Contributors: 19
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Roman Zippel |
127 |
16.84% |
2 |
8.00% |
Oleg Nesterov |
122 |
16.18% |
1 |
4.00% |
Brian Behlendorf |
117 |
15.52% |
1 |
4.00% |
Randolph Chung |
95 |
12.60% |
1 |
4.00% |
Bernardo Innocenti |
88 |
11.67% |
2 |
8.00% |
Stephen Hemminger |
66 |
8.75% |
2 |
8.00% |
Mike Snitzer |
58 |
7.69% |
1 |
4.00% |
Jeremy Fitzhardinge |
20 |
2.65% |
2 |
8.00% |
Uwe Kleine-König |
17 |
2.25% |
1 |
4.00% |
David S. Miller |
15 |
1.99% |
2 |
8.00% |
Stanislaw Gruszka |
8 |
1.06% |
1 |
4.00% |
Nico Pitre |
5 |
0.66% |
1 |
4.00% |
David Howells |
3 |
0.40% |
1 |
4.00% |
Paul Gortmaker |
3 |
0.40% |
1 |
4.00% |
Peter Zijlstra |
3 |
0.40% |
1 |
4.00% |
Andrew Morton |
2 |
0.27% |
1 |
4.00% |
Liam Beguin |
2 |
0.27% |
1 |
4.00% |
Andy Shevchenko |
2 |
0.27% |
2 |
8.00% |
Greg Kroah-Hartman |
1 |
0.13% |
1 |
4.00% |
Total |
754 |
|
25 |
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
*
* Based on former do_div() implementation from asm-parisc/div64.h:
* Copyright (C) 1999 Hewlett-Packard Co
* Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
*
*
* Generic C version of 64bit/32bit division and modulo, with
* 64bit result and 32bit remainder.
*
* The fast case for (n>>32 == 0) is handled inline by do_div().
*
* Code generated for this function might be very inefficient
* for some CPUs. __div64_32() can be overridden by linking arch-specific
* assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
* or by defining a preprocessor macro in arch/include/asm/div64.h.
*/
#include <linux/bitops.h>
#include <linux/export.h>
#include <linux/math.h>
#include <linux/math64.h>
#include <linux/minmax.h>
#include <linux/log2.h>
/* Not needed on 64bit architectures */
#if BITS_PER_LONG == 32
#ifndef __div64_32
uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
{
uint64_t rem = *n;
uint64_t b = base;
uint64_t res, d = 1;
uint32_t high = rem >> 32;
/* Reduce the thing a bit first */
res = 0;
if (high >= base) {
high /= base;
res = (uint64_t) high << 32;
rem -= (uint64_t) (high*base) << 32;
}
while ((int64_t)b > 0 && b < rem) {
b = b+b;
d = d+d;
}
do {
if (rem >= b) {
rem -= b;
res += d;
}
b >>= 1;
d >>= 1;
} while (d);
*n = res;
return rem;
}
EXPORT_SYMBOL(__div64_32);
#endif
#ifndef div_s64_rem
s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
{
u64 quotient;
if (dividend < 0) {
quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
*remainder = -*remainder;
if (divisor > 0)
quotient = -quotient;
} else {
quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
if (divisor < 0)
quotient = -quotient;
}
return quotient;
}
EXPORT_SYMBOL(div_s64_rem);
#endif
/*
* div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
* @dividend: 64bit dividend
* @divisor: 64bit divisor
* @remainder: 64bit remainder
*
* This implementation is a comparable to algorithm used by div64_u64.
* But this operation, which includes math for calculating the remainder,
* is kept distinct to avoid slowing down the div64_u64 operation on 32bit
* systems.
*/
#ifndef div64_u64_rem
u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
{
u32 high = divisor >> 32;
u64 quot;
if (high == 0) {
u32 rem32;
quot = div_u64_rem(dividend, divisor, &rem32);
*remainder = rem32;
} else {
int n = fls(high);
quot = div_u64(dividend >> n, divisor >> n);
if (quot != 0)
quot--;
*remainder = dividend - quot * divisor;
if (*remainder >= divisor) {
quot++;
*remainder -= divisor;
}
}
return quot;
}
EXPORT_SYMBOL(div64_u64_rem);
#endif
/*
* div64_u64 - unsigned 64bit divide with 64bit divisor
* @dividend: 64bit dividend
* @divisor: 64bit divisor
*
* This implementation is a modified version of the algorithm proposed
* by the book 'Hacker's Delight'. The original source and full proof
* can be found here and is available for use without restriction.
*
* 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
*/
#ifndef div64_u64
u64 div64_u64(u64 dividend, u64 divisor)
{
u32 high = divisor >> 32;
u64 quot;
if (high == 0) {
quot = div_u64(dividend, divisor);
} else {
int n = fls(high);
quot = div_u64(dividend >> n, divisor >> n);
if (quot != 0)
quot--;
if ((dividend - quot * divisor) >= divisor)
quot++;
}
return quot;
}
EXPORT_SYMBOL(div64_u64);
#endif
#ifndef div64_s64
s64 div64_s64(s64 dividend, s64 divisor)
{
s64 quot, t;
quot = div64_u64(abs(dividend), abs(divisor));
t = (dividend ^ divisor) >> 63;
return (quot ^ t) - t;
}
EXPORT_SYMBOL(div64_s64);
#endif
#endif /* BITS_PER_LONG == 32 */
/*
* Iterative div/mod for use when dividend is not expected to be much
* bigger than divisor.
*/
u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
{
return __iter_div_u64_rem(dividend, divisor, remainder);
}
EXPORT_SYMBOL(iter_div_u64_rem);
#ifndef mul_u64_u64_div_u64
u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c)
{
u64 res = 0, div, rem;
int shift;
/* can a * b overflow ? */
if (ilog2(a) + ilog2(b) > 62) {
/*
* Note that the algorithm after the if block below might lose
* some precision and the result is more exact for b > a. So
* exchange a and b if a is bigger than b.
*
* For example with a = 43980465100800, b = 100000000, c = 1000000000
* the below calculation doesn't modify b at all because div == 0
* and then shift becomes 45 + 26 - 62 = 9 and so the result
* becomes 4398035251080. However with a and b swapped the exact
* result is calculated (i.e. 4398046510080).
*/
if (a > b)
swap(a, b);
/*
* (b * a) / c is equal to
*
* (b / c) * a +
* (b % c) * a / c
*
* if nothing overflows. Can the 1st multiplication
* overflow? Yes, but we do not care: this can only
* happen if the end result can't fit in u64 anyway.
*
* So the code below does
*
* res = (b / c) * a;
* b = b % c;
*/
div = div64_u64_rem(b, c, &rem);
res = div * a;
b = rem;
shift = ilog2(a) + ilog2(b) - 62;
if (shift > 0) {
/* drop precision */
b >>= shift;
c >>= shift;
if (!c)
return res;
}
}
return res + div64_u64(a * b, c);
}
EXPORT_SYMBOL(mul_u64_u64_div_u64);
#endif