number of elements in @iov. * @iovp: (input and output parameter) Pointer to pointer to (usually small * on-stack) kernel array. * @i: Pointer to iterator that will be initialized on success. * * If the array pointed to by *@iov is large enough to hold all @nr_segs, * then this function places %NULL in *@iov on return. Otherwise, a new * array will be allocated and the result placed in *@iov. This means that * the caller may call kfree() on *@iov regardless of whether the small * on-stack array was used or not (and regardless of whether this function * returns an error or not). * * Return: Negative error code on error, bytes imported on success */ ssize_t import_iovec(int type, const struct iovec __user *uvec, unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, struct iov_iter *i) { return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, in_compat_syscall()); } EXPORT_SYMBOL(import_iovec); int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i) { if (len > MAX_RW_COUNT) len = MAX_RW_COUNT; if (unlikely(!access_ok(buf, len))) return -EFAULT; iov_iter_ubuf(i, rw, buf, len); return 0; } EXPORT_SYMBOL_GPL(import_ubuf); /** * iov_iter_restore() - Restore a &struct iov_iter to the same state as when * iov_iter_save_state() was called. * * @i: &struct iov_iter to restore * @state: state to restore from * * Used after iov_iter_save_state() to bring restore @i, if operations may * have advanced it. * * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC */ void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state) { if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) && !iter_is_ubuf(i)) && !iov_iter_is_kvec(i)) return; i->iov_offset = state->iov_offset; i->count = state->count; if (iter_is_ubuf(i)) return; /* * For the *vec iters, nr_segs + iov is constant - if we increment * the vec, then we also decrement the nr_segs count. Hence we don't * need to track both of these, just one is enough and we can deduct * the other from that. ITER_KVEC and ITER_IOVEC are the same struct * size, so we can just increment the iov pointer as they are unionzed. * ITER_BVEC _may_ be the same size on some archs, but on others it is * not. Be safe and handle it separately. */ BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec)); if (iov_iter_is_bvec(i)) i->bvec -= state->nr_segs - i->nr_segs; else i->__iov -= state->nr_segs - i->nr_segs; i->nr_segs = state->nr_segs; } /* * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not * get references on the pages, nor does it get a pin on them. */ static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i, struct page ***pages, size_t maxsize, unsigned int maxpages, iov_iter_extraction_t extraction_flags, size_t *offset0) { struct page *page, **p; unsigned int nr = 0, offset; loff_t pos = i->xarray_start + i->iov_offset; pgoff_t index = pos >> PAGE_SHIFT; XA_STATE(xas, i->xarray, index); offset = pos & ~PAGE_MASK; *offset0 = offset; maxpages = want_pages_array(pages, maxsize, offset, maxpages); if (!maxpages) return -ENOMEM; p = *pages; rcu_read_lock(); for (page = xas_load(&xas); page; page = xas_next(&xas)) { if (xas_retry(&xas, page)) continue; /* Has the page moved or been split? */ if (unlikely(page != xas_reload(&xas))) { xas_reset(&xas); continue; } p[nr++] = find_subpage(page, xas.xa_index); if (nr == maxpages) break; } rcu_read_unlock(); maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); iov_iter_advance(i, maxsize); return maxsize; } /* * Extract a list of contiguous pages from an ITER_BVEC iterator. This does * not get references on the pages, nor does it get a pin on them. */ static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i, struct page ***pages, size_t maxsize, unsigned int maxpages, iov_iter_extraction_t extraction_flags, size_t *offset0) { struct page **p, *page; size_t skip = i->iov_offset, offset, size; int k; for (;;) { if (i->nr_segs == 0) return 0; size = min(maxsize, i->bvec->bv_len - skip); if (size) break; i->iov_offset = 0; i->nr_segs--; i->bvec++; skip = 0; } skip += i->bvec->bv_offset; page = i->bvec->bv_page + skip / PAGE_SIZE; offset = skip % PAGE_SIZE; *offset0 = offset; maxpages = want_pages_array(pages, size, offset, maxpages); if (!maxpages) return -ENOMEM; p = *pages; for (k = 0; k < maxpages; k++) p[k] = page + k; size = min_t(size_t, size, maxpages * PAGE_SIZE - offset); iov_iter_advance(i, size); return size; } /* * Extract a list of virtually contiguous pages from an ITER_KVEC iterator. * This does not get references on the pages, nor does it get a pin on them. */ static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i, struct page ***pages, size_t maxsize, unsigned int maxpages, iov_iter_extraction_t extraction_flags, size_t *offset0) { struct page **p, *page; const void *kaddr; size_t skip = i->iov_offset, offset, len, size; int k; for (;;) { if (i->nr_segs == 0) return 0; size = min(maxsize, i->kvec->iov_len - skip); if (size) break; i->iov_offset = 0; i->nr_segs--; i->kvec++; skip = 0; } kaddr = i->kvec->iov_base + skip; offset = (unsigned long)kaddr & ~PAGE_MASK; *offset0 = offset; maxpages = want_pages_array(pages, size, offset, maxpages); if (!maxpages) return -ENOMEM; p = *pages; kaddr -= offset; len = offset + size; for (k = 0; k < maxpages; k++) { size_t seg = min_t(size_t, len, PAGE_SIZE); if (is_vmalloc_or_module_addr(kaddr)) page = vmalloc_to_page(kaddr); else page = virt_to_page(kaddr); p[k] = page; len -= seg; kaddr += PAGE_SIZE; } size = min_t(size_t, size, maxpages * PAGE_SIZE - offset); iov_iter_advance(i, size); return size; } /* * Extract a list of contiguous pages from a user iterator and get a pin on * each of them. This should only be used if the iterator is user-backed * (IOBUF/UBUF). * * It does not get refs on the pages, but the pages must be unpinned by the * caller once the transfer is complete. * * This is safe to be used where background IO/DMA *is* going to be modifying * the buffer; using a pin rather than a ref makes forces fork() to give the * child a copy of the page. */ static ssize_t iov_iter_extract_user_pages(struct iov_iter *i, struct page ***pages, size_t maxsize, unsigned int maxpages, iov_iter_extraction_t extraction_flags, size_t *offset0) { unsigned long addr; unsigned int gup_flags = 0; size_t offset; int res; if (i->data_source == ITER_DEST) gup_flags |= FOLL_WRITE; if (extraction_flags & ITER_ALLOW_P2PDMA) gup_flags |= FOLL_PCI_P2PDMA; if (i->nofault) gup_flags |= FOLL_NOFAULT; addr = first_iovec_segment(i, &maxsize); *offset0 = offset = addr % PAGE_SIZE; addr &= PAGE_MASK; maxpages = want_pages_array(pages, maxsize, offset, maxpages); if (!maxpages) return -ENOMEM; res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages); if (unlikely(res <= 0)) return res; maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset); iov_iter_advance(i, maxsize); return maxsize; } /** * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator * @i: The iterator to extract from * @pages: Where to return the list of pages * @maxsize: The maximum amount of iterator to extract * @maxpages: The maximum size of the list of pages * @extraction_flags: Flags to qualify request * @offset0: Where to return the starting offset into (*@pages)[0] * * Extract a list of contiguous pages from the current point of the iterator, * advancing the iterator. The maximum number of pages and the maximum amount * of page contents can be set. * * If *@pages is NULL, a page list will be allocated to the required size and * *@pages will be set to its base. If *@pages is not NULL, it will be assumed * that the caller allocated a page list at least @maxpages in size and this * will be filled in. * * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA * be allowed on the pages extracted. * * The iov_iter_extract_will_pin() function can be used to query how cleanup * should be performed. * * Extra refs or pins on the pages may be obtained as follows: * * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be * added to the pages, but refs will not be taken. * iov_iter_extract_will_pin() will return true. * * (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are * merely listed; no extra refs or pins are obtained. * iov_iter_extract_will_pin() will return 0. * * Note also: * * (*) Use with ITER_DISCARD is not supported as that has no content. * * On success, the function sets *@pages to the new pagelist, if allocated, and * sets *offset0 to the offset into the first page. * * It may also return -ENOMEM and -EFAULT. */ ssize_t iov_iter_extract_pages(struct iov_iter *i, struct page ***pages, size_t maxsize, unsigned int maxpages, iov_iter_extraction_t extraction_flags, size_t *offset0) { maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT); if (!maxsize) return 0; if (likely(user_backed_iter(i))) return iov_iter_extract_user_pages(i, pages, maxsize, maxpages, extraction_flags, offset0); if (iov_iter_is_kvec(i)) return iov_iter_extract_kvec_pages(i, pages, maxsize, maxpages, extraction_flags, offset0); if (iov_iter_is_bvec(i)) return iov_iter_extract_bvec_pages(i, pages, maxsize, maxpages, extraction_flags, offset0); if (iov_iter_is_xarray(i)) return iov_iter_extract_xarray_pages(i, pages, maxsize, maxpages, extraction_flags, offset0); return -EFAULT; } EXPORT_SYMBOL_GPL(iov_iter_extract_pages);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1