Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tejun Heo | 1077 | 89.45% | 10 | 41.67% |
Roman Gushchin | 57 | 4.73% | 2 | 8.33% |
Dennis Zhou | 48 | 3.99% | 6 | 25.00% |
Nicholas Piggin | 12 | 1.00% | 2 | 8.33% |
Tahsin Erdogan | 4 | 0.33% | 1 | 4.17% |
Mel Gorman | 3 | 0.25% | 1 | 4.17% |
Thomas Gleixner | 2 | 0.17% | 1 | 4.17% |
Bob Liu | 1 | 0.08% | 1 | 4.17% |
Total | 1204 | 24 |
// SPDX-License-Identifier: GPL-2.0-only /* * mm/percpu-vm.c - vmalloc area based chunk allocation * * Copyright (C) 2010 SUSE Linux Products GmbH * Copyright (C) 2010 Tejun Heo <tj@kernel.org> * * Chunks are mapped into vmalloc areas and populated page by page. * This is the default chunk allocator. */ #include "internal.h" static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk, unsigned int cpu, int page_idx) { /* must not be used on pre-mapped chunk */ WARN_ON(chunk->immutable); return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx)); } /** * pcpu_get_pages - get temp pages array * * Returns pointer to array of pointers to struct page which can be indexed * with pcpu_page_idx(). Note that there is only one array and accesses * should be serialized by pcpu_alloc_mutex. * * RETURNS: * Pointer to temp pages array on success. */ static struct page **pcpu_get_pages(void) { static struct page **pages; size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]); lockdep_assert_held(&pcpu_alloc_mutex); if (!pages) pages = pcpu_mem_zalloc(pages_size, GFP_KERNEL); return pages; } /** * pcpu_free_pages - free pages which were allocated for @chunk * @chunk: chunk pages were allocated for * @pages: array of pages to be freed, indexed by pcpu_page_idx() * @page_start: page index of the first page to be freed * @page_end: page index of the last page to be freed + 1 * * Free pages [@page_start and @page_end) in @pages for all units. * The pages were allocated for @chunk. */ static void pcpu_free_pages(struct pcpu_chunk *chunk, struct page **pages, int page_start, int page_end) { unsigned int cpu; int i; for_each_possible_cpu(cpu) { for (i = page_start; i < page_end; i++) { struct page *page = pages[pcpu_page_idx(cpu, i)]; if (page) __free_page(page); } } } /** * pcpu_alloc_pages - allocates pages for @chunk * @chunk: target chunk * @pages: array to put the allocated pages into, indexed by pcpu_page_idx() * @page_start: page index of the first page to be allocated * @page_end: page index of the last page to be allocated + 1 * @gfp: allocation flags passed to the underlying allocator * * Allocate pages [@page_start,@page_end) into @pages for all units. * The allocation is for @chunk. Percpu core doesn't care about the * content of @pages and will pass it verbatim to pcpu_map_pages(). */ static int pcpu_alloc_pages(struct pcpu_chunk *chunk, struct page **pages, int page_start, int page_end, gfp_t gfp) { unsigned int cpu, tcpu; int i; gfp |= __GFP_HIGHMEM; for_each_possible_cpu(cpu) { for (i = page_start; i < page_end; i++) { struct page **pagep = &pages[pcpu_page_idx(cpu, i)]; *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0); if (!*pagep) goto err; } } return 0; err: while (--i >= page_start) __free_page(pages[pcpu_page_idx(cpu, i)]); for_each_possible_cpu(tcpu) { if (tcpu == cpu) break; for (i = page_start; i < page_end; i++) __free_page(pages[pcpu_page_idx(tcpu, i)]); } return -ENOMEM; } /** * pcpu_pre_unmap_flush - flush cache prior to unmapping * @chunk: chunk the regions to be flushed belongs to * @page_start: page index of the first page to be flushed * @page_end: page index of the last page to be flushed + 1 * * Pages in [@page_start,@page_end) of @chunk are about to be * unmapped. Flush cache. As each flushing trial can be very * expensive, issue flush on the whole region at once rather than * doing it for each cpu. This could be an overkill but is more * scalable. */ static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, int page_start, int page_end) { flush_cache_vunmap( pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start), pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end)); } static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) { vunmap_range_noflush(addr, addr + (nr_pages << PAGE_SHIFT)); } /** * pcpu_unmap_pages - unmap pages out of a pcpu_chunk * @chunk: chunk of interest * @pages: pages array which can be used to pass information to free * @page_start: page index of the first page to unmap * @page_end: page index of the last page to unmap + 1 * * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. * Corresponding elements in @pages were cleared by the caller and can * be used to carry information to pcpu_free_pages() which will be * called after all unmaps are finished. The caller should call * proper pre/post flush functions. */ static void pcpu_unmap_pages(struct pcpu_chunk *chunk, struct page **pages, int page_start, int page_end) { unsigned int cpu; int i; for_each_possible_cpu(cpu) { for (i = page_start; i < page_end; i++) { struct page *page; page = pcpu_chunk_page(chunk, cpu, i); WARN_ON(!page); pages[pcpu_page_idx(cpu, i)] = page; } __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start), page_end - page_start); } } /** * pcpu_post_unmap_tlb_flush - flush TLB after unmapping * @chunk: pcpu_chunk the regions to be flushed belong to * @page_start: page index of the first page to be flushed * @page_end: page index of the last page to be flushed + 1 * * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush * TLB for the regions. This can be skipped if the area is to be * returned to vmalloc as vmalloc will handle TLB flushing lazily. * * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once * for the whole region. */ static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, int page_start, int page_end) { flush_tlb_kernel_range( pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start), pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end)); } static int __pcpu_map_pages(unsigned long addr, struct page **pages, int nr_pages) { return vmap_pages_range_noflush(addr, addr + (nr_pages << PAGE_SHIFT), PAGE_KERNEL, pages, PAGE_SHIFT); } /** * pcpu_map_pages - map pages into a pcpu_chunk * @chunk: chunk of interest * @pages: pages array containing pages to be mapped * @page_start: page index of the first page to map * @page_end: page index of the last page to map + 1 * * For each cpu, map pages [@page_start,@page_end) into @chunk. The * caller is responsible for calling pcpu_post_map_flush() after all * mappings are complete. * * This function is responsible for setting up whatever is necessary for * reverse lookup (addr -> chunk). */ static int pcpu_map_pages(struct pcpu_chunk *chunk, struct page **pages, int page_start, int page_end) { unsigned int cpu, tcpu; int i, err; for_each_possible_cpu(cpu) { err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start), &pages[pcpu_page_idx(cpu, page_start)], page_end - page_start); if (err < 0) goto err; for (i = page_start; i < page_end; i++) pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)], chunk); } return 0; err: for_each_possible_cpu(tcpu) { __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start), page_end - page_start); if (tcpu == cpu) break; } pcpu_post_unmap_tlb_flush(chunk, page_start, page_end); return err; } /** * pcpu_post_map_flush - flush cache after mapping * @chunk: pcpu_chunk the regions to be flushed belong to * @page_start: page index of the first page to be flushed * @page_end: page index of the last page to be flushed + 1 * * Pages [@page_start,@page_end) of @chunk have been mapped. Flush * cache. * * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once * for the whole region. */ static void pcpu_post_map_flush(struct pcpu_chunk *chunk, int page_start, int page_end) { flush_cache_vmap( pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start), pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end)); } /** * pcpu_populate_chunk - populate and map an area of a pcpu_chunk * @chunk: chunk of interest * @page_start: the start page * @page_end: the end page * @gfp: allocation flags passed to the underlying memory allocator * * For each cpu, populate and map pages [@page_start,@page_end) into * @chunk. * * CONTEXT: * pcpu_alloc_mutex, does GFP_KERNEL allocation. */ static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int page_start, int page_end, gfp_t gfp) { struct page **pages; pages = pcpu_get_pages(); if (!pages) return -ENOMEM; if (pcpu_alloc_pages(chunk, pages, page_start, page_end, gfp)) return -ENOMEM; if (pcpu_map_pages(chunk, pages, page_start, page_end)) { pcpu_free_pages(chunk, pages, page_start, page_end); return -ENOMEM; } pcpu_post_map_flush(chunk, page_start, page_end); return 0; } /** * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk * @chunk: chunk to depopulate * @page_start: the start page * @page_end: the end page * * For each cpu, depopulate and unmap pages [@page_start,@page_end) * from @chunk. * * Caller is required to call pcpu_post_unmap_tlb_flush() if not returning the * region back to vmalloc() which will lazily flush the tlb. * * CONTEXT: * pcpu_alloc_mutex. */ static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int page_start, int page_end) { struct page **pages; /* * If control reaches here, there must have been at least one * successful population attempt so the temp pages array must * be available now. */ pages = pcpu_get_pages(); BUG_ON(!pages); /* unmap and free */ pcpu_pre_unmap_flush(chunk, page_start, page_end); pcpu_unmap_pages(chunk, pages, page_start, page_end); pcpu_free_pages(chunk, pages, page_start, page_end); } static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp) { struct pcpu_chunk *chunk; struct vm_struct **vms; chunk = pcpu_alloc_chunk(gfp); if (!chunk) return NULL; vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes, pcpu_nr_groups, pcpu_atom_size); if (!vms) { pcpu_free_chunk(chunk); return NULL; } chunk->data = vms; chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0]; pcpu_stats_chunk_alloc(); trace_percpu_create_chunk(chunk->base_addr); return chunk; } static void pcpu_destroy_chunk(struct pcpu_chunk *chunk) { if (!chunk) return; pcpu_stats_chunk_dealloc(); trace_percpu_destroy_chunk(chunk->base_addr); if (chunk->data) pcpu_free_vm_areas(chunk->data, pcpu_nr_groups); pcpu_free_chunk(chunk); } static struct page *pcpu_addr_to_page(void *addr) { return vmalloc_to_page(addr); } static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai) { /* no extra restriction */ return 0; } /** * pcpu_should_reclaim_chunk - determine if a chunk should go into reclaim * @chunk: chunk of interest * * This is the entry point for percpu reclaim. If a chunk qualifies, it is then * isolated and managed in separate lists at the back of pcpu_slot: sidelined * and to_depopulate respectively. The to_depopulate list holds chunks slated * for depopulation. They no longer contribute to pcpu_nr_empty_pop_pages once * they are on this list. Once depopulated, they are moved onto the sidelined * list which enables them to be pulled back in for allocation if no other chunk * can suffice the allocation. */ static bool pcpu_should_reclaim_chunk(struct pcpu_chunk *chunk) { /* do not reclaim either the first chunk or reserved chunk */ if (chunk == pcpu_first_chunk || chunk == pcpu_reserved_chunk) return false; /* * If it is isolated, it may be on the sidelined list so move it back to * the to_depopulate list. If we hit at least 1/4 pages empty pages AND * there is no system-wide shortage of empty pages aside from this * chunk, move it to the to_depopulate list. */ return ((chunk->isolated && chunk->nr_empty_pop_pages) || (pcpu_nr_empty_pop_pages > (PCPU_EMPTY_POP_PAGES_HIGH + chunk->nr_empty_pop_pages) && chunk->nr_empty_pop_pages >= chunk->nr_pages / 4)); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1