Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tejun Heo | 672 | 50.19% | 24 | 52.17% |
Kent Overstreet | 272 | 20.31% | 3 | 6.52% |
Ming Lei | 207 | 15.46% | 2 | 4.35% |
Roman Gushchin | 37 | 2.76% | 1 | 2.17% |
Paul E. McKenney | 32 | 2.39% | 2 | 4.35% |
Neil Brown | 27 | 2.02% | 1 | 2.17% |
Matias Björling | 25 | 1.87% | 1 | 2.17% |
Bart Van Assche | 22 | 1.64% | 1 | 2.17% |
Roman Peniaev | 13 | 0.97% | 1 | 2.17% |
Dennis Dalessandro | 9 | 0.67% | 2 | 4.35% |
Nikolay Borisov | 9 | 0.67% | 1 | 2.17% |
Al Viro | 6 | 0.45% | 1 | 2.17% |
Joe Perches | 2 | 0.15% | 1 | 2.17% |
Sakari Ailus | 2 | 0.15% | 1 | 2.17% |
Thomas Gleixner | 1 | 0.07% | 1 | 2.17% |
Bogdan Sikora | 1 | 0.07% | 1 | 2.17% |
Joel A Fernandes | 1 | 0.07% | 1 | 2.17% |
Ira Weiny | 1 | 0.07% | 1 | 2.17% |
Total | 1339 | 46 |
// SPDX-License-Identifier: GPL-2.0-only #define pr_fmt(fmt) "%s: " fmt, __func__ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/wait.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/percpu-refcount.h> /* * Initially, a percpu refcount is just a set of percpu counters. Initially, we * don't try to detect the ref hitting 0 - which means that get/put can just * increment or decrement the local counter. Note that the counter on a * particular cpu can (and will) wrap - this is fine, when we go to shutdown the * percpu counters will all sum to the correct value * * (More precisely: because modular arithmetic is commutative the sum of all the * percpu_count vars will be equal to what it would have been if all the gets * and puts were done to a single integer, even if some of the percpu integers * overflow or underflow). * * The real trick to implementing percpu refcounts is shutdown. We can't detect * the ref hitting 0 on every put - this would require global synchronization * and defeat the whole purpose of using percpu refs. * * What we do is require the user to keep track of the initial refcount; we know * the ref can't hit 0 before the user drops the initial ref, so as long as we * convert to non percpu mode before the initial ref is dropped everything * works. * * Converting to non percpu mode is done with some RCUish stuff in * percpu_ref_kill. Additionally, we need a bias value so that the * atomic_long_t can't hit 0 before we've added up all the percpu refs. */ #define PERCPU_COUNT_BIAS (1LU << (BITS_PER_LONG - 1)) static DEFINE_SPINLOCK(percpu_ref_switch_lock); static DECLARE_WAIT_QUEUE_HEAD(percpu_ref_switch_waitq); static unsigned long __percpu *percpu_count_ptr(struct percpu_ref *ref) { return (unsigned long __percpu *) (ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC_DEAD); } /** * percpu_ref_init - initialize a percpu refcount * @ref: percpu_ref to initialize * @release: function which will be called when refcount hits 0 * @flags: PERCPU_REF_INIT_* flags * @gfp: allocation mask to use * * Initializes @ref. @ref starts out in percpu mode with a refcount of 1 unless * @flags contains PERCPU_REF_INIT_ATOMIC or PERCPU_REF_INIT_DEAD. These flags * change the start state to atomic with the latter setting the initial refcount * to 0. See the definitions of PERCPU_REF_INIT_* flags for flag behaviors. * * Note that @release must not sleep - it may potentially be called from RCU * callback context by percpu_ref_kill(). */ int percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release, unsigned int flags, gfp_t gfp) { size_t align = max_t(size_t, 1 << __PERCPU_REF_FLAG_BITS, __alignof__(unsigned long)); unsigned long start_count = 0; struct percpu_ref_data *data; ref->percpu_count_ptr = (unsigned long) __alloc_percpu_gfp(sizeof(unsigned long), align, gfp); if (!ref->percpu_count_ptr) return -ENOMEM; data = kzalloc(sizeof(*ref->data), gfp); if (!data) { free_percpu((void __percpu *)ref->percpu_count_ptr); ref->percpu_count_ptr = 0; return -ENOMEM; } data->force_atomic = flags & PERCPU_REF_INIT_ATOMIC; data->allow_reinit = flags & PERCPU_REF_ALLOW_REINIT; if (flags & (PERCPU_REF_INIT_ATOMIC | PERCPU_REF_INIT_DEAD)) { ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC; data->allow_reinit = true; } else { start_count += PERCPU_COUNT_BIAS; } if (flags & PERCPU_REF_INIT_DEAD) ref->percpu_count_ptr |= __PERCPU_REF_DEAD; else start_count++; atomic_long_set(&data->count, start_count); data->release = release; data->confirm_switch = NULL; data->ref = ref; ref->data = data; return 0; } EXPORT_SYMBOL_GPL(percpu_ref_init); static void __percpu_ref_exit(struct percpu_ref *ref) { unsigned long __percpu *percpu_count = percpu_count_ptr(ref); if (percpu_count) { /* non-NULL confirm_switch indicates switching in progress */ WARN_ON_ONCE(ref->data && ref->data->confirm_switch); free_percpu(percpu_count); ref->percpu_count_ptr = __PERCPU_REF_ATOMIC_DEAD; } } /** * percpu_ref_exit - undo percpu_ref_init() * @ref: percpu_ref to exit * * This function exits @ref. The caller is responsible for ensuring that * @ref is no longer in active use. The usual places to invoke this * function from are the @ref->release() callback or in init failure path * where percpu_ref_init() succeeded but other parts of the initialization * of the embedding object failed. */ void percpu_ref_exit(struct percpu_ref *ref) { struct percpu_ref_data *data = ref->data; unsigned long flags; __percpu_ref_exit(ref); if (!data) return; spin_lock_irqsave(&percpu_ref_switch_lock, flags); ref->percpu_count_ptr |= atomic_long_read(&ref->data->count) << __PERCPU_REF_FLAG_BITS; ref->data = NULL; spin_unlock_irqrestore(&percpu_ref_switch_lock, flags); kfree(data); } EXPORT_SYMBOL_GPL(percpu_ref_exit); static void percpu_ref_call_confirm_rcu(struct rcu_head *rcu) { struct percpu_ref_data *data = container_of(rcu, struct percpu_ref_data, rcu); struct percpu_ref *ref = data->ref; data->confirm_switch(ref); data->confirm_switch = NULL; wake_up_all(&percpu_ref_switch_waitq); if (!data->allow_reinit) __percpu_ref_exit(ref); /* drop ref from percpu_ref_switch_to_atomic() */ percpu_ref_put(ref); } static void percpu_ref_switch_to_atomic_rcu(struct rcu_head *rcu) { struct percpu_ref_data *data = container_of(rcu, struct percpu_ref_data, rcu); struct percpu_ref *ref = data->ref; unsigned long __percpu *percpu_count = percpu_count_ptr(ref); static atomic_t underflows; unsigned long count = 0; int cpu; for_each_possible_cpu(cpu) count += *per_cpu_ptr(percpu_count, cpu); pr_debug("global %lu percpu %lu\n", atomic_long_read(&data->count), count); /* * It's crucial that we sum the percpu counters _before_ adding the sum * to &ref->count; since gets could be happening on one cpu while puts * happen on another, adding a single cpu's count could cause * @ref->count to hit 0 before we've got a consistent value - but the * sum of all the counts will be consistent and correct. * * Subtracting the bias value then has to happen _after_ adding count to * &ref->count; we need the bias value to prevent &ref->count from * reaching 0 before we add the percpu counts. But doing it at the same * time is equivalent and saves us atomic operations: */ atomic_long_add((long)count - PERCPU_COUNT_BIAS, &data->count); if (WARN_ONCE(atomic_long_read(&data->count) <= 0, "percpu ref (%ps) <= 0 (%ld) after switching to atomic", data->release, atomic_long_read(&data->count)) && atomic_inc_return(&underflows) < 4) { pr_err("%s(): percpu_ref underflow", __func__); mem_dump_obj(data); } /* @ref is viewed as dead on all CPUs, send out switch confirmation */ percpu_ref_call_confirm_rcu(rcu); } static void percpu_ref_noop_confirm_switch(struct percpu_ref *ref) { } static void __percpu_ref_switch_to_atomic(struct percpu_ref *ref, percpu_ref_func_t *confirm_switch) { if (ref->percpu_count_ptr & __PERCPU_REF_ATOMIC) { if (confirm_switch) confirm_switch(ref); return; } /* switching from percpu to atomic */ ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC; /* * Non-NULL ->confirm_switch is used to indicate that switching is * in progress. Use noop one if unspecified. */ ref->data->confirm_switch = confirm_switch ?: percpu_ref_noop_confirm_switch; percpu_ref_get(ref); /* put after confirmation */ call_rcu_hurry(&ref->data->rcu, percpu_ref_switch_to_atomic_rcu); } static void __percpu_ref_switch_to_percpu(struct percpu_ref *ref) { unsigned long __percpu *percpu_count = percpu_count_ptr(ref); int cpu; BUG_ON(!percpu_count); if (!(ref->percpu_count_ptr & __PERCPU_REF_ATOMIC)) return; if (WARN_ON_ONCE(!ref->data->allow_reinit)) return; atomic_long_add(PERCPU_COUNT_BIAS, &ref->data->count); /* * Restore per-cpu operation. smp_store_release() is paired * with READ_ONCE() in __ref_is_percpu() and guarantees that the * zeroing is visible to all percpu accesses which can see the * following __PERCPU_REF_ATOMIC clearing. */ for_each_possible_cpu(cpu) *per_cpu_ptr(percpu_count, cpu) = 0; smp_store_release(&ref->percpu_count_ptr, ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC); } static void __percpu_ref_switch_mode(struct percpu_ref *ref, percpu_ref_func_t *confirm_switch) { struct percpu_ref_data *data = ref->data; lockdep_assert_held(&percpu_ref_switch_lock); /* * If the previous ATOMIC switching hasn't finished yet, wait for * its completion. If the caller ensures that ATOMIC switching * isn't in progress, this function can be called from any context. */ wait_event_lock_irq(percpu_ref_switch_waitq, !data->confirm_switch, percpu_ref_switch_lock); if (data->force_atomic || percpu_ref_is_dying(ref)) __percpu_ref_switch_to_atomic(ref, confirm_switch); else __percpu_ref_switch_to_percpu(ref); } /** * percpu_ref_switch_to_atomic - switch a percpu_ref to atomic mode * @ref: percpu_ref to switch to atomic mode * @confirm_switch: optional confirmation callback * * There's no reason to use this function for the usual reference counting. * Use percpu_ref_kill[_and_confirm](). * * Schedule switching of @ref to atomic mode. All its percpu counts will * be collected to the main atomic counter. On completion, when all CPUs * are guaraneed to be in atomic mode, @confirm_switch, which may not * block, is invoked. This function may be invoked concurrently with all * the get/put operations and can safely be mixed with kill and reinit * operations. Note that @ref will stay in atomic mode across kill/reinit * cycles until percpu_ref_switch_to_percpu() is called. * * This function may block if @ref is in the process of switching to atomic * mode. If the caller ensures that @ref is not in the process of * switching to atomic mode, this function can be called from any context. */ void percpu_ref_switch_to_atomic(struct percpu_ref *ref, percpu_ref_func_t *confirm_switch) { unsigned long flags; spin_lock_irqsave(&percpu_ref_switch_lock, flags); ref->data->force_atomic = true; __percpu_ref_switch_mode(ref, confirm_switch); spin_unlock_irqrestore(&percpu_ref_switch_lock, flags); } EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic); /** * percpu_ref_switch_to_atomic_sync - switch a percpu_ref to atomic mode * @ref: percpu_ref to switch to atomic mode * * Schedule switching the ref to atomic mode, and wait for the * switch to complete. Caller must ensure that no other thread * will switch back to percpu mode. */ void percpu_ref_switch_to_atomic_sync(struct percpu_ref *ref) { percpu_ref_switch_to_atomic(ref, NULL); wait_event(percpu_ref_switch_waitq, !ref->data->confirm_switch); } EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic_sync); /** * percpu_ref_switch_to_percpu - switch a percpu_ref to percpu mode * @ref: percpu_ref to switch to percpu mode * * There's no reason to use this function for the usual reference counting. * To re-use an expired ref, use percpu_ref_reinit(). * * Switch @ref to percpu mode. This function may be invoked concurrently * with all the get/put operations and can safely be mixed with kill and * reinit operations. This function reverses the sticky atomic state set * by PERCPU_REF_INIT_ATOMIC or percpu_ref_switch_to_atomic(). If @ref is * dying or dead, the actual switching takes place on the following * percpu_ref_reinit(). * * This function may block if @ref is in the process of switching to atomic * mode. If the caller ensures that @ref is not in the process of * switching to atomic mode, this function can be called from any context. */ void percpu_ref_switch_to_percpu(struct percpu_ref *ref) { unsigned long flags; spin_lock_irqsave(&percpu_ref_switch_lock, flags); ref->data->force_atomic = false; __percpu_ref_switch_mode(ref, NULL); spin_unlock_irqrestore(&percpu_ref_switch_lock, flags); } EXPORT_SYMBOL_GPL(percpu_ref_switch_to_percpu); /** * percpu_ref_kill_and_confirm - drop the initial ref and schedule confirmation * @ref: percpu_ref to kill * @confirm_kill: optional confirmation callback * * Equivalent to percpu_ref_kill() but also schedules kill confirmation if * @confirm_kill is not NULL. @confirm_kill, which may not block, will be * called after @ref is seen as dead from all CPUs at which point all * further invocations of percpu_ref_tryget_live() will fail. See * percpu_ref_tryget_live() for details. * * This function normally doesn't block and can be called from any context * but it may block if @confirm_kill is specified and @ref is in the * process of switching to atomic mode by percpu_ref_switch_to_atomic(). * * There are no implied RCU grace periods between kill and release. */ void percpu_ref_kill_and_confirm(struct percpu_ref *ref, percpu_ref_func_t *confirm_kill) { unsigned long flags; spin_lock_irqsave(&percpu_ref_switch_lock, flags); WARN_ONCE(percpu_ref_is_dying(ref), "%s called more than once on %ps!", __func__, ref->data->release); ref->percpu_count_ptr |= __PERCPU_REF_DEAD; __percpu_ref_switch_mode(ref, confirm_kill); percpu_ref_put(ref); spin_unlock_irqrestore(&percpu_ref_switch_lock, flags); } EXPORT_SYMBOL_GPL(percpu_ref_kill_and_confirm); /** * percpu_ref_is_zero - test whether a percpu refcount reached zero * @ref: percpu_ref to test * * Returns %true if @ref reached zero. * * This function is safe to call as long as @ref is between init and exit. */ bool percpu_ref_is_zero(struct percpu_ref *ref) { unsigned long __percpu *percpu_count; unsigned long count, flags; if (__ref_is_percpu(ref, &percpu_count)) return false; /* protect us from being destroyed */ spin_lock_irqsave(&percpu_ref_switch_lock, flags); if (ref->data) count = atomic_long_read(&ref->data->count); else count = ref->percpu_count_ptr >> __PERCPU_REF_FLAG_BITS; spin_unlock_irqrestore(&percpu_ref_switch_lock, flags); return count == 0; } EXPORT_SYMBOL_GPL(percpu_ref_is_zero); /** * percpu_ref_reinit - re-initialize a percpu refcount * @ref: perpcu_ref to re-initialize * * Re-initialize @ref so that it's in the same state as when it finished * percpu_ref_init() ignoring %PERCPU_REF_INIT_DEAD. @ref must have been * initialized successfully and reached 0 but not exited. * * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while * this function is in progress. */ void percpu_ref_reinit(struct percpu_ref *ref) { WARN_ON_ONCE(!percpu_ref_is_zero(ref)); percpu_ref_resurrect(ref); } EXPORT_SYMBOL_GPL(percpu_ref_reinit); /** * percpu_ref_resurrect - modify a percpu refcount from dead to live * @ref: perpcu_ref to resurrect * * Modify @ref so that it's in the same state as before percpu_ref_kill() was * called. @ref must be dead but must not yet have exited. * * If @ref->release() frees @ref then the caller is responsible for * guaranteeing that @ref->release() does not get called while this * function is in progress. * * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while * this function is in progress. */ void percpu_ref_resurrect(struct percpu_ref *ref) { unsigned long __percpu *percpu_count; unsigned long flags; spin_lock_irqsave(&percpu_ref_switch_lock, flags); WARN_ON_ONCE(!percpu_ref_is_dying(ref)); WARN_ON_ONCE(__ref_is_percpu(ref, &percpu_count)); ref->percpu_count_ptr &= ~__PERCPU_REF_DEAD; percpu_ref_get(ref); __percpu_ref_switch_mode(ref, NULL); spin_unlock_irqrestore(&percpu_ref_switch_lock, flags); } EXPORT_SYMBOL_GPL(percpu_ref_resurrect);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1