Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ralph Campbell | 4820 | 66.09% | 5 | 17.86% |
Alistair Popple | 1251 | 17.15% | 6 | 21.43% |
Alex Sierra | 1021 | 14.00% | 3 | 10.71% |
Dan J Williams | 106 | 1.45% | 3 | 10.71% |
Mika Penttilä | 37 | 0.51% | 1 | 3.57% |
Jérôme Glisse | 16 | 0.22% | 4 | 14.29% |
Miaohe Lin | 15 | 0.21% | 1 | 3.57% |
Duoming Zhou | 8 | 0.11% | 1 | 3.57% |
Sumitra Sharma | 7 | 0.10% | 1 | 3.57% |
Michel Lespinasse | 6 | 0.08% | 1 | 3.57% |
Jeff Johnson | 5 | 0.07% | 1 | 3.57% |
Randy Dunlap | 1 | 0.01% | 1 | 3.57% |
Total | 7293 | 28 |
// SPDX-License-Identifier: GPL-2.0 /* * This is a module to test the HMM (Heterogeneous Memory Management) * mirror and zone device private memory migration APIs of the kernel. * Userspace programs can register with the driver to mirror their own address * space and can use the device to read/write any valid virtual address. */ #include <linux/init.h> #include <linux/fs.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/cdev.h> #include <linux/device.h> #include <linux/memremap.h> #include <linux/mutex.h> #include <linux/rwsem.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/delay.h> #include <linux/pagemap.h> #include <linux/hmm.h> #include <linux/vmalloc.h> #include <linux/swap.h> #include <linux/swapops.h> #include <linux/sched/mm.h> #include <linux/platform_device.h> #include <linux/rmap.h> #include <linux/mmu_notifier.h> #include <linux/migrate.h> #include "test_hmm_uapi.h" #define DMIRROR_NDEVICES 4 #define DMIRROR_RANGE_FAULT_TIMEOUT 1000 #define DEVMEM_CHUNK_SIZE (256 * 1024 * 1024U) #define DEVMEM_CHUNKS_RESERVE 16 /* * For device_private pages, dpage is just a dummy struct page * representing a piece of device memory. dmirror_devmem_alloc_page * allocates a real system memory page as backing storage to fake a * real device. zone_device_data points to that backing page. But * for device_coherent memory, the struct page represents real * physical CPU-accessible memory that we can use directly. */ #define BACKING_PAGE(page) (is_device_private_page((page)) ? \ (page)->zone_device_data : (page)) static unsigned long spm_addr_dev0; module_param(spm_addr_dev0, long, 0644); MODULE_PARM_DESC(spm_addr_dev0, "Specify start address for SPM (special purpose memory) used for device 0. By setting this Coherent device type will be used. Make sure spm_addr_dev1 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE."); static unsigned long spm_addr_dev1; module_param(spm_addr_dev1, long, 0644); MODULE_PARM_DESC(spm_addr_dev1, "Specify start address for SPM (special purpose memory) used for device 1. By setting this Coherent device type will be used. Make sure spm_addr_dev0 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE."); static const struct dev_pagemap_ops dmirror_devmem_ops; static const struct mmu_interval_notifier_ops dmirror_min_ops; static dev_t dmirror_dev; struct dmirror_device; struct dmirror_bounce { void *ptr; unsigned long size; unsigned long addr; unsigned long cpages; }; #define DPT_XA_TAG_ATOMIC 1UL #define DPT_XA_TAG_WRITE 3UL /* * Data structure to track address ranges and register for mmu interval * notifier updates. */ struct dmirror_interval { struct mmu_interval_notifier notifier; struct dmirror *dmirror; }; /* * Data attached to the open device file. * Note that it might be shared after a fork(). */ struct dmirror { struct dmirror_device *mdevice; struct xarray pt; struct mmu_interval_notifier notifier; struct mutex mutex; }; /* * ZONE_DEVICE pages for migration and simulating device memory. */ struct dmirror_chunk { struct dev_pagemap pagemap; struct dmirror_device *mdevice; bool remove; }; /* * Per device data. */ struct dmirror_device { struct cdev cdevice; unsigned int zone_device_type; struct device device; unsigned int devmem_capacity; unsigned int devmem_count; struct dmirror_chunk **devmem_chunks; struct mutex devmem_lock; /* protects the above */ unsigned long calloc; unsigned long cfree; struct page *free_pages; spinlock_t lock; /* protects the above */ }; static struct dmirror_device dmirror_devices[DMIRROR_NDEVICES]; static int dmirror_bounce_init(struct dmirror_bounce *bounce, unsigned long addr, unsigned long size) { bounce->addr = addr; bounce->size = size; bounce->cpages = 0; bounce->ptr = vmalloc(size); if (!bounce->ptr) return -ENOMEM; return 0; } static bool dmirror_is_private_zone(struct dmirror_device *mdevice) { return (mdevice->zone_device_type == HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ? true : false; } static enum migrate_vma_direction dmirror_select_device(struct dmirror *dmirror) { return (dmirror->mdevice->zone_device_type == HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ? MIGRATE_VMA_SELECT_DEVICE_PRIVATE : MIGRATE_VMA_SELECT_DEVICE_COHERENT; } static void dmirror_bounce_fini(struct dmirror_bounce *bounce) { vfree(bounce->ptr); } static int dmirror_fops_open(struct inode *inode, struct file *filp) { struct cdev *cdev = inode->i_cdev; struct dmirror *dmirror; int ret; /* Mirror this process address space */ dmirror = kzalloc(sizeof(*dmirror), GFP_KERNEL); if (dmirror == NULL) return -ENOMEM; dmirror->mdevice = container_of(cdev, struct dmirror_device, cdevice); mutex_init(&dmirror->mutex); xa_init(&dmirror->pt); ret = mmu_interval_notifier_insert(&dmirror->notifier, current->mm, 0, ULONG_MAX & PAGE_MASK, &dmirror_min_ops); if (ret) { kfree(dmirror); return ret; } filp->private_data = dmirror; return 0; } static int dmirror_fops_release(struct inode *inode, struct file *filp) { struct dmirror *dmirror = filp->private_data; mmu_interval_notifier_remove(&dmirror->notifier); xa_destroy(&dmirror->pt); kfree(dmirror); return 0; } static struct dmirror_chunk *dmirror_page_to_chunk(struct page *page) { return container_of(page->pgmap, struct dmirror_chunk, pagemap); } static struct dmirror_device *dmirror_page_to_device(struct page *page) { return dmirror_page_to_chunk(page)->mdevice; } static int dmirror_do_fault(struct dmirror *dmirror, struct hmm_range *range) { unsigned long *pfns = range->hmm_pfns; unsigned long pfn; for (pfn = (range->start >> PAGE_SHIFT); pfn < (range->end >> PAGE_SHIFT); pfn++, pfns++) { struct page *page; void *entry; /* * Since we asked for hmm_range_fault() to populate pages, * it shouldn't return an error entry on success. */ WARN_ON(*pfns & HMM_PFN_ERROR); WARN_ON(!(*pfns & HMM_PFN_VALID)); page = hmm_pfn_to_page(*pfns); WARN_ON(!page); entry = page; if (*pfns & HMM_PFN_WRITE) entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE); else if (WARN_ON(range->default_flags & HMM_PFN_WRITE)) return -EFAULT; entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC); if (xa_is_err(entry)) return xa_err(entry); } return 0; } static void dmirror_do_update(struct dmirror *dmirror, unsigned long start, unsigned long end) { unsigned long pfn; void *entry; /* * The XArray doesn't hold references to pages since it relies on * the mmu notifier to clear page pointers when they become stale. * Therefore, it is OK to just clear the entry. */ xa_for_each_range(&dmirror->pt, pfn, entry, start >> PAGE_SHIFT, end >> PAGE_SHIFT) xa_erase(&dmirror->pt, pfn); } static bool dmirror_interval_invalidate(struct mmu_interval_notifier *mni, const struct mmu_notifier_range *range, unsigned long cur_seq) { struct dmirror *dmirror = container_of(mni, struct dmirror, notifier); /* * Ignore invalidation callbacks for device private pages since * the invalidation is handled as part of the migration process. */ if (range->event == MMU_NOTIFY_MIGRATE && range->owner == dmirror->mdevice) return true; if (mmu_notifier_range_blockable(range)) mutex_lock(&dmirror->mutex); else if (!mutex_trylock(&dmirror->mutex)) return false; mmu_interval_set_seq(mni, cur_seq); dmirror_do_update(dmirror, range->start, range->end); mutex_unlock(&dmirror->mutex); return true; } static const struct mmu_interval_notifier_ops dmirror_min_ops = { .invalidate = dmirror_interval_invalidate, }; static int dmirror_range_fault(struct dmirror *dmirror, struct hmm_range *range) { struct mm_struct *mm = dmirror->notifier.mm; unsigned long timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); int ret; while (true) { if (time_after(jiffies, timeout)) { ret = -EBUSY; goto out; } range->notifier_seq = mmu_interval_read_begin(range->notifier); mmap_read_lock(mm); ret = hmm_range_fault(range); mmap_read_unlock(mm); if (ret) { if (ret == -EBUSY) continue; goto out; } mutex_lock(&dmirror->mutex); if (mmu_interval_read_retry(range->notifier, range->notifier_seq)) { mutex_unlock(&dmirror->mutex); continue; } break; } ret = dmirror_do_fault(dmirror, range); mutex_unlock(&dmirror->mutex); out: return ret; } static int dmirror_fault(struct dmirror *dmirror, unsigned long start, unsigned long end, bool write) { struct mm_struct *mm = dmirror->notifier.mm; unsigned long addr; unsigned long pfns[64]; struct hmm_range range = { .notifier = &dmirror->notifier, .hmm_pfns = pfns, .pfn_flags_mask = 0, .default_flags = HMM_PFN_REQ_FAULT | (write ? HMM_PFN_REQ_WRITE : 0), .dev_private_owner = dmirror->mdevice, }; int ret = 0; /* Since the mm is for the mirrored process, get a reference first. */ if (!mmget_not_zero(mm)) return 0; for (addr = start; addr < end; addr = range.end) { range.start = addr; range.end = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end); ret = dmirror_range_fault(dmirror, &range); if (ret) break; } mmput(mm); return ret; } static int dmirror_do_read(struct dmirror *dmirror, unsigned long start, unsigned long end, struct dmirror_bounce *bounce) { unsigned long pfn; void *ptr; ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK); for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) { void *entry; struct page *page; entry = xa_load(&dmirror->pt, pfn); page = xa_untag_pointer(entry); if (!page) return -ENOENT; memcpy_from_page(ptr, page, 0, PAGE_SIZE); ptr += PAGE_SIZE; bounce->cpages++; } return 0; } static int dmirror_read(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd) { struct dmirror_bounce bounce; unsigned long start, end; unsigned long size = cmd->npages << PAGE_SHIFT; int ret; start = cmd->addr; end = start + size; if (end < start) return -EINVAL; ret = dmirror_bounce_init(&bounce, start, size); if (ret) return ret; while (1) { mutex_lock(&dmirror->mutex); ret = dmirror_do_read(dmirror, start, end, &bounce); mutex_unlock(&dmirror->mutex); if (ret != -ENOENT) break; start = cmd->addr + (bounce.cpages << PAGE_SHIFT); ret = dmirror_fault(dmirror, start, end, false); if (ret) break; cmd->faults++; } if (ret == 0) { if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr, bounce.size)) ret = -EFAULT; } cmd->cpages = bounce.cpages; dmirror_bounce_fini(&bounce); return ret; } static int dmirror_do_write(struct dmirror *dmirror, unsigned long start, unsigned long end, struct dmirror_bounce *bounce) { unsigned long pfn; void *ptr; ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK); for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) { void *entry; struct page *page; entry = xa_load(&dmirror->pt, pfn); page = xa_untag_pointer(entry); if (!page || xa_pointer_tag(entry) != DPT_XA_TAG_WRITE) return -ENOENT; memcpy_to_page(page, 0, ptr, PAGE_SIZE); ptr += PAGE_SIZE; bounce->cpages++; } return 0; } static int dmirror_write(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd) { struct dmirror_bounce bounce; unsigned long start, end; unsigned long size = cmd->npages << PAGE_SHIFT; int ret; start = cmd->addr; end = start + size; if (end < start) return -EINVAL; ret = dmirror_bounce_init(&bounce, start, size); if (ret) return ret; if (copy_from_user(bounce.ptr, u64_to_user_ptr(cmd->ptr), bounce.size)) { ret = -EFAULT; goto fini; } while (1) { mutex_lock(&dmirror->mutex); ret = dmirror_do_write(dmirror, start, end, &bounce); mutex_unlock(&dmirror->mutex); if (ret != -ENOENT) break; start = cmd->addr + (bounce.cpages << PAGE_SHIFT); ret = dmirror_fault(dmirror, start, end, true); if (ret) break; cmd->faults++; } fini: cmd->cpages = bounce.cpages; dmirror_bounce_fini(&bounce); return ret; } static int dmirror_allocate_chunk(struct dmirror_device *mdevice, struct page **ppage) { struct dmirror_chunk *devmem; struct resource *res = NULL; unsigned long pfn; unsigned long pfn_first; unsigned long pfn_last; void *ptr; int ret = -ENOMEM; devmem = kzalloc(sizeof(*devmem), GFP_KERNEL); if (!devmem) return ret; switch (mdevice->zone_device_type) { case HMM_DMIRROR_MEMORY_DEVICE_PRIVATE: res = request_free_mem_region(&iomem_resource, DEVMEM_CHUNK_SIZE, "hmm_dmirror"); if (IS_ERR_OR_NULL(res)) goto err_devmem; devmem->pagemap.range.start = res->start; devmem->pagemap.range.end = res->end; devmem->pagemap.type = MEMORY_DEVICE_PRIVATE; break; case HMM_DMIRROR_MEMORY_DEVICE_COHERENT: devmem->pagemap.range.start = (MINOR(mdevice->cdevice.dev) - 2) ? spm_addr_dev0 : spm_addr_dev1; devmem->pagemap.range.end = devmem->pagemap.range.start + DEVMEM_CHUNK_SIZE - 1; devmem->pagemap.type = MEMORY_DEVICE_COHERENT; break; default: ret = -EINVAL; goto err_devmem; } devmem->pagemap.nr_range = 1; devmem->pagemap.ops = &dmirror_devmem_ops; devmem->pagemap.owner = mdevice; mutex_lock(&mdevice->devmem_lock); if (mdevice->devmem_count == mdevice->devmem_capacity) { struct dmirror_chunk **new_chunks; unsigned int new_capacity; new_capacity = mdevice->devmem_capacity + DEVMEM_CHUNKS_RESERVE; new_chunks = krealloc(mdevice->devmem_chunks, sizeof(new_chunks[0]) * new_capacity, GFP_KERNEL); if (!new_chunks) goto err_release; mdevice->devmem_capacity = new_capacity; mdevice->devmem_chunks = new_chunks; } ptr = memremap_pages(&devmem->pagemap, numa_node_id()); if (IS_ERR_OR_NULL(ptr)) { if (ptr) ret = PTR_ERR(ptr); else ret = -EFAULT; goto err_release; } devmem->mdevice = mdevice; pfn_first = devmem->pagemap.range.start >> PAGE_SHIFT; pfn_last = pfn_first + (range_len(&devmem->pagemap.range) >> PAGE_SHIFT); mdevice->devmem_chunks[mdevice->devmem_count++] = devmem; mutex_unlock(&mdevice->devmem_lock); pr_info("added new %u MB chunk (total %u chunks, %u MB) PFNs [0x%lx 0x%lx)\n", DEVMEM_CHUNK_SIZE / (1024 * 1024), mdevice->devmem_count, mdevice->devmem_count * (DEVMEM_CHUNK_SIZE / (1024 * 1024)), pfn_first, pfn_last); spin_lock(&mdevice->lock); for (pfn = pfn_first; pfn < pfn_last; pfn++) { struct page *page = pfn_to_page(pfn); page->zone_device_data = mdevice->free_pages; mdevice->free_pages = page; } if (ppage) { *ppage = mdevice->free_pages; mdevice->free_pages = (*ppage)->zone_device_data; mdevice->calloc++; } spin_unlock(&mdevice->lock); return 0; err_release: mutex_unlock(&mdevice->devmem_lock); if (res && devmem->pagemap.type == MEMORY_DEVICE_PRIVATE) release_mem_region(devmem->pagemap.range.start, range_len(&devmem->pagemap.range)); err_devmem: kfree(devmem); return ret; } static struct page *dmirror_devmem_alloc_page(struct dmirror_device *mdevice) { struct page *dpage = NULL; struct page *rpage = NULL; /* * For ZONE_DEVICE private type, this is a fake device so we allocate * real system memory to store our device memory. * For ZONE_DEVICE coherent type we use the actual dpage to store the * data and ignore rpage. */ if (dmirror_is_private_zone(mdevice)) { rpage = alloc_page(GFP_HIGHUSER); if (!rpage) return NULL; } spin_lock(&mdevice->lock); if (mdevice->free_pages) { dpage = mdevice->free_pages; mdevice->free_pages = dpage->zone_device_data; mdevice->calloc++; spin_unlock(&mdevice->lock); } else { spin_unlock(&mdevice->lock); if (dmirror_allocate_chunk(mdevice, &dpage)) goto error; } zone_device_page_init(dpage); dpage->zone_device_data = rpage; return dpage; error: if (rpage) __free_page(rpage); return NULL; } static void dmirror_migrate_alloc_and_copy(struct migrate_vma *args, struct dmirror *dmirror) { struct dmirror_device *mdevice = dmirror->mdevice; const unsigned long *src = args->src; unsigned long *dst = args->dst; unsigned long addr; for (addr = args->start; addr < args->end; addr += PAGE_SIZE, src++, dst++) { struct page *spage; struct page *dpage; struct page *rpage; if (!(*src & MIGRATE_PFN_MIGRATE)) continue; /* * Note that spage might be NULL which is OK since it is an * unallocated pte_none() or read-only zero page. */ spage = migrate_pfn_to_page(*src); if (WARN(spage && is_zone_device_page(spage), "page already in device spage pfn: 0x%lx\n", page_to_pfn(spage))) continue; dpage = dmirror_devmem_alloc_page(mdevice); if (!dpage) continue; rpage = BACKING_PAGE(dpage); if (spage) copy_highpage(rpage, spage); else clear_highpage(rpage); /* * Normally, a device would use the page->zone_device_data to * point to the mirror but here we use it to hold the page for * the simulated device memory and that page holds the pointer * to the mirror. */ rpage->zone_device_data = dmirror; pr_debug("migrating from sys to dev pfn src: 0x%lx pfn dst: 0x%lx\n", page_to_pfn(spage), page_to_pfn(dpage)); *dst = migrate_pfn(page_to_pfn(dpage)); if ((*src & MIGRATE_PFN_WRITE) || (!spage && args->vma->vm_flags & VM_WRITE)) *dst |= MIGRATE_PFN_WRITE; } } static int dmirror_check_atomic(struct dmirror *dmirror, unsigned long start, unsigned long end) { unsigned long pfn; for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) { void *entry; entry = xa_load(&dmirror->pt, pfn); if (xa_pointer_tag(entry) == DPT_XA_TAG_ATOMIC) return -EPERM; } return 0; } static int dmirror_atomic_map(unsigned long start, unsigned long end, struct page **pages, struct dmirror *dmirror) { unsigned long pfn, mapped = 0; int i; /* Map the migrated pages into the device's page tables. */ mutex_lock(&dmirror->mutex); for (i = 0, pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++, i++) { void *entry; if (!pages[i]) continue; entry = pages[i]; entry = xa_tag_pointer(entry, DPT_XA_TAG_ATOMIC); entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC); if (xa_is_err(entry)) { mutex_unlock(&dmirror->mutex); return xa_err(entry); } mapped++; } mutex_unlock(&dmirror->mutex); return mapped; } static int dmirror_migrate_finalize_and_map(struct migrate_vma *args, struct dmirror *dmirror) { unsigned long start = args->start; unsigned long end = args->end; const unsigned long *src = args->src; const unsigned long *dst = args->dst; unsigned long pfn; /* Map the migrated pages into the device's page tables. */ mutex_lock(&dmirror->mutex); for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++, src++, dst++) { struct page *dpage; void *entry; if (!(*src & MIGRATE_PFN_MIGRATE)) continue; dpage = migrate_pfn_to_page(*dst); if (!dpage) continue; entry = BACKING_PAGE(dpage); if (*dst & MIGRATE_PFN_WRITE) entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE); entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC); if (xa_is_err(entry)) { mutex_unlock(&dmirror->mutex); return xa_err(entry); } } mutex_unlock(&dmirror->mutex); return 0; } static int dmirror_exclusive(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd) { unsigned long start, end, addr; unsigned long size = cmd->npages << PAGE_SHIFT; struct mm_struct *mm = dmirror->notifier.mm; struct page *pages[64]; struct dmirror_bounce bounce; unsigned long next; int ret; start = cmd->addr; end = start + size; if (end < start) return -EINVAL; /* Since the mm is for the mirrored process, get a reference first. */ if (!mmget_not_zero(mm)) return -EINVAL; mmap_read_lock(mm); for (addr = start; addr < end; addr = next) { unsigned long mapped = 0; int i; if (end < addr + (ARRAY_SIZE(pages) << PAGE_SHIFT)) next = end; else next = addr + (ARRAY_SIZE(pages) << PAGE_SHIFT); ret = make_device_exclusive_range(mm, addr, next, pages, NULL); /* * Do dmirror_atomic_map() iff all pages are marked for * exclusive access to avoid accessing uninitialized * fields of pages. */ if (ret == (next - addr) >> PAGE_SHIFT) mapped = dmirror_atomic_map(addr, next, pages, dmirror); for (i = 0; i < ret; i++) { if (pages[i]) { unlock_page(pages[i]); put_page(pages[i]); } } if (addr + (mapped << PAGE_SHIFT) < next) { mmap_read_unlock(mm); mmput(mm); return -EBUSY; } } mmap_read_unlock(mm); mmput(mm); /* Return the migrated data for verification. */ ret = dmirror_bounce_init(&bounce, start, size); if (ret) return ret; mutex_lock(&dmirror->mutex); ret = dmirror_do_read(dmirror, start, end, &bounce); mutex_unlock(&dmirror->mutex); if (ret == 0) { if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr, bounce.size)) ret = -EFAULT; } cmd->cpages = bounce.cpages; dmirror_bounce_fini(&bounce); return ret; } static vm_fault_t dmirror_devmem_fault_alloc_and_copy(struct migrate_vma *args, struct dmirror *dmirror) { const unsigned long *src = args->src; unsigned long *dst = args->dst; unsigned long start = args->start; unsigned long end = args->end; unsigned long addr; for (addr = start; addr < end; addr += PAGE_SIZE, src++, dst++) { struct page *dpage, *spage; spage = migrate_pfn_to_page(*src); if (!spage || !(*src & MIGRATE_PFN_MIGRATE)) continue; if (WARN_ON(!is_device_private_page(spage) && !is_device_coherent_page(spage))) continue; spage = BACKING_PAGE(spage); dpage = alloc_page_vma(GFP_HIGHUSER_MOVABLE, args->vma, addr); if (!dpage) continue; pr_debug("migrating from dev to sys pfn src: 0x%lx pfn dst: 0x%lx\n", page_to_pfn(spage), page_to_pfn(dpage)); lock_page(dpage); xa_erase(&dmirror->pt, addr >> PAGE_SHIFT); copy_highpage(dpage, spage); *dst = migrate_pfn(page_to_pfn(dpage)); if (*src & MIGRATE_PFN_WRITE) *dst |= MIGRATE_PFN_WRITE; } return 0; } static unsigned long dmirror_successful_migrated_pages(struct migrate_vma *migrate) { unsigned long cpages = 0; unsigned long i; for (i = 0; i < migrate->npages; i++) { if (migrate->src[i] & MIGRATE_PFN_VALID && migrate->src[i] & MIGRATE_PFN_MIGRATE) cpages++; } return cpages; } static int dmirror_migrate_to_system(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd) { unsigned long start, end, addr; unsigned long size = cmd->npages << PAGE_SHIFT; struct mm_struct *mm = dmirror->notifier.mm; struct vm_area_struct *vma; unsigned long src_pfns[64] = { 0 }; unsigned long dst_pfns[64] = { 0 }; struct migrate_vma args = { 0 }; unsigned long next; int ret; start = cmd->addr; end = start + size; if (end < start) return -EINVAL; /* Since the mm is for the mirrored process, get a reference first. */ if (!mmget_not_zero(mm)) return -EINVAL; cmd->cpages = 0; mmap_read_lock(mm); for (addr = start; addr < end; addr = next) { vma = vma_lookup(mm, addr); if (!vma || !(vma->vm_flags & VM_READ)) { ret = -EINVAL; goto out; } next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT)); if (next > vma->vm_end) next = vma->vm_end; args.vma = vma; args.src = src_pfns; args.dst = dst_pfns; args.start = addr; args.end = next; args.pgmap_owner = dmirror->mdevice; args.flags = dmirror_select_device(dmirror); ret = migrate_vma_setup(&args); if (ret) goto out; pr_debug("Migrating from device mem to sys mem\n"); dmirror_devmem_fault_alloc_and_copy(&args, dmirror); migrate_vma_pages(&args); cmd->cpages += dmirror_successful_migrated_pages(&args); migrate_vma_finalize(&args); } out: mmap_read_unlock(mm); mmput(mm); return ret; } static int dmirror_migrate_to_device(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd) { unsigned long start, end, addr; unsigned long size = cmd->npages << PAGE_SHIFT; struct mm_struct *mm = dmirror->notifier.mm; struct vm_area_struct *vma; unsigned long src_pfns[64] = { 0 }; unsigned long dst_pfns[64] = { 0 }; struct dmirror_bounce bounce; struct migrate_vma args = { 0 }; unsigned long next; int ret; start = cmd->addr; end = start + size; if (end < start) return -EINVAL; /* Since the mm is for the mirrored process, get a reference first. */ if (!mmget_not_zero(mm)) return -EINVAL; mmap_read_lock(mm); for (addr = start; addr < end; addr = next) { vma = vma_lookup(mm, addr); if (!vma || !(vma->vm_flags & VM_READ)) { ret = -EINVAL; goto out; } next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT)); if (next > vma->vm_end) next = vma->vm_end; args.vma = vma; args.src = src_pfns; args.dst = dst_pfns; args.start = addr; args.end = next; args.pgmap_owner = dmirror->mdevice; args.flags = MIGRATE_VMA_SELECT_SYSTEM; ret = migrate_vma_setup(&args); if (ret) goto out; pr_debug("Migrating from sys mem to device mem\n"); dmirror_migrate_alloc_and_copy(&args, dmirror); migrate_vma_pages(&args); dmirror_migrate_finalize_and_map(&args, dmirror); migrate_vma_finalize(&args); } mmap_read_unlock(mm); mmput(mm); /* * Return the migrated data for verification. * Only for pages in device zone */ ret = dmirror_bounce_init(&bounce, start, size); if (ret) return ret; mutex_lock(&dmirror->mutex); ret = dmirror_do_read(dmirror, start, end, &bounce); mutex_unlock(&dmirror->mutex); if (ret == 0) { if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr, bounce.size)) ret = -EFAULT; } cmd->cpages = bounce.cpages; dmirror_bounce_fini(&bounce); return ret; out: mmap_read_unlock(mm); mmput(mm); return ret; } static void dmirror_mkentry(struct dmirror *dmirror, struct hmm_range *range, unsigned char *perm, unsigned long entry) { struct page *page; if (entry & HMM_PFN_ERROR) { *perm = HMM_DMIRROR_PROT_ERROR; return; } if (!(entry & HMM_PFN_VALID)) { *perm = HMM_DMIRROR_PROT_NONE; return; } page = hmm_pfn_to_page(entry); if (is_device_private_page(page)) { /* Is the page migrated to this device or some other? */ if (dmirror->mdevice == dmirror_page_to_device(page)) *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL; else *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE; } else if (is_device_coherent_page(page)) { /* Is the page migrated to this device or some other? */ if (dmirror->mdevice == dmirror_page_to_device(page)) *perm = HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL; else *perm = HMM_DMIRROR_PROT_DEV_COHERENT_REMOTE; } else if (is_zero_pfn(page_to_pfn(page))) *perm = HMM_DMIRROR_PROT_ZERO; else *perm = HMM_DMIRROR_PROT_NONE; if (entry & HMM_PFN_WRITE) *perm |= HMM_DMIRROR_PROT_WRITE; else *perm |= HMM_DMIRROR_PROT_READ; if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PMD_SHIFT) *perm |= HMM_DMIRROR_PROT_PMD; else if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PUD_SHIFT) *perm |= HMM_DMIRROR_PROT_PUD; } static bool dmirror_snapshot_invalidate(struct mmu_interval_notifier *mni, const struct mmu_notifier_range *range, unsigned long cur_seq) { struct dmirror_interval *dmi = container_of(mni, struct dmirror_interval, notifier); struct dmirror *dmirror = dmi->dmirror; if (mmu_notifier_range_blockable(range)) mutex_lock(&dmirror->mutex); else if (!mutex_trylock(&dmirror->mutex)) return false; /* * Snapshots only need to set the sequence number since any * invalidation in the interval invalidates the whole snapshot. */ mmu_interval_set_seq(mni, cur_seq); mutex_unlock(&dmirror->mutex); return true; } static const struct mmu_interval_notifier_ops dmirror_mrn_ops = { .invalidate = dmirror_snapshot_invalidate, }; static int dmirror_range_snapshot(struct dmirror *dmirror, struct hmm_range *range, unsigned char *perm) { struct mm_struct *mm = dmirror->notifier.mm; struct dmirror_interval notifier; unsigned long timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); unsigned long i; unsigned long n; int ret = 0; notifier.dmirror = dmirror; range->notifier = ¬ifier.notifier; ret = mmu_interval_notifier_insert(range->notifier, mm, range->start, range->end - range->start, &dmirror_mrn_ops); if (ret) return ret; while (true) { if (time_after(jiffies, timeout)) { ret = -EBUSY; goto out; } range->notifier_seq = mmu_interval_read_begin(range->notifier); mmap_read_lock(mm); ret = hmm_range_fault(range); mmap_read_unlock(mm); if (ret) { if (ret == -EBUSY) continue; goto out; } mutex_lock(&dmirror->mutex); if (mmu_interval_read_retry(range->notifier, range->notifier_seq)) { mutex_unlock(&dmirror->mutex); continue; } break; } n = (range->end - range->start) >> PAGE_SHIFT; for (i = 0; i < n; i++) dmirror_mkentry(dmirror, range, perm + i, range->hmm_pfns[i]); mutex_unlock(&dmirror->mutex); out: mmu_interval_notifier_remove(range->notifier); return ret; } static int dmirror_snapshot(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd) { struct mm_struct *mm = dmirror->notifier.mm; unsigned long start, end; unsigned long size = cmd->npages << PAGE_SHIFT; unsigned long addr; unsigned long next; unsigned long pfns[64]; unsigned char perm[64]; char __user *uptr; struct hmm_range range = { .hmm_pfns = pfns, .dev_private_owner = dmirror->mdevice, }; int ret = 0; start = cmd->addr; end = start + size; if (end < start) return -EINVAL; /* Since the mm is for the mirrored process, get a reference first. */ if (!mmget_not_zero(mm)) return -EINVAL; /* * Register a temporary notifier to detect invalidations even if it * overlaps with other mmu_interval_notifiers. */ uptr = u64_to_user_ptr(cmd->ptr); for (addr = start; addr < end; addr = next) { unsigned long n; next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end); range.start = addr; range.end = next; ret = dmirror_range_snapshot(dmirror, &range, perm); if (ret) break; n = (range.end - range.start) >> PAGE_SHIFT; if (copy_to_user(uptr, perm, n)) { ret = -EFAULT; break; } cmd->cpages += n; uptr += n; } mmput(mm); return ret; } static void dmirror_device_evict_chunk(struct dmirror_chunk *chunk) { unsigned long start_pfn = chunk->pagemap.range.start >> PAGE_SHIFT; unsigned long end_pfn = chunk->pagemap.range.end >> PAGE_SHIFT; unsigned long npages = end_pfn - start_pfn + 1; unsigned long i; unsigned long *src_pfns; unsigned long *dst_pfns; src_pfns = kvcalloc(npages, sizeof(*src_pfns), GFP_KERNEL | __GFP_NOFAIL); dst_pfns = kvcalloc(npages, sizeof(*dst_pfns), GFP_KERNEL | __GFP_NOFAIL); migrate_device_range(src_pfns, start_pfn, npages); for (i = 0; i < npages; i++) { struct page *dpage, *spage; spage = migrate_pfn_to_page(src_pfns[i]); if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE)) continue; if (WARN_ON(!is_device_private_page(spage) && !is_device_coherent_page(spage))) continue; spage = BACKING_PAGE(spage); dpage = alloc_page(GFP_HIGHUSER_MOVABLE | __GFP_NOFAIL); lock_page(dpage); copy_highpage(dpage, spage); dst_pfns[i] = migrate_pfn(page_to_pfn(dpage)); if (src_pfns[i] & MIGRATE_PFN_WRITE) dst_pfns[i] |= MIGRATE_PFN_WRITE; } migrate_device_pages(src_pfns, dst_pfns, npages); migrate_device_finalize(src_pfns, dst_pfns, npages); kvfree(src_pfns); kvfree(dst_pfns); } /* Removes free pages from the free list so they can't be re-allocated */ static void dmirror_remove_free_pages(struct dmirror_chunk *devmem) { struct dmirror_device *mdevice = devmem->mdevice; struct page *page; for (page = mdevice->free_pages; page; page = page->zone_device_data) if (dmirror_page_to_chunk(page) == devmem) mdevice->free_pages = page->zone_device_data; } static void dmirror_device_remove_chunks(struct dmirror_device *mdevice) { unsigned int i; mutex_lock(&mdevice->devmem_lock); if (mdevice->devmem_chunks) { for (i = 0; i < mdevice->devmem_count; i++) { struct dmirror_chunk *devmem = mdevice->devmem_chunks[i]; spin_lock(&mdevice->lock); devmem->remove = true; dmirror_remove_free_pages(devmem); spin_unlock(&mdevice->lock); dmirror_device_evict_chunk(devmem); memunmap_pages(&devmem->pagemap); if (devmem->pagemap.type == MEMORY_DEVICE_PRIVATE) release_mem_region(devmem->pagemap.range.start, range_len(&devmem->pagemap.range)); kfree(devmem); } mdevice->devmem_count = 0; mdevice->devmem_capacity = 0; mdevice->free_pages = NULL; kfree(mdevice->devmem_chunks); mdevice->devmem_chunks = NULL; } mutex_unlock(&mdevice->devmem_lock); } static long dmirror_fops_unlocked_ioctl(struct file *filp, unsigned int command, unsigned long arg) { void __user *uarg = (void __user *)arg; struct hmm_dmirror_cmd cmd; struct dmirror *dmirror; int ret; dmirror = filp->private_data; if (!dmirror) return -EINVAL; if (copy_from_user(&cmd, uarg, sizeof(cmd))) return -EFAULT; if (cmd.addr & ~PAGE_MASK) return -EINVAL; if (cmd.addr >= (cmd.addr + (cmd.npages << PAGE_SHIFT))) return -EINVAL; cmd.cpages = 0; cmd.faults = 0; switch (command) { case HMM_DMIRROR_READ: ret = dmirror_read(dmirror, &cmd); break; case HMM_DMIRROR_WRITE: ret = dmirror_write(dmirror, &cmd); break; case HMM_DMIRROR_MIGRATE_TO_DEV: ret = dmirror_migrate_to_device(dmirror, &cmd); break; case HMM_DMIRROR_MIGRATE_TO_SYS: ret = dmirror_migrate_to_system(dmirror, &cmd); break; case HMM_DMIRROR_EXCLUSIVE: ret = dmirror_exclusive(dmirror, &cmd); break; case HMM_DMIRROR_CHECK_EXCLUSIVE: ret = dmirror_check_atomic(dmirror, cmd.addr, cmd.addr + (cmd.npages << PAGE_SHIFT)); break; case HMM_DMIRROR_SNAPSHOT: ret = dmirror_snapshot(dmirror, &cmd); break; case HMM_DMIRROR_RELEASE: dmirror_device_remove_chunks(dmirror->mdevice); ret = 0; break; default: return -EINVAL; } if (ret) return ret; if (copy_to_user(uarg, &cmd, sizeof(cmd))) return -EFAULT; return 0; } static int dmirror_fops_mmap(struct file *file, struct vm_area_struct *vma) { unsigned long addr; for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) { struct page *page; int ret; page = alloc_page(GFP_KERNEL | __GFP_ZERO); if (!page) return -ENOMEM; ret = vm_insert_page(vma, addr, page); if (ret) { __free_page(page); return ret; } put_page(page); } return 0; } static const struct file_operations dmirror_fops = { .open = dmirror_fops_open, .release = dmirror_fops_release, .mmap = dmirror_fops_mmap, .unlocked_ioctl = dmirror_fops_unlocked_ioctl, .llseek = default_llseek, .owner = THIS_MODULE, }; static void dmirror_devmem_free(struct page *page) { struct page *rpage = BACKING_PAGE(page); struct dmirror_device *mdevice; if (rpage != page) __free_page(rpage); mdevice = dmirror_page_to_device(page); spin_lock(&mdevice->lock); /* Return page to our allocator if not freeing the chunk */ if (!dmirror_page_to_chunk(page)->remove) { mdevice->cfree++; page->zone_device_data = mdevice->free_pages; mdevice->free_pages = page; } spin_unlock(&mdevice->lock); } static vm_fault_t dmirror_devmem_fault(struct vm_fault *vmf) { struct migrate_vma args = { 0 }; unsigned long src_pfns = 0; unsigned long dst_pfns = 0; struct page *rpage; struct dmirror *dmirror; vm_fault_t ret; /* * Normally, a device would use the page->zone_device_data to point to * the mirror but here we use it to hold the page for the simulated * device memory and that page holds the pointer to the mirror. */ rpage = vmf->page->zone_device_data; dmirror = rpage->zone_device_data; /* FIXME demonstrate how we can adjust migrate range */ args.vma = vmf->vma; args.start = vmf->address; args.end = args.start + PAGE_SIZE; args.src = &src_pfns; args.dst = &dst_pfns; args.pgmap_owner = dmirror->mdevice; args.flags = dmirror_select_device(dmirror); args.fault_page = vmf->page; if (migrate_vma_setup(&args)) return VM_FAULT_SIGBUS; ret = dmirror_devmem_fault_alloc_and_copy(&args, dmirror); if (ret) return ret; migrate_vma_pages(&args); /* * No device finalize step is needed since * dmirror_devmem_fault_alloc_and_copy() will have already * invalidated the device page table. */ migrate_vma_finalize(&args); return 0; } static const struct dev_pagemap_ops dmirror_devmem_ops = { .page_free = dmirror_devmem_free, .migrate_to_ram = dmirror_devmem_fault, }; static int dmirror_device_init(struct dmirror_device *mdevice, int id) { dev_t dev; int ret; dev = MKDEV(MAJOR(dmirror_dev), id); mutex_init(&mdevice->devmem_lock); spin_lock_init(&mdevice->lock); cdev_init(&mdevice->cdevice, &dmirror_fops); mdevice->cdevice.owner = THIS_MODULE; device_initialize(&mdevice->device); mdevice->device.devt = dev; ret = dev_set_name(&mdevice->device, "hmm_dmirror%u", id); if (ret) return ret; ret = cdev_device_add(&mdevice->cdevice, &mdevice->device); if (ret) return ret; /* Build a list of free ZONE_DEVICE struct pages */ return dmirror_allocate_chunk(mdevice, NULL); } static void dmirror_device_remove(struct dmirror_device *mdevice) { dmirror_device_remove_chunks(mdevice); cdev_device_del(&mdevice->cdevice, &mdevice->device); } static int __init hmm_dmirror_init(void) { int ret; int id = 0; int ndevices = 0; ret = alloc_chrdev_region(&dmirror_dev, 0, DMIRROR_NDEVICES, "HMM_DMIRROR"); if (ret) goto err_unreg; memset(dmirror_devices, 0, DMIRROR_NDEVICES * sizeof(dmirror_devices[0])); dmirror_devices[ndevices++].zone_device_type = HMM_DMIRROR_MEMORY_DEVICE_PRIVATE; dmirror_devices[ndevices++].zone_device_type = HMM_DMIRROR_MEMORY_DEVICE_PRIVATE; if (spm_addr_dev0 && spm_addr_dev1) { dmirror_devices[ndevices++].zone_device_type = HMM_DMIRROR_MEMORY_DEVICE_COHERENT; dmirror_devices[ndevices++].zone_device_type = HMM_DMIRROR_MEMORY_DEVICE_COHERENT; } for (id = 0; id < ndevices; id++) { ret = dmirror_device_init(dmirror_devices + id, id); if (ret) goto err_chrdev; } pr_info("HMM test module loaded. This is only for testing HMM.\n"); return 0; err_chrdev: while (--id >= 0) dmirror_device_remove(dmirror_devices + id); unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES); err_unreg: return ret; } static void __exit hmm_dmirror_exit(void) { int id; for (id = 0; id < DMIRROR_NDEVICES; id++) if (dmirror_devices[id].zone_device_type) dmirror_device_remove(dmirror_devices + id); unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES); } module_init(hmm_dmirror_init); module_exit(hmm_dmirror_exit); MODULE_DESCRIPTION("HMM (Heterogeneous Memory Management) test module"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1