Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andrey Konovalov | 1518 | 72.32% | 61 | 57.55% |
Andrey Ryabinin | 152 | 7.24% | 5 | 4.72% |
Daniel Axtens | 139 | 6.62% | 3 | 2.83% |
Alexander Potapenko | 84 | 4.00% | 5 | 4.72% |
Juntong Deng | 35 | 1.67% | 2 | 1.89% |
Matthew Wilcox | 28 | 1.33% | 2 | 1.89% |
Josh Poimboeuf | 15 | 0.71% | 1 | 0.94% |
Thomas Gleixner | 14 | 0.67% | 1 | 0.94% |
Linus Torvalds (pre-git) | 14 | 0.67% | 3 | 2.83% |
Vlastimil Babka | 13 | 0.62% | 3 | 2.83% |
Walter Wu | 11 | 0.52% | 4 | 3.77% |
Dmitriy Vyukov | 11 | 0.52% | 2 | 1.89% |
Oliver Glitta | 10 | 0.48% | 1 | 0.94% |
Andrew Morton | 10 | 0.48% | 1 | 0.94% |
Kuan-Ying Lee | 8 | 0.38% | 1 | 0.94% |
Catalin Marinas | 7 | 0.33% | 1 | 0.94% |
Mark Rutland | 6 | 0.29% | 1 | 0.94% |
Pekka J Enberg | 5 | 0.24% | 1 | 0.94% |
Marco Elver | 4 | 0.19% | 2 | 1.89% |
Kamezawa Hiroyuki | 3 | 0.14% | 1 | 0.94% |
Feng Tang | 3 | 0.14% | 1 | 0.94% |
Peter Collingbourne | 3 | 0.14% | 1 | 0.94% |
Ingo Molnar | 3 | 0.14% | 1 | 0.94% |
Christophe Leroy | 2 | 0.10% | 1 | 0.94% |
Paul E. McKenney | 1 | 0.05% | 1 | 0.94% |
Total | 2099 | 106 |
// SPDX-License-Identifier: GPL-2.0 /* * This file contains common KASAN code. * * Copyright (c) 2014 Samsung Electronics Co., Ltd. * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> * * Some code borrowed from https://github.com/xairy/kasan-prototype by * Andrey Konovalov <andreyknvl@gmail.com> */ #include <linux/export.h> #include <linux/init.h> #include <linux/kasan.h> #include <linux/kernel.h> #include <linux/linkage.h> #include <linux/memblock.h> #include <linux/memory.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/printk.h> #include <linux/sched.h> #include <linux/sched/clock.h> #include <linux/sched/task_stack.h> #include <linux/slab.h> #include <linux/stackdepot.h> #include <linux/stacktrace.h> #include <linux/string.h> #include <linux/types.h> #include <linux/bug.h> #include "kasan.h" #include "../slab.h" struct slab *kasan_addr_to_slab(const void *addr) { if (virt_addr_valid(addr)) return virt_to_slab(addr); return NULL; } depot_stack_handle_t kasan_save_stack(gfp_t flags, depot_flags_t depot_flags) { unsigned long entries[KASAN_STACK_DEPTH]; unsigned int nr_entries; nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0); return stack_depot_save_flags(entries, nr_entries, flags, depot_flags); } void kasan_set_track(struct kasan_track *track, depot_stack_handle_t stack) { #ifdef CONFIG_KASAN_EXTRA_INFO u32 cpu = raw_smp_processor_id(); u64 ts_nsec = local_clock(); track->cpu = cpu; track->timestamp = ts_nsec >> 9; #endif /* CONFIG_KASAN_EXTRA_INFO */ track->pid = current->pid; track->stack = stack; } void kasan_save_track(struct kasan_track *track, gfp_t flags) { depot_stack_handle_t stack; stack = kasan_save_stack(flags, STACK_DEPOT_FLAG_CAN_ALLOC); kasan_set_track(track, stack); } #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) void kasan_enable_current(void) { current->kasan_depth++; } EXPORT_SYMBOL(kasan_enable_current); void kasan_disable_current(void) { current->kasan_depth--; } EXPORT_SYMBOL(kasan_disable_current); #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */ void __kasan_unpoison_range(const void *address, size_t size) { if (is_kfence_address(address)) return; kasan_unpoison(address, size, false); } #ifdef CONFIG_KASAN_STACK /* Unpoison the entire stack for a task. */ void kasan_unpoison_task_stack(struct task_struct *task) { void *base = task_stack_page(task); kasan_unpoison(base, THREAD_SIZE, false); } /* Unpoison the stack for the current task beyond a watermark sp value. */ asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) { /* * Calculate the task stack base address. Avoid using 'current' * because this function is called by early resume code which hasn't * yet set up the percpu register (%gs). */ void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); kasan_unpoison(base, watermark - base, false); } #endif /* CONFIG_KASAN_STACK */ bool __kasan_unpoison_pages(struct page *page, unsigned int order, bool init) { u8 tag; unsigned long i; if (unlikely(PageHighMem(page))) return false; if (!kasan_sample_page_alloc(order)) return false; tag = kasan_random_tag(); kasan_unpoison(set_tag(page_address(page), tag), PAGE_SIZE << order, init); for (i = 0; i < (1 << order); i++) page_kasan_tag_set(page + i, tag); return true; } void __kasan_poison_pages(struct page *page, unsigned int order, bool init) { if (likely(!PageHighMem(page))) kasan_poison(page_address(page), PAGE_SIZE << order, KASAN_PAGE_FREE, init); } void __kasan_poison_slab(struct slab *slab) { struct page *page = slab_page(slab); unsigned long i; for (i = 0; i < compound_nr(page); i++) page_kasan_tag_reset(page + i); kasan_poison(page_address(page), page_size(page), KASAN_SLAB_REDZONE, false); } void __kasan_unpoison_new_object(struct kmem_cache *cache, void *object) { kasan_unpoison(object, cache->object_size, false); } void __kasan_poison_new_object(struct kmem_cache *cache, void *object) { kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), KASAN_SLAB_REDZONE, false); } /* * This function assigns a tag to an object considering the following: * 1. A cache might have a constructor, which might save a pointer to a slab * object somewhere (e.g. in the object itself). We preassign a tag for * each object in caches with constructors during slab creation and reuse * the same tag each time a particular object is allocated. * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be * accessed after being freed. We preassign tags for objects in these * caches as well. */ static inline u8 assign_tag(struct kmem_cache *cache, const void *object, bool init) { if (IS_ENABLED(CONFIG_KASAN_GENERIC)) return 0xff; /* * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU * set, assign a tag when the object is being allocated (init == false). */ if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) return init ? KASAN_TAG_KERNEL : kasan_random_tag(); /* * For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU, * assign a random tag during slab creation, otherwise reuse * the already assigned tag. */ return init ? kasan_random_tag() : get_tag(object); } void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache, const void *object) { /* Initialize per-object metadata if it is present. */ if (kasan_requires_meta()) kasan_init_object_meta(cache, object); /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */ object = set_tag(object, assign_tag(cache, object, true)); return (void *)object; } static inline bool poison_slab_object(struct kmem_cache *cache, void *object, unsigned long ip, bool init) { void *tagged_object; if (!kasan_arch_is_ready()) return false; tagged_object = object; object = kasan_reset_tag(object); if (unlikely(nearest_obj(cache, virt_to_slab(object), object) != object)) { kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_INVALID_FREE); return true; } /* RCU slabs could be legally used after free within the RCU period. */ if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) return false; if (!kasan_byte_accessible(tagged_object)) { kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_DOUBLE_FREE); return true; } kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), KASAN_SLAB_FREE, init); if (kasan_stack_collection_enabled()) kasan_save_free_info(cache, tagged_object); return false; } bool __kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip, bool init) { if (is_kfence_address(object)) return false; /* * If the object is buggy, do not let slab put the object onto the * freelist. The object will thus never be allocated again and its * metadata will never get released. */ if (poison_slab_object(cache, object, ip, init)) return true; /* * If the object is put into quarantine, do not let slab put the object * onto the freelist for now. The object's metadata is kept until the * object gets evicted from quarantine. */ if (kasan_quarantine_put(cache, object)) return true; /* * Note: Keep per-object metadata to allow KASAN print stack traces for * use-after-free-before-realloc bugs. */ /* Let slab put the object onto the freelist. */ return false; } static inline bool check_page_allocation(void *ptr, unsigned long ip) { if (!kasan_arch_is_ready()) return false; if (ptr != page_address(virt_to_head_page(ptr))) { kasan_report_invalid_free(ptr, ip, KASAN_REPORT_INVALID_FREE); return true; } if (!kasan_byte_accessible(ptr)) { kasan_report_invalid_free(ptr, ip, KASAN_REPORT_DOUBLE_FREE); return true; } return false; } void __kasan_kfree_large(void *ptr, unsigned long ip) { check_page_allocation(ptr, ip); /* The object will be poisoned by kasan_poison_pages(). */ } static inline void unpoison_slab_object(struct kmem_cache *cache, void *object, gfp_t flags, bool init) { /* * Unpoison the whole object. For kmalloc() allocations, * poison_kmalloc_redzone() will do precise poisoning. */ kasan_unpoison(object, cache->object_size, init); /* Save alloc info (if possible) for non-kmalloc() allocations. */ if (kasan_stack_collection_enabled() && !is_kmalloc_cache(cache)) kasan_save_alloc_info(cache, object, flags); } void * __must_check __kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags, bool init) { u8 tag; void *tagged_object; if (gfpflags_allow_blocking(flags)) kasan_quarantine_reduce(); if (unlikely(object == NULL)) return NULL; if (is_kfence_address(object)) return (void *)object; /* * Generate and assign random tag for tag-based modes. * Tag is ignored in set_tag() for the generic mode. */ tag = assign_tag(cache, object, false); tagged_object = set_tag(object, tag); /* Unpoison the object and save alloc info for non-kmalloc() allocations. */ unpoison_slab_object(cache, tagged_object, flags, init); return tagged_object; } static inline void poison_kmalloc_redzone(struct kmem_cache *cache, const void *object, size_t size, gfp_t flags) { unsigned long redzone_start; unsigned long redzone_end; /* * The redzone has byte-level precision for the generic mode. * Partially poison the last object granule to cover the unaligned * part of the redzone. */ if (IS_ENABLED(CONFIG_KASAN_GENERIC)) kasan_poison_last_granule((void *)object, size); /* Poison the aligned part of the redzone. */ redzone_start = round_up((unsigned long)(object + size), KASAN_GRANULE_SIZE); redzone_end = round_up((unsigned long)(object + cache->object_size), KASAN_GRANULE_SIZE); kasan_poison((void *)redzone_start, redzone_end - redzone_start, KASAN_SLAB_REDZONE, false); /* * Save alloc info (if possible) for kmalloc() allocations. * This also rewrites the alloc info when called from kasan_krealloc(). */ if (kasan_stack_collection_enabled() && is_kmalloc_cache(cache)) kasan_save_alloc_info(cache, (void *)object, flags); } void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size, gfp_t flags) { if (gfpflags_allow_blocking(flags)) kasan_quarantine_reduce(); if (unlikely(object == NULL)) return NULL; if (is_kfence_address(object)) return (void *)object; /* The object has already been unpoisoned by kasan_slab_alloc(). */ poison_kmalloc_redzone(cache, object, size, flags); /* Keep the tag that was set by kasan_slab_alloc(). */ return (void *)object; } EXPORT_SYMBOL(__kasan_kmalloc); static inline void poison_kmalloc_large_redzone(const void *ptr, size_t size, gfp_t flags) { unsigned long redzone_start; unsigned long redzone_end; /* * The redzone has byte-level precision for the generic mode. * Partially poison the last object granule to cover the unaligned * part of the redzone. */ if (IS_ENABLED(CONFIG_KASAN_GENERIC)) kasan_poison_last_granule(ptr, size); /* Poison the aligned part of the redzone. */ redzone_start = round_up((unsigned long)(ptr + size), KASAN_GRANULE_SIZE); redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr)); kasan_poison((void *)redzone_start, redzone_end - redzone_start, KASAN_PAGE_REDZONE, false); } void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags) { if (gfpflags_allow_blocking(flags)) kasan_quarantine_reduce(); if (unlikely(ptr == NULL)) return NULL; /* The object has already been unpoisoned by kasan_unpoison_pages(). */ poison_kmalloc_large_redzone(ptr, size, flags); /* Keep the tag that was set by alloc_pages(). */ return (void *)ptr; } void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags) { struct slab *slab; if (gfpflags_allow_blocking(flags)) kasan_quarantine_reduce(); if (unlikely(object == ZERO_SIZE_PTR)) return (void *)object; if (is_kfence_address(object)) return (void *)object; /* * Unpoison the object's data. * Part of it might already have been unpoisoned, but it's unknown * how big that part is. */ kasan_unpoison(object, size, false); slab = virt_to_slab(object); /* Piggy-back on kmalloc() instrumentation to poison the redzone. */ if (unlikely(!slab)) poison_kmalloc_large_redzone(object, size, flags); else poison_kmalloc_redzone(slab->slab_cache, object, size, flags); return (void *)object; } bool __kasan_mempool_poison_pages(struct page *page, unsigned int order, unsigned long ip) { unsigned long *ptr; if (unlikely(PageHighMem(page))) return true; /* Bail out if allocation was excluded due to sampling. */ if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && page_kasan_tag(page) == KASAN_TAG_KERNEL) return true; ptr = page_address(page); if (check_page_allocation(ptr, ip)) return false; kasan_poison(ptr, PAGE_SIZE << order, KASAN_PAGE_FREE, false); return true; } void __kasan_mempool_unpoison_pages(struct page *page, unsigned int order, unsigned long ip) { __kasan_unpoison_pages(page, order, false); } bool __kasan_mempool_poison_object(void *ptr, unsigned long ip) { struct folio *folio = virt_to_folio(ptr); struct slab *slab; /* * This function can be called for large kmalloc allocation that get * their memory from page_alloc. Thus, the folio might not be a slab. */ if (unlikely(!folio_test_slab(folio))) { if (check_page_allocation(ptr, ip)) return false; kasan_poison(ptr, folio_size(folio), KASAN_PAGE_FREE, false); return true; } if (is_kfence_address(ptr)) return false; slab = folio_slab(folio); return !poison_slab_object(slab->slab_cache, ptr, ip, false); } void __kasan_mempool_unpoison_object(void *ptr, size_t size, unsigned long ip) { struct slab *slab; gfp_t flags = 0; /* Might be executing under a lock. */ slab = virt_to_slab(ptr); /* * This function can be called for large kmalloc allocation that get * their memory from page_alloc. */ if (unlikely(!slab)) { kasan_unpoison(ptr, size, false); poison_kmalloc_large_redzone(ptr, size, flags); return; } if (is_kfence_address(ptr)) return; /* Unpoison the object and save alloc info for non-kmalloc() allocations. */ unpoison_slab_object(slab->slab_cache, ptr, flags, false); /* Poison the redzone and save alloc info for kmalloc() allocations. */ if (is_kmalloc_cache(slab->slab_cache)) poison_kmalloc_redzone(slab->slab_cache, ptr, size, flags); } bool __kasan_check_byte(const void *address, unsigned long ip) { if (!kasan_byte_accessible(address)) { kasan_report(address, 1, false, ip); return false; } return true; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1