Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andrey Konovalov | 1338 | 53.78% | 61 | 55.45% |
Andrey Ryabinin | 502 | 20.18% | 8 | 7.27% |
Kuan-Ying Lee | 128 | 5.14% | 2 | 1.82% |
Alexander Potapenko | 103 | 4.14% | 5 | 4.55% |
Jann Horn | 73 | 2.93% | 1 | 0.91% |
Mark Rutland | 59 | 2.37% | 1 | 0.91% |
Marco Elver | 57 | 2.29% | 2 | 1.82% |
Juntong Deng | 51 | 2.05% | 2 | 1.82% |
Aneesh Kumar K.V | 35 | 1.41% | 3 | 2.73% |
Vincenzo Frascino | 29 | 1.17% | 1 | 0.91% |
Arnd Bergmann | 28 | 1.13% | 2 | 1.82% |
Walter Wu | 22 | 0.88% | 4 | 3.64% |
Patricia Alfonso | 14 | 0.56% | 1 | 0.91% |
Dmitriy Vyukov | 7 | 0.28% | 2 | 1.82% |
Woody Lin | 6 | 0.24% | 1 | 0.91% |
Peter Zijlstra | 6 | 0.24% | 2 | 1.82% |
Kefeng Wang | 6 | 0.24% | 2 | 1.82% |
Linus Torvalds (pre-git) | 6 | 0.24% | 2 | 1.82% |
Tobin C Harding | 4 | 0.16% | 1 | 0.91% |
Brendan Higgins | 3 | 0.12% | 1 | 0.91% |
Vlastimil Babka | 3 | 0.12% | 1 | 0.91% |
Christoph Lameter | 3 | 0.12% | 1 | 0.91% |
Kees Cook | 2 | 0.08% | 1 | 0.91% |
David Gow | 1 | 0.04% | 1 | 0.91% |
Khan, Imran | 1 | 0.04% | 1 | 0.91% |
Joe Perches | 1 | 0.04% | 1 | 0.91% |
Total | 2488 | 110 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681
// SPDX-License-Identifier: GPL-2.0 /* * This file contains common KASAN error reporting code. * * Copyright (c) 2014 Samsung Electronics Co., Ltd. * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> * * Some code borrowed from https://github.com/xairy/kasan-prototype by * Andrey Konovalov <andreyknvl@gmail.com> */ #include <kunit/test.h> #include <linux/bitops.h> #include <linux/ftrace.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/lockdep.h> #include <linux/mm.h> #include <linux/printk.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/stackdepot.h> #include <linux/stacktrace.h> #include <linux/string.h> #include <linux/types.h> #include <linux/vmalloc.h> #include <linux/kasan.h> #include <linux/module.h> #include <linux/sched/task_stack.h> #include <linux/uaccess.h> #include <trace/events/error_report.h> #include <asm/sections.h> #include "kasan.h" #include "../slab.h" static unsigned long kasan_flags; #define KASAN_BIT_REPORTED 0 #define KASAN_BIT_MULTI_SHOT 1 enum kasan_arg_fault { KASAN_ARG_FAULT_DEFAULT, KASAN_ARG_FAULT_REPORT, KASAN_ARG_FAULT_PANIC, KASAN_ARG_FAULT_PANIC_ON_WRITE, }; static enum kasan_arg_fault kasan_arg_fault __ro_after_init = KASAN_ARG_FAULT_DEFAULT; /* kasan.fault=report/panic */ static int __init early_kasan_fault(char *arg) { if (!arg) return -EINVAL; if (!strcmp(arg, "report")) kasan_arg_fault = KASAN_ARG_FAULT_REPORT; else if (!strcmp(arg, "panic")) kasan_arg_fault = KASAN_ARG_FAULT_PANIC; else if (!strcmp(arg, "panic_on_write")) kasan_arg_fault = KASAN_ARG_FAULT_PANIC_ON_WRITE; else return -EINVAL; return 0; } early_param("kasan.fault", early_kasan_fault); static int __init kasan_set_multi_shot(char *str) { set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); return 1; } __setup("kasan_multi_shot", kasan_set_multi_shot); /* * This function is used to check whether KASAN reports are suppressed for * software KASAN modes via kasan_disable/enable_current() critical sections. * * This is done to avoid: * 1. False-positive reports when accessing slab metadata, * 2. Deadlocking when poisoned memory is accessed by the reporting code. * * Hardware Tag-Based KASAN instead relies on: * For #1: Resetting tags via kasan_reset_tag(). * For #2: Suppression of tag checks via CPU, see report_suppress_start/end(). */ static bool report_suppressed_sw(void) { #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) if (current->kasan_depth) return true; #endif return false; } static void report_suppress_start(void) { #ifdef CONFIG_KASAN_HW_TAGS /* * Disable preemption for the duration of printing a KASAN report, as * hw_suppress_tag_checks_start() disables checks on the current CPU. */ preempt_disable(); hw_suppress_tag_checks_start(); #else kasan_disable_current(); #endif } static void report_suppress_stop(void) { #ifdef CONFIG_KASAN_HW_TAGS hw_suppress_tag_checks_stop(); preempt_enable(); #else kasan_enable_current(); #endif } /* * Used to avoid reporting more than one KASAN bug unless kasan_multi_shot * is enabled. Note that KASAN tests effectively enable kasan_multi_shot * for their duration. */ static bool report_enabled(void) { if (test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags)) return true; return !test_and_set_bit(KASAN_BIT_REPORTED, &kasan_flags); } #if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST) || IS_ENABLED(CONFIG_KASAN_MODULE_TEST) bool kasan_save_enable_multi_shot(void) { return test_and_set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); } EXPORT_SYMBOL_GPL(kasan_save_enable_multi_shot); void kasan_restore_multi_shot(bool enabled) { if (!enabled) clear_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); } EXPORT_SYMBOL_GPL(kasan_restore_multi_shot); #endif #if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST) /* * Whether the KASAN KUnit test suite is currently being executed. * Updated in kasan_test.c. */ static bool kasan_kunit_executing; void kasan_kunit_test_suite_start(void) { WRITE_ONCE(kasan_kunit_executing, true); } EXPORT_SYMBOL_GPL(kasan_kunit_test_suite_start); void kasan_kunit_test_suite_end(void) { WRITE_ONCE(kasan_kunit_executing, false); } EXPORT_SYMBOL_GPL(kasan_kunit_test_suite_end); static bool kasan_kunit_test_suite_executing(void) { return READ_ONCE(kasan_kunit_executing); } #else /* CONFIG_KASAN_KUNIT_TEST */ static inline bool kasan_kunit_test_suite_executing(void) { return false; } #endif /* CONFIG_KASAN_KUNIT_TEST */ #if IS_ENABLED(CONFIG_KUNIT) static void fail_non_kasan_kunit_test(void) { struct kunit *test; if (kasan_kunit_test_suite_executing()) return; test = current->kunit_test; if (test) kunit_set_failure(test); } #else /* CONFIG_KUNIT */ static inline void fail_non_kasan_kunit_test(void) { } #endif /* CONFIG_KUNIT */ static DEFINE_SPINLOCK(report_lock); static void start_report(unsigned long *flags, bool sync) { fail_non_kasan_kunit_test(); /* Respect the /proc/sys/kernel/traceoff_on_warning interface. */ disable_trace_on_warning(); /* Do not allow LOCKDEP mangling KASAN reports. */ lockdep_off(); /* Make sure we don't end up in loop. */ report_suppress_start(); spin_lock_irqsave(&report_lock, *flags); pr_err("==================================================================\n"); } static void end_report(unsigned long *flags, const void *addr, bool is_write) { if (addr) trace_error_report_end(ERROR_DETECTOR_KASAN, (unsigned long)addr); pr_err("==================================================================\n"); spin_unlock_irqrestore(&report_lock, *flags); if (!test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags)) check_panic_on_warn("KASAN"); switch (kasan_arg_fault) { case KASAN_ARG_FAULT_DEFAULT: case KASAN_ARG_FAULT_REPORT: break; case KASAN_ARG_FAULT_PANIC: panic("kasan.fault=panic set ...\n"); break; case KASAN_ARG_FAULT_PANIC_ON_WRITE: if (is_write) panic("kasan.fault=panic_on_write set ...\n"); break; } add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); lockdep_on(); report_suppress_stop(); } static void print_error_description(struct kasan_report_info *info) { pr_err("BUG: KASAN: %s in %pS\n", info->bug_type, (void *)info->ip); if (info->type != KASAN_REPORT_ACCESS) { pr_err("Free of addr %px by task %s/%d\n", info->access_addr, current->comm, task_pid_nr(current)); return; } if (info->access_size) pr_err("%s of size %zu at addr %px by task %s/%d\n", info->is_write ? "Write" : "Read", info->access_size, info->access_addr, current->comm, task_pid_nr(current)); else pr_err("%s at addr %px by task %s/%d\n", info->is_write ? "Write" : "Read", info->access_addr, current->comm, task_pid_nr(current)); } static void print_track(struct kasan_track *track, const char *prefix) { #ifdef CONFIG_KASAN_EXTRA_INFO u64 ts_nsec = track->timestamp; unsigned long rem_usec; ts_nsec <<= 9; rem_usec = do_div(ts_nsec, NSEC_PER_SEC) / 1000; pr_err("%s by task %u on cpu %d at %lu.%06lus:\n", prefix, track->pid, track->cpu, (unsigned long)ts_nsec, rem_usec); #else pr_err("%s by task %u:\n", prefix, track->pid); #endif /* CONFIG_KASAN_EXTRA_INFO */ if (track->stack) stack_depot_print(track->stack); else pr_err("(stack is not available)\n"); } static inline struct page *addr_to_page(const void *addr) { if (virt_addr_valid(addr)) return virt_to_head_page(addr); return NULL; } static void describe_object_addr(const void *addr, struct kasan_report_info *info) { unsigned long access_addr = (unsigned long)addr; unsigned long object_addr = (unsigned long)info->object; const char *rel_type, *region_state = ""; int rel_bytes; pr_err("The buggy address belongs to the object at %px\n" " which belongs to the cache %s of size %d\n", info->object, info->cache->name, info->cache->object_size); if (access_addr < object_addr) { rel_type = "to the left"; rel_bytes = object_addr - access_addr; } else if (access_addr >= object_addr + info->alloc_size) { rel_type = "to the right"; rel_bytes = access_addr - (object_addr + info->alloc_size); } else { rel_type = "inside"; rel_bytes = access_addr - object_addr; } /* * Tag-Based modes use the stack ring to infer the bug type, but the * memory region state description is generated based on the metadata. * Thus, defining the region state as below can contradict the metadata. * Fixing this requires further improvements, so only infer the state * for the Generic mode. */ if (IS_ENABLED(CONFIG_KASAN_GENERIC)) { if (strcmp(info->bug_type, "slab-out-of-bounds") == 0) region_state = "allocated "; else if (strcmp(info->bug_type, "slab-use-after-free") == 0) region_state = "freed "; } pr_err("The buggy address is located %d bytes %s of\n" " %s%zu-byte region [%px, %px)\n", rel_bytes, rel_type, region_state, info->alloc_size, (void *)object_addr, (void *)(object_addr + info->alloc_size)); } static void describe_object_stacks(struct kasan_report_info *info) { if (info->alloc_track.stack) { print_track(&info->alloc_track, "Allocated"); pr_err("\n"); } if (info->free_track.stack) { print_track(&info->free_track, "Freed"); pr_err("\n"); } kasan_print_aux_stacks(info->cache, info->object); } static void describe_object(const void *addr, struct kasan_report_info *info) { if (kasan_stack_collection_enabled()) describe_object_stacks(info); describe_object_addr(addr, info); } static inline bool kernel_or_module_addr(const void *addr) { if (is_kernel((unsigned long)addr)) return true; if (is_module_address((unsigned long)addr)) return true; return false; } static inline bool init_task_stack_addr(const void *addr) { return addr >= (void *)&init_thread_union.stack && (addr <= (void *)&init_thread_union.stack + sizeof(init_thread_union.stack)); } static void print_address_description(void *addr, u8 tag, struct kasan_report_info *info) { struct page *page = addr_to_page(addr); dump_stack_lvl(KERN_ERR); pr_err("\n"); if (info->cache && info->object) { describe_object(addr, info); pr_err("\n"); } if (kernel_or_module_addr(addr) && !init_task_stack_addr(addr)) { pr_err("The buggy address belongs to the variable:\n"); pr_err(" %pS\n", addr); pr_err("\n"); } if (object_is_on_stack(addr)) { /* * Currently, KASAN supports printing frame information only * for accesses to the task's own stack. */ kasan_print_address_stack_frame(addr); pr_err("\n"); } if (is_vmalloc_addr(addr)) { struct vm_struct *va = find_vm_area(addr); if (va) { pr_err("The buggy address belongs to the virtual mapping at\n" " [%px, %px) created by:\n" " %pS\n", va->addr, va->addr + va->size, va->caller); pr_err("\n"); page = vmalloc_to_page(addr); } } if (page) { pr_err("The buggy address belongs to the physical page:\n"); dump_page(page, "kasan: bad access detected"); pr_err("\n"); } } static bool meta_row_is_guilty(const void *row, const void *addr) { return (row <= addr) && (addr < row + META_MEM_BYTES_PER_ROW); } static int meta_pointer_offset(const void *row, const void *addr) { /* * Memory state around the buggy address: * ff00ff00ff00ff00: 00 00 00 05 fe fe fe fe fe fe fe fe fe fe fe fe * ... * * The length of ">ff00ff00ff00ff00: " is * 3 + (BITS_PER_LONG / 8) * 2 chars. * The length of each granule metadata is 2 bytes * plus 1 byte for space. */ return 3 + (BITS_PER_LONG / 8) * 2 + (addr - row) / KASAN_GRANULE_SIZE * 3 + 1; } static void print_memory_metadata(const void *addr) { int i; void *row; row = (void *)round_down((unsigned long)addr, META_MEM_BYTES_PER_ROW) - META_ROWS_AROUND_ADDR * META_MEM_BYTES_PER_ROW; pr_err("Memory state around the buggy address:\n"); for (i = -META_ROWS_AROUND_ADDR; i <= META_ROWS_AROUND_ADDR; i++) { char buffer[4 + (BITS_PER_LONG / 8) * 2]; char metadata[META_BYTES_PER_ROW]; snprintf(buffer, sizeof(buffer), (i == 0) ? ">%px: " : " %px: ", row); /* * We should not pass a shadow pointer to generic * function, because generic functions may try to * access kasan mapping for the passed address. */ kasan_metadata_fetch_row(&metadata[0], row); print_hex_dump(KERN_ERR, buffer, DUMP_PREFIX_NONE, META_BYTES_PER_ROW, 1, metadata, META_BYTES_PER_ROW, 0); if (meta_row_is_guilty(row, addr)) pr_err("%*c\n", meta_pointer_offset(row, addr), '^'); row += META_MEM_BYTES_PER_ROW; } } static void print_report(struct kasan_report_info *info) { void *addr = kasan_reset_tag((void *)info->access_addr); u8 tag = get_tag((void *)info->access_addr); print_error_description(info); if (addr_has_metadata(addr)) kasan_print_tags(tag, info->first_bad_addr); pr_err("\n"); if (addr_has_metadata(addr)) { print_address_description(addr, tag, info); print_memory_metadata(info->first_bad_addr); } else { dump_stack_lvl(KERN_ERR); } } static void complete_report_info(struct kasan_report_info *info) { void *addr = kasan_reset_tag((void *)info->access_addr); struct slab *slab; if (info->type == KASAN_REPORT_ACCESS) info->first_bad_addr = kasan_find_first_bad_addr( (void *)info->access_addr, info->access_size); else info->first_bad_addr = addr; slab = kasan_addr_to_slab(addr); if (slab) { info->cache = slab->slab_cache; info->object = nearest_obj(info->cache, slab, addr); /* Try to determine allocation size based on the metadata. */ info->alloc_size = kasan_get_alloc_size(info->object, info->cache); /* Fallback to the object size if failed. */ if (!info->alloc_size) info->alloc_size = info->cache->object_size; } else info->cache = info->object = NULL; switch (info->type) { case KASAN_REPORT_INVALID_FREE: info->bug_type = "invalid-free"; break; case KASAN_REPORT_DOUBLE_FREE: info->bug_type = "double-free"; break; default: /* bug_type filled in by kasan_complete_mode_report_info. */ break; } /* Fill in mode-specific report info fields. */ kasan_complete_mode_report_info(info); } void kasan_report_invalid_free(void *ptr, unsigned long ip, enum kasan_report_type type) { unsigned long flags; struct kasan_report_info info; /* * Do not check report_suppressed_sw(), as an invalid-free cannot be * caused by accessing poisoned memory and thus should not be suppressed * by kasan_disable/enable_current() critical sections. * * Note that for Hardware Tag-Based KASAN, kasan_report_invalid_free() * is triggered by explicit tag checks and not by the ones performed by * the CPU. Thus, reporting invalid-free is not suppressed as well. */ if (unlikely(!report_enabled())) return; start_report(&flags, true); __memset(&info, 0, sizeof(info)); info.type = type; info.access_addr = ptr; info.access_size = 0; info.is_write = false; info.ip = ip; complete_report_info(&info); print_report(&info); /* * Invalid free is considered a "write" since the allocator's metadata * updates involves writes. */ end_report(&flags, ptr, true); } /* * kasan_report() is the only reporting function that uses * user_access_save/restore(): kasan_report_invalid_free() cannot be called * from a UACCESS region, and kasan_report_async() is not used on x86. */ bool kasan_report(const void *addr, size_t size, bool is_write, unsigned long ip) { bool ret = true; unsigned long ua_flags = user_access_save(); unsigned long irq_flags; struct kasan_report_info info; if (unlikely(report_suppressed_sw()) || unlikely(!report_enabled())) { ret = false; goto out; } start_report(&irq_flags, true); __memset(&info, 0, sizeof(info)); info.type = KASAN_REPORT_ACCESS; info.access_addr = addr; info.access_size = size; info.is_write = is_write; info.ip = ip; complete_report_info(&info); print_report(&info); end_report(&irq_flags, (void *)addr, is_write); out: user_access_restore(ua_flags); return ret; } #ifdef CONFIG_KASAN_HW_TAGS void kasan_report_async(void) { unsigned long flags; /* * Do not check report_suppressed_sw(), as * kasan_disable/enable_current() critical sections do not affect * Hardware Tag-Based KASAN. */ if (unlikely(!report_enabled())) return; start_report(&flags, false); pr_err("BUG: KASAN: invalid-access\n"); pr_err("Asynchronous fault: no details available\n"); pr_err("\n"); dump_stack_lvl(KERN_ERR); /* * Conservatively set is_write=true, because no details are available. * In this mode, kasan.fault=panic_on_write is like kasan.fault=panic. */ end_report(&flags, NULL, true); } #endif /* CONFIG_KASAN_HW_TAGS */ #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) /* * With compiler-based KASAN modes, accesses to bogus pointers (outside of the * mapped kernel address space regions) cause faults when KASAN tries to check * the shadow memory before the actual memory access. This results in cryptic * GPF reports, which are hard for users to interpret. This hook helps users to * figure out what the original bogus pointer was. */ void kasan_non_canonical_hook(unsigned long addr) { unsigned long orig_addr; const char *bug_type; /* * All addresses that came as a result of the memory-to-shadow mapping * (even for bogus pointers) must be >= KASAN_SHADOW_OFFSET. */ if (addr < KASAN_SHADOW_OFFSET) return; orig_addr = (unsigned long)kasan_shadow_to_mem((void *)addr); /* * For faults near the shadow address for NULL, we can be fairly certain * that this is a KASAN shadow memory access. * For faults that correspond to the shadow for low or high canonical * addresses, we can still be pretty sure: these shadow regions are a * fairly narrow chunk of the address space. * But the shadow for non-canonical addresses is a really large chunk * of the address space. For this case, we still print the decoded * address, but make it clear that this is not necessarily what's * actually going on. */ if (orig_addr < PAGE_SIZE) bug_type = "null-ptr-deref"; else if (orig_addr < TASK_SIZE) bug_type = "probably user-memory-access"; else if (addr_in_shadow((void *)addr)) bug_type = "probably wild-memory-access"; else bug_type = "maybe wild-memory-access"; pr_alert("KASAN: %s in range [0x%016lx-0x%016lx]\n", bug_type, orig_addr, orig_addr + KASAN_GRANULE_SIZE - 1); } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1