Contributors: 15
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Andrey Konovalov |
343 |
58.73% |
16 |
38.10% |
Andrey Ryabinin |
108 |
18.49% |
9 |
21.43% |
Peter Collingbourne |
50 |
8.56% |
2 |
4.76% |
Walter Wu |
20 |
3.42% |
2 |
4.76% |
Arnd Bergmann |
15 |
2.57% |
1 |
2.38% |
Marco Elver |
12 |
2.05% |
1 |
2.38% |
Kuan-Ying Lee |
12 |
2.05% |
2 |
4.76% |
Linus Torvalds (pre-git) |
6 |
1.03% |
2 |
4.76% |
Ingo Molnar |
3 |
0.51% |
1 |
2.38% |
Dmitriy Vyukov |
3 |
0.51% |
1 |
2.38% |
Mark Rutland |
3 |
0.51% |
1 |
2.38% |
Alexander Potapenko |
3 |
0.51% |
1 |
2.38% |
Kees Cook |
3 |
0.51% |
1 |
2.38% |
Russell King |
2 |
0.34% |
1 |
2.38% |
Christoph Hellwig |
1 |
0.17% |
1 |
2.38% |
Total |
584 |
|
42 |
|
// SPDX-License-Identifier: GPL-2.0
/*
* This file contains core software tag-based KASAN code.
*
* Copyright (c) 2018 Google, Inc.
* Author: Andrey Konovalov <andreyknvl@google.com>
*/
#define pr_fmt(fmt) "kasan: " fmt
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/kmemleak.h>
#include <linux/linkage.h>
#include <linux/memblock.h>
#include <linux/memory.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/random.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/slab.h>
#include <linux/stacktrace.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include <linux/bug.h>
#include "kasan.h"
#include "../slab.h"
static DEFINE_PER_CPU(u32, prng_state);
void __init kasan_init_sw_tags(void)
{
int cpu;
for_each_possible_cpu(cpu)
per_cpu(prng_state, cpu) = (u32)get_cycles();
kasan_init_tags();
pr_info("KernelAddressSanitizer initialized (sw-tags, stacktrace=%s)\n",
kasan_stack_collection_enabled() ? "on" : "off");
}
/*
* If a preemption happens between this_cpu_read and this_cpu_write, the only
* side effect is that we'll give a few allocated in different contexts objects
* the same tag. Since tag-based KASAN is meant to be used a probabilistic
* bug-detection debug feature, this doesn't have significant negative impact.
*
* Ideally the tags use strong randomness to prevent any attempts to predict
* them during explicit exploit attempts. But strong randomness is expensive,
* and we did an intentional trade-off to use a PRNG. This non-atomic RMW
* sequence has in fact positive effect, since interrupts that randomly skew
* PRNG at unpredictable points do only good.
*/
u8 kasan_random_tag(void)
{
u32 state = this_cpu_read(prng_state);
state = 1664525 * state + 1013904223;
this_cpu_write(prng_state, state);
return (u8)(state % (KASAN_TAG_MAX + 1));
}
bool kasan_check_range(const void *addr, size_t size, bool write,
unsigned long ret_ip)
{
u8 tag;
u8 *shadow_first, *shadow_last, *shadow;
void *untagged_addr;
if (unlikely(size == 0))
return true;
if (unlikely(addr + size < addr))
return !kasan_report(addr, size, write, ret_ip);
tag = get_tag((const void *)addr);
/*
* Ignore accesses for pointers tagged with 0xff (native kernel
* pointer tag) to suppress false positives caused by kmap.
*
* Some kernel code was written to account for archs that don't keep
* high memory mapped all the time, but rather map and unmap particular
* pages when needed. Instead of storing a pointer to the kernel memory,
* this code saves the address of the page structure and offset within
* that page for later use. Those pages are then mapped and unmapped
* with kmap/kunmap when necessary and virt_to_page is used to get the
* virtual address of the page. For arm64 (that keeps the high memory
* mapped all the time), kmap is turned into a page_address call.
* The issue is that with use of the page_address + virt_to_page
* sequence the top byte value of the original pointer gets lost (gets
* set to KASAN_TAG_KERNEL (0xFF)).
*/
if (tag == KASAN_TAG_KERNEL)
return true;
untagged_addr = kasan_reset_tag((const void *)addr);
if (unlikely(!addr_has_metadata(untagged_addr)))
return !kasan_report(addr, size, write, ret_ip);
shadow_first = kasan_mem_to_shadow(untagged_addr);
shadow_last = kasan_mem_to_shadow(untagged_addr + size - 1);
for (shadow = shadow_first; shadow <= shadow_last; shadow++) {
if (*shadow != tag) {
return !kasan_report(addr, size, write, ret_ip);
}
}
return true;
}
bool kasan_byte_accessible(const void *addr)
{
u8 tag = get_tag(addr);
void *untagged_addr = kasan_reset_tag(addr);
u8 shadow_byte;
if (!addr_has_metadata(untagged_addr))
return false;
shadow_byte = READ_ONCE(*(u8 *)kasan_mem_to_shadow(untagged_addr));
return tag == KASAN_TAG_KERNEL || tag == shadow_byte;
}
#define DEFINE_HWASAN_LOAD_STORE(size) \
void __hwasan_load##size##_noabort(void *addr) \
{ \
kasan_check_range(addr, size, false, _RET_IP_); \
} \
EXPORT_SYMBOL(__hwasan_load##size##_noabort); \
void __hwasan_store##size##_noabort(void *addr) \
{ \
kasan_check_range(addr, size, true, _RET_IP_); \
} \
EXPORT_SYMBOL(__hwasan_store##size##_noabort)
DEFINE_HWASAN_LOAD_STORE(1);
DEFINE_HWASAN_LOAD_STORE(2);
DEFINE_HWASAN_LOAD_STORE(4);
DEFINE_HWASAN_LOAD_STORE(8);
DEFINE_HWASAN_LOAD_STORE(16);
void __hwasan_loadN_noabort(void *addr, ssize_t size)
{
kasan_check_range(addr, size, false, _RET_IP_);
}
EXPORT_SYMBOL(__hwasan_loadN_noabort);
void __hwasan_storeN_noabort(void *addr, ssize_t size)
{
kasan_check_range(addr, size, true, _RET_IP_);
}
EXPORT_SYMBOL(__hwasan_storeN_noabort);
void __hwasan_tag_memory(void *addr, u8 tag, ssize_t size)
{
kasan_poison(addr, size, tag, false);
}
EXPORT_SYMBOL(__hwasan_tag_memory);
void kasan_tag_mismatch(void *addr, unsigned long access_info,
unsigned long ret_ip)
{
kasan_report(addr, 1 << (access_info & 0xf), access_info & 0x10,
ret_ip);
}