Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ilya Dryomov | 3760 | 38.45% | 47 | 20.35% |
Sage Weil | 2995 | 30.63% | 60 | 25.97% |
Alex Elder | 2005 | 20.51% | 72 | 31.17% |
Jeff Layton | 402 | 4.11% | 8 | 3.46% |
Yehuda Sadeh Weinraub | 226 | 2.31% | 7 | 3.03% |
Yan Zheng | 140 | 1.43% | 4 | 1.73% |
Noah Watkins | 72 | 0.74% | 1 | 0.43% |
Jim Schutt | 34 | 0.35% | 1 | 0.43% |
Guanjun He | 18 | 0.18% | 1 | 0.43% |
Venky Shankar | 15 | 0.15% | 1 | 0.43% |
Kent Overstreet | 14 | 0.14% | 1 | 0.43% |
Al Viro | 13 | 0.13% | 2 | 0.87% |
Chunwei Chen | 11 | 0.11% | 1 | 0.43% |
Chaitanya Huilgol | 10 | 0.10% | 1 | 0.43% |
Benjamin Coddington | 8 | 0.08% | 1 | 0.43% |
Tejun Heo | 6 | 0.06% | 1 | 0.43% |
Arnd Bergmann | 6 | 0.06% | 1 | 0.43% |
Deepa Dinamani | 5 | 0.05% | 1 | 0.43% |
Peilin Ye | 5 | 0.05% | 1 | 0.43% |
Eric W. Biedermann | 4 | 0.04% | 2 | 0.87% |
Christoph Hellwig | 3 | 0.03% | 1 | 0.43% |
Satoru Moriya | 3 | 0.03% | 1 | 0.43% |
Paul Gortmaker | 3 | 0.03% | 1 | 0.43% |
Benoît Canet | 3 | 0.03% | 1 | 0.43% |
Gustavo A. R. Silva | 2 | 0.02% | 1 | 0.43% |
Linus Torvalds (pre-git) | 2 | 0.02% | 1 | 0.43% |
Peter Zijlstra | 2 | 0.02% | 1 | 0.43% |
Kirill A. Shutemov | 2 | 0.02% | 1 | 0.43% |
Geliang Tang | 2 | 0.02% | 2 | 0.87% |
Eric Dumazet | 1 | 0.01% | 1 | 0.43% |
Greg Kroah-Hartman | 1 | 0.01% | 1 | 0.43% |
Chengguang Xu | 1 | 0.01% | 1 | 0.43% |
Michal Hocko | 1 | 0.01% | 1 | 0.43% |
Jordan Rife | 1 | 0.01% | 1 | 0.43% |
Michael Christie | 1 | 0.01% | 1 | 0.43% |
Linus Torvalds | 1 | 0.01% | 1 | 0.43% |
Total | 9778 | 231 |
// SPDX-License-Identifier: GPL-2.0 #include <linux/ceph/ceph_debug.h> #include <linux/crc32c.h> #include <linux/ctype.h> #include <linux/highmem.h> #include <linux/inet.h> #include <linux/kthread.h> #include <linux/net.h> #include <linux/nsproxy.h> #include <linux/sched/mm.h> #include <linux/slab.h> #include <linux/socket.h> #include <linux/string.h> #ifdef CONFIG_BLOCK #include <linux/bio.h> #endif /* CONFIG_BLOCK */ #include <linux/dns_resolver.h> #include <net/tcp.h> #include <trace/events/sock.h> #include <linux/ceph/ceph_features.h> #include <linux/ceph/libceph.h> #include <linux/ceph/messenger.h> #include <linux/ceph/decode.h> #include <linux/ceph/pagelist.h> #include <linux/export.h> /* * Ceph uses the messenger to exchange ceph_msg messages with other * hosts in the system. The messenger provides ordered and reliable * delivery. We tolerate TCP disconnects by reconnecting (with * exponential backoff) in the case of a fault (disconnection, bad * crc, protocol error). Acks allow sent messages to be discarded by * the sender. */ /* * We track the state of the socket on a given connection using * values defined below. The transition to a new socket state is * handled by a function which verifies we aren't coming from an * unexpected state. * * -------- * | NEW* | transient initial state * -------- * | con_sock_state_init() * v * ---------- * | CLOSED | initialized, but no socket (and no * ---------- TCP connection) * ^ \ * | \ con_sock_state_connecting() * | ---------------------- * | \ * + con_sock_state_closed() \ * |+--------------------------- \ * | \ \ \ * | ----------- \ \ * | | CLOSING | socket event; \ \ * | ----------- await close \ \ * | ^ \ | * | | \ | * | + con_sock_state_closing() \ | * | / \ | | * | / --------------- | | * | / \ v v * | / -------------- * | / -----------------| CONNECTING | socket created, TCP * | | / -------------- connect initiated * | | | con_sock_state_connected() * | | v * ------------- * | CONNECTED | TCP connection established * ------------- * * State values for ceph_connection->sock_state; NEW is assumed to be 0. */ #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ static bool con_flag_valid(unsigned long con_flag) { switch (con_flag) { case CEPH_CON_F_LOSSYTX: case CEPH_CON_F_KEEPALIVE_PENDING: case CEPH_CON_F_WRITE_PENDING: case CEPH_CON_F_SOCK_CLOSED: case CEPH_CON_F_BACKOFF: return true; default: return false; } } void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag) { BUG_ON(!con_flag_valid(con_flag)); clear_bit(con_flag, &con->flags); } void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag) { BUG_ON(!con_flag_valid(con_flag)); set_bit(con_flag, &con->flags); } bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag) { BUG_ON(!con_flag_valid(con_flag)); return test_bit(con_flag, &con->flags); } bool ceph_con_flag_test_and_clear(struct ceph_connection *con, unsigned long con_flag) { BUG_ON(!con_flag_valid(con_flag)); return test_and_clear_bit(con_flag, &con->flags); } bool ceph_con_flag_test_and_set(struct ceph_connection *con, unsigned long con_flag) { BUG_ON(!con_flag_valid(con_flag)); return test_and_set_bit(con_flag, &con->flags); } /* Slab caches for frequently-allocated structures */ static struct kmem_cache *ceph_msg_cache; #ifdef CONFIG_LOCKDEP static struct lock_class_key socket_class; #endif static void queue_con(struct ceph_connection *con); static void cancel_con(struct ceph_connection *con); static void ceph_con_workfn(struct work_struct *); static void con_fault(struct ceph_connection *con); /* * Nicely render a sockaddr as a string. An array of formatted * strings is used, to approximate reentrancy. */ #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; static atomic_t addr_str_seq = ATOMIC_INIT(0); struct page *ceph_zero_page; /* used in certain error cases */ const char *ceph_pr_addr(const struct ceph_entity_addr *addr) { int i; char *s; struct sockaddr_storage ss = addr->in_addr; /* align */ struct sockaddr_in *in4 = (struct sockaddr_in *)&ss; struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss; i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; s = addr_str[i]; switch (ss.ss_family) { case AF_INET: snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu", le32_to_cpu(addr->type), &in4->sin_addr, ntohs(in4->sin_port)); break; case AF_INET6: snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu", le32_to_cpu(addr->type), &in6->sin6_addr, ntohs(in6->sin6_port)); break; default: snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", ss.ss_family); } return s; } EXPORT_SYMBOL(ceph_pr_addr); void ceph_encode_my_addr(struct ceph_messenger *msgr) { if (!ceph_msgr2(from_msgr(msgr))) { memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); ceph_encode_banner_addr(&msgr->my_enc_addr); } } /* * work queue for all reading and writing to/from the socket. */ static struct workqueue_struct *ceph_msgr_wq; static int ceph_msgr_slab_init(void) { BUG_ON(ceph_msg_cache); ceph_msg_cache = KMEM_CACHE(ceph_msg, 0); if (!ceph_msg_cache) return -ENOMEM; return 0; } static void ceph_msgr_slab_exit(void) { BUG_ON(!ceph_msg_cache); kmem_cache_destroy(ceph_msg_cache); ceph_msg_cache = NULL; } static void _ceph_msgr_exit(void) { if (ceph_msgr_wq) { destroy_workqueue(ceph_msgr_wq); ceph_msgr_wq = NULL; } BUG_ON(!ceph_zero_page); put_page(ceph_zero_page); ceph_zero_page = NULL; ceph_msgr_slab_exit(); } int __init ceph_msgr_init(void) { if (ceph_msgr_slab_init()) return -ENOMEM; BUG_ON(ceph_zero_page); ceph_zero_page = ZERO_PAGE(0); get_page(ceph_zero_page); /* * The number of active work items is limited by the number of * connections, so leave @max_active at default. */ ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); if (ceph_msgr_wq) return 0; pr_err("msgr_init failed to create workqueue\n"); _ceph_msgr_exit(); return -ENOMEM; } void ceph_msgr_exit(void) { BUG_ON(ceph_msgr_wq == NULL); _ceph_msgr_exit(); } void ceph_msgr_flush(void) { flush_workqueue(ceph_msgr_wq); } EXPORT_SYMBOL(ceph_msgr_flush); /* Connection socket state transition functions */ static void con_sock_state_init(struct ceph_connection *con) { int old_state; old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) printk("%s: unexpected old state %d\n", __func__, old_state); dout("%s con %p sock %d -> %d\n", __func__, con, old_state, CON_SOCK_STATE_CLOSED); } static void con_sock_state_connecting(struct ceph_connection *con) { int old_state; old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) printk("%s: unexpected old state %d\n", __func__, old_state); dout("%s con %p sock %d -> %d\n", __func__, con, old_state, CON_SOCK_STATE_CONNECTING); } static void con_sock_state_connected(struct ceph_connection *con) { int old_state; old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) printk("%s: unexpected old state %d\n", __func__, old_state); dout("%s con %p sock %d -> %d\n", __func__, con, old_state, CON_SOCK_STATE_CONNECTED); } static void con_sock_state_closing(struct ceph_connection *con) { int old_state; old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && old_state != CON_SOCK_STATE_CONNECTED && old_state != CON_SOCK_STATE_CLOSING)) printk("%s: unexpected old state %d\n", __func__, old_state); dout("%s con %p sock %d -> %d\n", __func__, con, old_state, CON_SOCK_STATE_CLOSING); } static void con_sock_state_closed(struct ceph_connection *con) { int old_state; old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && old_state != CON_SOCK_STATE_CLOSING && old_state != CON_SOCK_STATE_CONNECTING && old_state != CON_SOCK_STATE_CLOSED)) printk("%s: unexpected old state %d\n", __func__, old_state); dout("%s con %p sock %d -> %d\n", __func__, con, old_state, CON_SOCK_STATE_CLOSED); } /* * socket callback functions */ /* data available on socket, or listen socket received a connect */ static void ceph_sock_data_ready(struct sock *sk) { struct ceph_connection *con = sk->sk_user_data; trace_sk_data_ready(sk); if (atomic_read(&con->msgr->stopping)) { return; } if (sk->sk_state != TCP_CLOSE_WAIT) { dout("%s %p state = %d, queueing work\n", __func__, con, con->state); queue_con(con); } } /* socket has buffer space for writing */ static void ceph_sock_write_space(struct sock *sk) { struct ceph_connection *con = sk->sk_user_data; /* only queue to workqueue if there is data we want to write, * and there is sufficient space in the socket buffer to accept * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() * doesn't get called again until try_write() fills the socket * buffer. See net/ipv4/tcp_input.c:tcp_check_space() * and net/core/stream.c:sk_stream_write_space(). */ if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) { if (sk_stream_is_writeable(sk)) { dout("%s %p queueing write work\n", __func__, con); clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); queue_con(con); } } else { dout("%s %p nothing to write\n", __func__, con); } } /* socket's state has changed */ static void ceph_sock_state_change(struct sock *sk) { struct ceph_connection *con = sk->sk_user_data; dout("%s %p state = %d sk_state = %u\n", __func__, con, con->state, sk->sk_state); switch (sk->sk_state) { case TCP_CLOSE: dout("%s TCP_CLOSE\n", __func__); fallthrough; case TCP_CLOSE_WAIT: dout("%s TCP_CLOSE_WAIT\n", __func__); con_sock_state_closing(con); ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED); queue_con(con); break; case TCP_ESTABLISHED: dout("%s TCP_ESTABLISHED\n", __func__); con_sock_state_connected(con); queue_con(con); break; default: /* Everything else is uninteresting */ break; } } /* * set up socket callbacks */ static void set_sock_callbacks(struct socket *sock, struct ceph_connection *con) { struct sock *sk = sock->sk; sk->sk_user_data = con; sk->sk_data_ready = ceph_sock_data_ready; sk->sk_write_space = ceph_sock_write_space; sk->sk_state_change = ceph_sock_state_change; } /* * socket helpers */ /* * initiate connection to a remote socket. */ int ceph_tcp_connect(struct ceph_connection *con) { struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */ struct socket *sock; unsigned int noio_flag; int ret; dout("%s con %p peer_addr %s\n", __func__, con, ceph_pr_addr(&con->peer_addr)); BUG_ON(con->sock); /* sock_create_kern() allocates with GFP_KERNEL */ noio_flag = memalloc_noio_save(); ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family, SOCK_STREAM, IPPROTO_TCP, &sock); memalloc_noio_restore(noio_flag); if (ret) return ret; sock->sk->sk_allocation = GFP_NOFS; sock->sk->sk_use_task_frag = false; #ifdef CONFIG_LOCKDEP lockdep_set_class(&sock->sk->sk_lock, &socket_class); #endif set_sock_callbacks(sock, con); con_sock_state_connecting(con); ret = kernel_connect(sock, (struct sockaddr *)&ss, sizeof(ss), O_NONBLOCK); if (ret == -EINPROGRESS) { dout("connect %s EINPROGRESS sk_state = %u\n", ceph_pr_addr(&con->peer_addr), sock->sk->sk_state); } else if (ret < 0) { pr_err("connect %s error %d\n", ceph_pr_addr(&con->peer_addr), ret); sock_release(sock); return ret; } if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) tcp_sock_set_nodelay(sock->sk); con->sock = sock; return 0; } /* * Shutdown/close the socket for the given connection. */ int ceph_con_close_socket(struct ceph_connection *con) { int rc = 0; dout("%s con %p sock %p\n", __func__, con, con->sock); if (con->sock) { rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); sock_release(con->sock); con->sock = NULL; } /* * Forcibly clear the SOCK_CLOSED flag. It gets set * independent of the connection mutex, and we could have * received a socket close event before we had the chance to * shut the socket down. */ ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED); con_sock_state_closed(con); return rc; } static void ceph_con_reset_protocol(struct ceph_connection *con) { dout("%s con %p\n", __func__, con); ceph_con_close_socket(con); if (con->in_msg) { WARN_ON(con->in_msg->con != con); ceph_msg_put(con->in_msg); con->in_msg = NULL; } if (con->out_msg) { WARN_ON(con->out_msg->con != con); ceph_msg_put(con->out_msg); con->out_msg = NULL; } if (con->bounce_page) { __free_page(con->bounce_page); con->bounce_page = NULL; } if (ceph_msgr2(from_msgr(con->msgr))) ceph_con_v2_reset_protocol(con); else ceph_con_v1_reset_protocol(con); } /* * Reset a connection. Discard all incoming and outgoing messages * and clear *_seq state. */ static void ceph_msg_remove(struct ceph_msg *msg) { list_del_init(&msg->list_head); ceph_msg_put(msg); } static void ceph_msg_remove_list(struct list_head *head) { while (!list_empty(head)) { struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, list_head); ceph_msg_remove(msg); } } void ceph_con_reset_session(struct ceph_connection *con) { dout("%s con %p\n", __func__, con); WARN_ON(con->in_msg); WARN_ON(con->out_msg); ceph_msg_remove_list(&con->out_queue); ceph_msg_remove_list(&con->out_sent); con->out_seq = 0; con->in_seq = 0; con->in_seq_acked = 0; if (ceph_msgr2(from_msgr(con->msgr))) ceph_con_v2_reset_session(con); else ceph_con_v1_reset_session(con); } /* * mark a peer down. drop any open connections. */ void ceph_con_close(struct ceph_connection *con) { mutex_lock(&con->mutex); dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr)); con->state = CEPH_CON_S_CLOSED; ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next connect */ ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING); ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING); ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF); ceph_con_reset_protocol(con); ceph_con_reset_session(con); cancel_con(con); mutex_unlock(&con->mutex); } EXPORT_SYMBOL(ceph_con_close); /* * Reopen a closed connection, with a new peer address. */ void ceph_con_open(struct ceph_connection *con, __u8 entity_type, __u64 entity_num, struct ceph_entity_addr *addr) { mutex_lock(&con->mutex); dout("con_open %p %s\n", con, ceph_pr_addr(addr)); WARN_ON(con->state != CEPH_CON_S_CLOSED); con->state = CEPH_CON_S_PREOPEN; con->peer_name.type = (__u8) entity_type; con->peer_name.num = cpu_to_le64(entity_num); memcpy(&con->peer_addr, addr, sizeof(*addr)); con->delay = 0; /* reset backoff memory */ mutex_unlock(&con->mutex); queue_con(con); } EXPORT_SYMBOL(ceph_con_open); /* * return true if this connection ever successfully opened */ bool ceph_con_opened(struct ceph_connection *con) { if (ceph_msgr2(from_msgr(con->msgr))) return ceph_con_v2_opened(con); return ceph_con_v1_opened(con); } /* * initialize a new connection. */ void ceph_con_init(struct ceph_connection *con, void *private, const struct ceph_connection_operations *ops, struct ceph_messenger *msgr) { dout("con_init %p\n", con); memset(con, 0, sizeof(*con)); con->private = private; con->ops = ops; con->msgr = msgr; con_sock_state_init(con); mutex_init(&con->mutex); INIT_LIST_HEAD(&con->out_queue); INIT_LIST_HEAD(&con->out_sent); INIT_DELAYED_WORK(&con->work, ceph_con_workfn); con->state = CEPH_CON_S_CLOSED; } EXPORT_SYMBOL(ceph_con_init); /* * We maintain a global counter to order connection attempts. Get * a unique seq greater than @gt. */ u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt) { u32 ret; spin_lock(&msgr->global_seq_lock); if (msgr->global_seq < gt) msgr->global_seq = gt; ret = ++msgr->global_seq; spin_unlock(&msgr->global_seq_lock); return ret; } /* * Discard messages that have been acked by the server. */ void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq) { struct ceph_msg *msg; u64 seq; dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq); while (!list_empty(&con->out_sent)) { msg = list_first_entry(&con->out_sent, struct ceph_msg, list_head); WARN_ON(msg->needs_out_seq); seq = le64_to_cpu(msg->hdr.seq); if (seq > ack_seq) break; dout("%s con %p discarding msg %p seq %llu\n", __func__, con, msg, seq); ceph_msg_remove(msg); } } /* * Discard messages that have been requeued in con_fault(), up to * reconnect_seq. This avoids gratuitously resending messages that * the server had received and handled prior to reconnect. */ void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq) { struct ceph_msg *msg; u64 seq; dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq); while (!list_empty(&con->out_queue)) { msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head); if (msg->needs_out_seq) break; seq = le64_to_cpu(msg->hdr.seq); if (seq > reconnect_seq) break; dout("%s con %p discarding msg %p seq %llu\n", __func__, con, msg, seq); ceph_msg_remove(msg); } } #ifdef CONFIG_BLOCK /* * For a bio data item, a piece is whatever remains of the next * entry in the current bio iovec, or the first entry in the next * bio in the list. */ static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, size_t length) { struct ceph_msg_data *data = cursor->data; struct ceph_bio_iter *it = &cursor->bio_iter; cursor->resid = min_t(size_t, length, data->bio_length); *it = data->bio_pos; if (cursor->resid < it->iter.bi_size) it->iter.bi_size = cursor->resid; BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); } static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, size_t *page_offset, size_t *length) { struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio, cursor->bio_iter.iter); *page_offset = bv.bv_offset; *length = bv.bv_len; return bv.bv_page; } static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, size_t bytes) { struct ceph_bio_iter *it = &cursor->bio_iter; struct page *page = bio_iter_page(it->bio, it->iter); BUG_ON(bytes > cursor->resid); BUG_ON(bytes > bio_iter_len(it->bio, it->iter)); cursor->resid -= bytes; bio_advance_iter(it->bio, &it->iter, bytes); if (!cursor->resid) return false; /* no more data */ if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done && page == bio_iter_page(it->bio, it->iter))) return false; /* more bytes to process in this segment */ if (!it->iter.bi_size) { it->bio = it->bio->bi_next; it->iter = it->bio->bi_iter; if (cursor->resid < it->iter.bi_size) it->iter.bi_size = cursor->resid; } BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); return true; } #endif /* CONFIG_BLOCK */ static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor, size_t length) { struct ceph_msg_data *data = cursor->data; struct bio_vec *bvecs = data->bvec_pos.bvecs; cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size); cursor->bvec_iter = data->bvec_pos.iter; cursor->bvec_iter.bi_size = cursor->resid; BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); } static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor, size_t *page_offset, size_t *length) { struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs, cursor->bvec_iter); *page_offset = bv.bv_offset; *length = bv.bv_len; return bv.bv_page; } static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor, size_t bytes) { struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs; struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter); BUG_ON(bytes > cursor->resid); BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter)); cursor->resid -= bytes; bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes); if (!cursor->resid) return false; /* no more data */ if (!bytes || (cursor->bvec_iter.bi_bvec_done && page == bvec_iter_page(bvecs, cursor->bvec_iter))) return false; /* more bytes to process in this segment */ BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); return true; } /* * For a page array, a piece comes from the first page in the array * that has not already been fully consumed. */ static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, size_t length) { struct ceph_msg_data *data = cursor->data; int page_count; BUG_ON(data->type != CEPH_MSG_DATA_PAGES); BUG_ON(!data->pages); BUG_ON(!data->length); cursor->resid = min(length, data->length); page_count = calc_pages_for(data->alignment, (u64)data->length); cursor->page_offset = data->alignment & ~PAGE_MASK; cursor->page_index = 0; BUG_ON(page_count > (int)USHRT_MAX); cursor->page_count = (unsigned short)page_count; BUG_ON(length > SIZE_MAX - cursor->page_offset); } static struct page * ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, size_t *page_offset, size_t *length) { struct ceph_msg_data *data = cursor->data; BUG_ON(data->type != CEPH_MSG_DATA_PAGES); BUG_ON(cursor->page_index >= cursor->page_count); BUG_ON(cursor->page_offset >= PAGE_SIZE); *page_offset = cursor->page_offset; *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset); return data->pages[cursor->page_index]; } static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, size_t bytes) { BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); /* Advance the cursor page offset */ cursor->resid -= bytes; cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; if (!bytes || cursor->page_offset) return false; /* more bytes to process in the current page */ if (!cursor->resid) return false; /* no more data */ /* Move on to the next page; offset is already at 0 */ BUG_ON(cursor->page_index >= cursor->page_count); cursor->page_index++; return true; } /* * For a pagelist, a piece is whatever remains to be consumed in the * first page in the list, or the front of the next page. */ static void ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, size_t length) { struct ceph_msg_data *data = cursor->data; struct ceph_pagelist *pagelist; struct page *page; BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); pagelist = data->pagelist; BUG_ON(!pagelist); if (!length) return; /* pagelist can be assigned but empty */ BUG_ON(list_empty(&pagelist->head)); page = list_first_entry(&pagelist->head, struct page, lru); cursor->resid = min(length, pagelist->length); cursor->page = page; cursor->offset = 0; } static struct page * ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, size_t *page_offset, size_t *length) { struct ceph_msg_data *data = cursor->data; struct ceph_pagelist *pagelist; BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); pagelist = data->pagelist; BUG_ON(!pagelist); BUG_ON(!cursor->page); BUG_ON(cursor->offset + cursor->resid != pagelist->length); /* offset of first page in pagelist is always 0 */ *page_offset = cursor->offset & ~PAGE_MASK; *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset); return cursor->page; } static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, size_t bytes) { struct ceph_msg_data *data = cursor->data; struct ceph_pagelist *pagelist; BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); pagelist = data->pagelist; BUG_ON(!pagelist); BUG_ON(cursor->offset + cursor->resid != pagelist->length); BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); /* Advance the cursor offset */ cursor->resid -= bytes; cursor->offset += bytes; /* offset of first page in pagelist is always 0 */ if (!bytes || cursor->offset & ~PAGE_MASK) return false; /* more bytes to process in the current page */ if (!cursor->resid) return false; /* no more data */ /* Move on to the next page */ BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); cursor->page = list_next_entry(cursor->page, lru); return true; } static void ceph_msg_data_iter_cursor_init(struct ceph_msg_data_cursor *cursor, size_t length) { struct ceph_msg_data *data = cursor->data; cursor->iov_iter = data->iter; cursor->lastlen = 0; iov_iter_truncate(&cursor->iov_iter, length); cursor->resid = iov_iter_count(&cursor->iov_iter); } static struct page *ceph_msg_data_iter_next(struct ceph_msg_data_cursor *cursor, size_t *page_offset, size_t *length) { struct page *page; ssize_t len; if (cursor->lastlen) iov_iter_revert(&cursor->iov_iter, cursor->lastlen); len = iov_iter_get_pages2(&cursor->iov_iter, &page, PAGE_SIZE, 1, page_offset); BUG_ON(len < 0); cursor->lastlen = len; /* * FIXME: The assumption is that the pages represented by the iov_iter * are pinned, with the references held by the upper-level * callers, or by virtue of being under writeback. Eventually, * we'll get an iov_iter_get_pages2 variant that doesn't take * page refs. Until then, just put the page ref. */ VM_BUG_ON_PAGE(!PageWriteback(page) && page_count(page) < 2, page); put_page(page); *length = min_t(size_t, len, cursor->resid); return page; } static bool ceph_msg_data_iter_advance(struct ceph_msg_data_cursor *cursor, size_t bytes) { BUG_ON(bytes > cursor->resid); cursor->resid -= bytes; if (bytes < cursor->lastlen) { cursor->lastlen -= bytes; } else { iov_iter_advance(&cursor->iov_iter, bytes - cursor->lastlen); cursor->lastlen = 0; } return cursor->resid; } /* * Message data is handled (sent or received) in pieces, where each * piece resides on a single page. The network layer might not * consume an entire piece at once. A data item's cursor keeps * track of which piece is next to process and how much remains to * be processed in that piece. It also tracks whether the current * piece is the last one in the data item. */ static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) { size_t length = cursor->total_resid; switch (cursor->data->type) { case CEPH_MSG_DATA_PAGELIST: ceph_msg_data_pagelist_cursor_init(cursor, length); break; case CEPH_MSG_DATA_PAGES: ceph_msg_data_pages_cursor_init(cursor, length); break; #ifdef CONFIG_BLOCK case CEPH_MSG_DATA_BIO: ceph_msg_data_bio_cursor_init(cursor, length); break; #endif /* CONFIG_BLOCK */ case CEPH_MSG_DATA_BVECS: ceph_msg_data_bvecs_cursor_init(cursor, length); break; case CEPH_MSG_DATA_ITER: ceph_msg_data_iter_cursor_init(cursor, length); break; case CEPH_MSG_DATA_NONE: default: /* BUG(); */ break; } cursor->need_crc = true; } void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor, struct ceph_msg *msg, size_t length) { BUG_ON(!length); BUG_ON(length > msg->data_length); BUG_ON(!msg->num_data_items); cursor->total_resid = length; cursor->data = msg->data; cursor->sr_resid = 0; __ceph_msg_data_cursor_init(cursor); } /* * Return the page containing the next piece to process for a given * data item, and supply the page offset and length of that piece. * Indicate whether this is the last piece in this data item. */ struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, size_t *page_offset, size_t *length) { struct page *page; switch (cursor->data->type) { case CEPH_MSG_DATA_PAGELIST: page = ceph_msg_data_pagelist_next(cursor, page_offset, length); break; case CEPH_MSG_DATA_PAGES: page = ceph_msg_data_pages_next(cursor, page_offset, length); break; #ifdef CONFIG_BLOCK case CEPH_MSG_DATA_BIO: page = ceph_msg_data_bio_next(cursor, page_offset, length); break; #endif /* CONFIG_BLOCK */ case CEPH_MSG_DATA_BVECS: page = ceph_msg_data_bvecs_next(cursor, page_offset, length); break; case CEPH_MSG_DATA_ITER: page = ceph_msg_data_iter_next(cursor, page_offset, length); break; case CEPH_MSG_DATA_NONE: default: page = NULL; break; } BUG_ON(!page); BUG_ON(*page_offset + *length > PAGE_SIZE); BUG_ON(!*length); BUG_ON(*length > cursor->resid); return page; } /* * Returns true if the result moves the cursor on to the next piece * of the data item. */ void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes) { bool new_piece; BUG_ON(bytes > cursor->resid); switch (cursor->data->type) { case CEPH_MSG_DATA_PAGELIST: new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); break; case CEPH_MSG_DATA_PAGES: new_piece = ceph_msg_data_pages_advance(cursor, bytes); break; #ifdef CONFIG_BLOCK case CEPH_MSG_DATA_BIO: new_piece = ceph_msg_data_bio_advance(cursor, bytes); break; #endif /* CONFIG_BLOCK */ case CEPH_MSG_DATA_BVECS: new_piece = ceph_msg_data_bvecs_advance(cursor, bytes); break; case CEPH_MSG_DATA_ITER: new_piece = ceph_msg_data_iter_advance(cursor, bytes); break; case CEPH_MSG_DATA_NONE: default: BUG(); break; } cursor->total_resid -= bytes; if (!cursor->resid && cursor->total_resid) { cursor->data++; __ceph_msg_data_cursor_init(cursor); new_piece = true; } cursor->need_crc = new_piece; } u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset, unsigned int length) { char *kaddr; kaddr = kmap(page); BUG_ON(kaddr == NULL); crc = crc32c(crc, kaddr + page_offset, length); kunmap(page); return crc; } bool ceph_addr_is_blank(const struct ceph_entity_addr *addr) { struct sockaddr_storage ss = addr->in_addr; /* align */ struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr; struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr; switch (ss.ss_family) { case AF_INET: return addr4->s_addr == htonl(INADDR_ANY); case AF_INET6: return ipv6_addr_any(addr6); default: return true; } } EXPORT_SYMBOL(ceph_addr_is_blank); int ceph_addr_port(const struct ceph_entity_addr *addr) { switch (get_unaligned(&addr->in_addr.ss_family)) { case AF_INET: return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port)); case AF_INET6: return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port)); } return 0; } void ceph_addr_set_port(struct ceph_entity_addr *addr, int p) { switch (get_unaligned(&addr->in_addr.ss_family)) { case AF_INET: put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port); break; case AF_INET6: put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port); break; } } /* * Unlike other *_pton function semantics, zero indicates success. */ static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr, char delim, const char **ipend) { memset(&addr->in_addr, 0, sizeof(addr->in_addr)); if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) { put_unaligned(AF_INET, &addr->in_addr.ss_family); return 0; } if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) { put_unaligned(AF_INET6, &addr->in_addr.ss_family); return 0; } return -EINVAL; } /* * Extract hostname string and resolve using kernel DNS facility. */ #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER static int ceph_dns_resolve_name(const char *name, size_t namelen, struct ceph_entity_addr *addr, char delim, const char **ipend) { const char *end, *delim_p; char *colon_p, *ip_addr = NULL; int ip_len, ret; /* * The end of the hostname occurs immediately preceding the delimiter or * the port marker (':') where the delimiter takes precedence. */ delim_p = memchr(name, delim, namelen); colon_p = memchr(name, ':', namelen); if (delim_p && colon_p) end = delim_p < colon_p ? delim_p : colon_p; else if (!delim_p && colon_p) end = colon_p; else { end = delim_p; if (!end) /* case: hostname:/ */ end = name + namelen; } if (end <= name) return -EINVAL; /* do dns_resolve upcall */ ip_len = dns_query(current->nsproxy->net_ns, NULL, name, end - name, NULL, &ip_addr, NULL, false); if (ip_len > 0) ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL); else ret = -ESRCH; kfree(ip_addr); *ipend = end; pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, ret, ret ? "failed" : ceph_pr_addr(addr)); return ret; } #else static inline int ceph_dns_resolve_name(const char *name, size_t namelen, struct ceph_entity_addr *addr, char delim, const char **ipend) { return -EINVAL; } #endif /* * Parse a server name (IP or hostname). If a valid IP address is not found * then try to extract a hostname to resolve using userspace DNS upcall. */ static int ceph_parse_server_name(const char *name, size_t namelen, struct ceph_entity_addr *addr, char delim, const char **ipend) { int ret; ret = ceph_pton(name, namelen, addr, delim, ipend); if (ret) ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend); return ret; } /* * Parse an ip[:port] list into an addr array. Use the default * monitor port if a port isn't specified. */ int ceph_parse_ips(const char *c, const char *end, struct ceph_entity_addr *addr, int max_count, int *count, char delim) { int i, ret = -EINVAL; const char *p = c; dout("parse_ips on '%.*s'\n", (int)(end-c), c); for (i = 0; i < max_count; i++) { char cur_delim = delim; const char *ipend; int port; if (*p == '[') { cur_delim = ']'; p++; } ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim, &ipend); if (ret) goto bad; ret = -EINVAL; p = ipend; if (cur_delim == ']') { if (*p != ']') { dout("missing matching ']'\n"); goto bad; } p++; } /* port? */ if (p < end && *p == ':') { port = 0; p++; while (p < end && *p >= '0' && *p <= '9') { port = (port * 10) + (*p - '0'); p++; } if (port == 0) port = CEPH_MON_PORT; else if (port > 65535) goto bad; } else { port = CEPH_MON_PORT; } ceph_addr_set_port(&addr[i], port); /* * We want the type to be set according to ms_mode * option, but options are normally parsed after mon * addresses. Rather than complicating parsing, set * to LEGACY and override in build_initial_monmap() * for mon addresses and ceph_messenger_init() for * ip option. */ addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY; addr[i].nonce = 0; dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i])); if (p == end) break; if (*p != delim) goto bad; p++; } if (p != end) goto bad; if (count) *count = i + 1; return 0; bad: return ret; } /* * Process message. This happens in the worker thread. The callback should * be careful not to do anything that waits on other incoming messages or it * may deadlock. */ void ceph_con_process_message(struct ceph_connection *con) { struct ceph_msg *msg = con->in_msg; BUG_ON(con->in_msg->con != con); con->in_msg = NULL; /* if first message, set peer_name */ if (con->peer_name.type == 0) con->peer_name = msg->hdr.src; con->in_seq++; mutex_unlock(&con->mutex); dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n", msg, le64_to_cpu(msg->hdr.seq), ENTITY_NAME(msg->hdr.src), le16_to_cpu(msg->hdr.type), ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), le32_to_cpu(msg->hdr.front_len), le32_to_cpu(msg->hdr.middle_len), le32_to_cpu(msg->hdr.data_len), con->in_front_crc, con->in_middle_crc, con->in_data_crc); con->ops->dispatch(con, msg); mutex_lock(&con->mutex); } /* * Atomically queue work on a connection after the specified delay. * Bump @con reference to avoid races with connection teardown. * Returns 0 if work was queued, or an error code otherwise. */ static int queue_con_delay(struct ceph_connection *con, unsigned long delay) { if (!con->ops->get(con)) { dout("%s %p ref count 0\n", __func__, con); return -ENOENT; } if (delay >= HZ) delay = round_jiffies_relative(delay); dout("%s %p %lu\n", __func__, con, delay); if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { dout("%s %p - already queued\n", __func__, con); con->ops->put(con); return -EBUSY; } return 0; } static void queue_con(struct ceph_connection *con) { (void) queue_con_delay(con, 0); } static void cancel_con(struct ceph_connection *con) { if (cancel_delayed_work(&con->work)) { dout("%s %p\n", __func__, con); con->ops->put(con); } } static bool con_sock_closed(struct ceph_connection *con) { if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED)) return false; #define CASE(x) \ case CEPH_CON_S_ ## x: \ con->error_msg = "socket closed (con state " #x ")"; \ break; switch (con->state) { CASE(CLOSED); CASE(PREOPEN); CASE(V1_BANNER); CASE(V1_CONNECT_MSG); CASE(V2_BANNER_PREFIX); CASE(V2_BANNER_PAYLOAD); CASE(V2_HELLO); CASE(V2_AUTH); CASE(V2_AUTH_SIGNATURE); CASE(V2_SESSION_CONNECT); CASE(V2_SESSION_RECONNECT); CASE(OPEN); CASE(STANDBY); default: BUG(); } #undef CASE return true; } static bool con_backoff(struct ceph_connection *con) { int ret; if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF)) return false; ret = queue_con_delay(con, con->delay); if (ret) { dout("%s: con %p FAILED to back off %lu\n", __func__, con, con->delay); BUG_ON(ret == -ENOENT); ceph_con_flag_set(con, CEPH_CON_F_BACKOFF); } return true; } /* Finish fault handling; con->mutex must *not* be held here */ static void con_fault_finish(struct ceph_connection *con) { dout("%s %p\n", __func__, con); /* * in case we faulted due to authentication, invalidate our * current tickets so that we can get new ones. */ if (con->v1.auth_retry) { dout("auth_retry %d, invalidating\n", con->v1.auth_retry); if (con->ops->invalidate_authorizer) con->ops->invalidate_authorizer(con); con->v1.auth_retry = 0; } if (con->ops->fault) con->ops->fault(con); } /* * Do some work on a connection. Drop a connection ref when we're done. */ static void ceph_con_workfn(struct work_struct *work) { struct ceph_connection *con = container_of(work, struct ceph_connection, work.work); bool fault; mutex_lock(&con->mutex); while (true) { int ret; if ((fault = con_sock_closed(con))) { dout("%s: con %p SOCK_CLOSED\n", __func__, con); break; } if (con_backoff(con)) { dout("%s: con %p BACKOFF\n", __func__, con); break; } if (con->state == CEPH_CON_S_STANDBY) { dout("%s: con %p STANDBY\n", __func__, con); break; } if (con->state == CEPH_CON_S_CLOSED) { dout("%s: con %p CLOSED\n", __func__, con); BUG_ON(con->sock); break; } if (con->state == CEPH_CON_S_PREOPEN) { dout("%s: con %p PREOPEN\n", __func__, con); BUG_ON(con->sock); } if (ceph_msgr2(from_msgr(con->msgr))) ret = ceph_con_v2_try_read(con); else ret = ceph_con_v1_try_read(con); if (ret < 0) { if (ret == -EAGAIN) continue; if (!con->error_msg) con->error_msg = "socket error on read"; fault = true; break; } if (ceph_msgr2(from_msgr(con->msgr))) ret = ceph_con_v2_try_write(con); else ret = ceph_con_v1_try_write(con); if (ret < 0) { if (ret == -EAGAIN) continue; if (!con->error_msg) con->error_msg = "socket error on write"; fault = true; } break; /* If we make it to here, we're done */ } if (fault) con_fault(con); mutex_unlock(&con->mutex); if (fault) con_fault_finish(con); con->ops->put(con); } /* * Generic error/fault handler. A retry mechanism is used with * exponential backoff */ static void con_fault(struct ceph_connection *con) { dout("fault %p state %d to peer %s\n", con, con->state, ceph_pr_addr(&con->peer_addr)); pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), ceph_pr_addr(&con->peer_addr), con->error_msg); con->error_msg = NULL; WARN_ON(con->state == CEPH_CON_S_STANDBY || con->state == CEPH_CON_S_CLOSED); ceph_con_reset_protocol(con); if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) { dout("fault on LOSSYTX channel, marking CLOSED\n"); con->state = CEPH_CON_S_CLOSED; return; } /* Requeue anything that hasn't been acked */ list_splice_init(&con->out_sent, &con->out_queue); /* If there are no messages queued or keepalive pending, place * the connection in a STANDBY state */ if (list_empty(&con->out_queue) && !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) { dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING); con->state = CEPH_CON_S_STANDBY; } else { /* retry after a delay. */ con->state = CEPH_CON_S_PREOPEN; if (!con->delay) { con->delay = BASE_DELAY_INTERVAL; } else if (con->delay < MAX_DELAY_INTERVAL) { con->delay *= 2; if (con->delay > MAX_DELAY_INTERVAL) con->delay = MAX_DELAY_INTERVAL; } ceph_con_flag_set(con, CEPH_CON_F_BACKOFF); queue_con(con); } } void ceph_messenger_reset_nonce(struct ceph_messenger *msgr) { u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000; msgr->inst.addr.nonce = cpu_to_le32(nonce); ceph_encode_my_addr(msgr); } /* * initialize a new messenger instance */ void ceph_messenger_init(struct ceph_messenger *msgr, struct ceph_entity_addr *myaddr) { spin_lock_init(&msgr->global_seq_lock); if (myaddr) { memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr, sizeof(msgr->inst.addr.in_addr)); ceph_addr_set_port(&msgr->inst.addr, 0); } /* * Since nautilus, clients are identified using type ANY. * For msgr1, ceph_encode_banner_addr() munges it to NONE. */ msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY; /* generate a random non-zero nonce */ do { get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); } while (!msgr->inst.addr.nonce); ceph_encode_my_addr(msgr); atomic_set(&msgr->stopping, 0); write_pnet(&msgr->net, get_net(current->nsproxy->net_ns)); dout("%s %p\n", __func__, msgr); } void ceph_messenger_fini(struct ceph_messenger *msgr) { put_net(read_pnet(&msgr->net)); } static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con) { if (msg->con) msg->con->ops->put(msg->con); msg->con = con ? con->ops->get(con) : NULL; BUG_ON(msg->con != con); } static void clear_standby(struct ceph_connection *con) { /* come back from STANDBY? */ if (con->state == CEPH_CON_S_STANDBY) { dout("clear_standby %p and ++connect_seq\n", con); con->state = CEPH_CON_S_PREOPEN; con->v1.connect_seq++; WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)); WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)); } } /* * Queue up an outgoing message on the given connection. * * Consumes a ref on @msg. */ void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) { /* set src+dst */ msg->hdr.src = con->msgr->inst.name; BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); msg->needs_out_seq = true; mutex_lock(&con->mutex); if (con->state == CEPH_CON_S_CLOSED) { dout("con_send %p closed, dropping %p\n", con, msg); ceph_msg_put(msg); mutex_unlock(&con->mutex); return; } msg_con_set(msg, con); BUG_ON(!list_empty(&msg->list_head)); list_add_tail(&msg->list_head, &con->out_queue); dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), le32_to_cpu(msg->hdr.front_len), le32_to_cpu(msg->hdr.middle_len), le32_to_cpu(msg->hdr.data_len)); clear_standby(con); mutex_unlock(&con->mutex); /* if there wasn't anything waiting to send before, queue * new work */ if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING)) queue_con(con); } EXPORT_SYMBOL(ceph_con_send); /* * Revoke a message that was previously queued for send */ void ceph_msg_revoke(struct ceph_msg *msg) { struct ceph_connection *con = msg->con; if (!con) { dout("%s msg %p null con\n", __func__, msg); return; /* Message not in our possession */ } mutex_lock(&con->mutex); if (list_empty(&msg->list_head)) { WARN_ON(con->out_msg == msg); dout("%s con %p msg %p not linked\n", __func__, con, msg); mutex_unlock(&con->mutex); return; } dout("%s con %p msg %p was linked\n", __func__, con, msg); msg->hdr.seq = 0; ceph_msg_remove(msg); if (con->out_msg == msg) { WARN_ON(con->state != CEPH_CON_S_OPEN); dout("%s con %p msg %p was sending\n", __func__, con, msg); if (ceph_msgr2(from_msgr(con->msgr))) ceph_con_v2_revoke(con); else ceph_con_v1_revoke(con); ceph_msg_put(con->out_msg); con->out_msg = NULL; } else { dout("%s con %p msg %p not current, out_msg %p\n", __func__, con, msg, con->out_msg); } mutex_unlock(&con->mutex); } /* * Revoke a message that we may be reading data into */ void ceph_msg_revoke_incoming(struct ceph_msg *msg) { struct ceph_connection *con = msg->con; if (!con) { dout("%s msg %p null con\n", __func__, msg); return; /* Message not in our possession */ } mutex_lock(&con->mutex); if (con->in_msg == msg) { WARN_ON(con->state != CEPH_CON_S_OPEN); dout("%s con %p msg %p was recving\n", __func__, con, msg); if (ceph_msgr2(from_msgr(con->msgr))) ceph_con_v2_revoke_incoming(con); else ceph_con_v1_revoke_incoming(con); ceph_msg_put(con->in_msg); con->in_msg = NULL; } else { dout("%s con %p msg %p not current, in_msg %p\n", __func__, con, msg, con->in_msg); } mutex_unlock(&con->mutex); } /* * Queue a keepalive byte to ensure the tcp connection is alive. */ void ceph_con_keepalive(struct ceph_connection *con) { dout("con_keepalive %p\n", con); mutex_lock(&con->mutex); clear_standby(con); ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING); mutex_unlock(&con->mutex); if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING)) queue_con(con); } EXPORT_SYMBOL(ceph_con_keepalive); bool ceph_con_keepalive_expired(struct ceph_connection *con, unsigned long interval) { if (interval > 0 && (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) { struct timespec64 now; struct timespec64 ts; ktime_get_real_ts64(&now); jiffies_to_timespec64(interval, &ts); ts = timespec64_add(con->last_keepalive_ack, ts); return timespec64_compare(&now, &ts) >= 0; } return false; } static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg) { BUG_ON(msg->num_data_items >= msg->max_data_items); return &msg->data[msg->num_data_items++]; } static void ceph_msg_data_destroy(struct ceph_msg_data *data) { if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) { int num_pages = calc_pages_for(data->alignment, data->length); ceph_release_page_vector(data->pages, num_pages); } else if (data->type == CEPH_MSG_DATA_PAGELIST) { ceph_pagelist_release(data->pagelist); } } void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, size_t length, size_t alignment, bool own_pages) { struct ceph_msg_data *data; BUG_ON(!pages); BUG_ON(!length); data = ceph_msg_data_add(msg); data->type = CEPH_MSG_DATA_PAGES; data->pages = pages; data->length = length; data->alignment = alignment & ~PAGE_MASK; data->own_pages = own_pages; msg->data_length += length; } EXPORT_SYMBOL(ceph_msg_data_add_pages); void ceph_msg_data_add_pagelist(struct ceph_msg *msg, struct ceph_pagelist *pagelist) { struct ceph_msg_data *data; BUG_ON(!pagelist); BUG_ON(!pagelist->length); data = ceph_msg_data_add(msg); data->type = CEPH_MSG_DATA_PAGELIST; refcount_inc(&pagelist->refcnt); data->pagelist = pagelist; msg->data_length += pagelist->length; } EXPORT_SYMBOL(ceph_msg_data_add_pagelist); #ifdef CONFIG_BLOCK void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos, u32 length) { struct ceph_msg_data *data; data = ceph_msg_data_add(msg); data->type = CEPH_MSG_DATA_BIO; data->bio_pos = *bio_pos; data->bio_length = length; msg->data_length += length; } EXPORT_SYMBOL(ceph_msg_data_add_bio); #endif /* CONFIG_BLOCK */ void ceph_msg_data_add_bvecs(struct ceph_msg *msg, struct ceph_bvec_iter *bvec_pos) { struct ceph_msg_data *data; data = ceph_msg_data_add(msg); data->type = CEPH_MSG_DATA_BVECS; data->bvec_pos = *bvec_pos; msg->data_length += bvec_pos->iter.bi_size; } EXPORT_SYMBOL(ceph_msg_data_add_bvecs); void ceph_msg_data_add_iter(struct ceph_msg *msg, struct iov_iter *iter) { struct ceph_msg_data *data; data = ceph_msg_data_add(msg); data->type = CEPH_MSG_DATA_ITER; data->iter = *iter; msg->data_length += iov_iter_count(&data->iter); } /* * construct a new message with given type, size * the new msg has a ref count of 1. */ struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items, gfp_t flags, bool can_fail) { struct ceph_msg *m; m = kmem_cache_zalloc(ceph_msg_cache, flags); if (m == NULL) goto out; m->hdr.type = cpu_to_le16(type); m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); m->hdr.front_len = cpu_to_le32(front_len); INIT_LIST_HEAD(&m->list_head); kref_init(&m->kref); /* front */ if (front_len) { m->front.iov_base = kvmalloc(front_len, flags); if (m->front.iov_base == NULL) { dout("ceph_msg_new can't allocate %d bytes\n", front_len); goto out2; } } else { m->front.iov_base = NULL; } m->front_alloc_len = m->front.iov_len = front_len; if (max_data_items) { m->data = kmalloc_array(max_data_items, sizeof(*m->data), flags); if (!m->data) goto out2; m->max_data_items = max_data_items; } dout("ceph_msg_new %p front %d\n", m, front_len); return m; out2: ceph_msg_put(m); out: if (!can_fail) { pr_err("msg_new can't create type %d front %d\n", type, front_len); WARN_ON(1); } else { dout("msg_new can't create type %d front %d\n", type, front_len); } return NULL; } EXPORT_SYMBOL(ceph_msg_new2); struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, bool can_fail) { return ceph_msg_new2(type, front_len, 0, flags, can_fail); } EXPORT_SYMBOL(ceph_msg_new); /* * Allocate "middle" portion of a message, if it is needed and wasn't * allocated by alloc_msg. This allows us to read a small fixed-size * per-type header in the front and then gracefully fail (i.e., * propagate the error to the caller based on info in the front) when * the middle is too large. */ static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) { int type = le16_to_cpu(msg->hdr.type); int middle_len = le32_to_cpu(msg->hdr.middle_len); dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, ceph_msg_type_name(type), middle_len); BUG_ON(!middle_len); BUG_ON(msg->middle); msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); if (!msg->middle) return -ENOMEM; return 0; } /* * Allocate a message for receiving an incoming message on a * connection, and save the result in con->in_msg. Uses the * connection's private alloc_msg op if available. * * Returns 0 on success, or a negative error code. * * On success, if we set *skip = 1: * - the next message should be skipped and ignored. * - con->in_msg == NULL * or if we set *skip = 0: * - con->in_msg is non-null. * On error (ENOMEM, EAGAIN, ...), * - con->in_msg == NULL */ int ceph_con_in_msg_alloc(struct ceph_connection *con, struct ceph_msg_header *hdr, int *skip) { int middle_len = le32_to_cpu(hdr->middle_len); struct ceph_msg *msg; int ret = 0; BUG_ON(con->in_msg != NULL); BUG_ON(!con->ops->alloc_msg); mutex_unlock(&con->mutex); msg = con->ops->alloc_msg(con, hdr, skip); mutex_lock(&con->mutex); if (con->state != CEPH_CON_S_OPEN) { if (msg) ceph_msg_put(msg); return -EAGAIN; } if (msg) { BUG_ON(*skip); msg_con_set(msg, con); con->in_msg = msg; } else { /* * Null message pointer means either we should skip * this message or we couldn't allocate memory. The * former is not an error. */ if (*skip) return 0; con->error_msg = "error allocating memory for incoming message"; return -ENOMEM; } memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr)); if (middle_len && !con->in_msg->middle) { ret = ceph_alloc_middle(con, con->in_msg); if (ret < 0) { ceph_msg_put(con->in_msg); con->in_msg = NULL; } } return ret; } void ceph_con_get_out_msg(struct ceph_connection *con) { struct ceph_msg *msg; BUG_ON(list_empty(&con->out_queue)); msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head); WARN_ON(msg->con != con); /* * Put the message on "sent" list using a ref from ceph_con_send(). * It is put when the message is acked or revoked. */ list_move_tail(&msg->list_head, &con->out_sent); /* * Only assign outgoing seq # if we haven't sent this message * yet. If it is requeued, resend with it's original seq. */ if (msg->needs_out_seq) { msg->hdr.seq = cpu_to_le64(++con->out_seq); msg->needs_out_seq = false; if (con->ops->reencode_message) con->ops->reencode_message(msg); } /* * Get a ref for out_msg. It is put when we are done sending the * message or in case of a fault. */ WARN_ON(con->out_msg); con->out_msg = ceph_msg_get(msg); } /* * Free a generically kmalloc'd message. */ static void ceph_msg_free(struct ceph_msg *m) { dout("%s %p\n", __func__, m); kvfree(m->front.iov_base); kfree(m->data); kmem_cache_free(ceph_msg_cache, m); } static void ceph_msg_release(struct kref *kref) { struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); int i; dout("%s %p\n", __func__, m); WARN_ON(!list_empty(&m->list_head)); msg_con_set(m, NULL); /* drop middle, data, if any */ if (m->middle) { ceph_buffer_put(m->middle); m->middle = NULL; } for (i = 0; i < m->num_data_items; i++) ceph_msg_data_destroy(&m->data[i]); if (m->pool) ceph_msgpool_put(m->pool, m); else ceph_msg_free(m); } struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) { dout("%s %p (was %d)\n", __func__, msg, kref_read(&msg->kref)); kref_get(&msg->kref); return msg; } EXPORT_SYMBOL(ceph_msg_get); void ceph_msg_put(struct ceph_msg *msg) { dout("%s %p (was %d)\n", __func__, msg, kref_read(&msg->kref)); kref_put(&msg->kref, ceph_msg_release); } EXPORT_SYMBOL(ceph_msg_put); void ceph_msg_dump(struct ceph_msg *msg) { pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, msg->front_alloc_len, msg->data_length); print_hex_dump(KERN_DEBUG, "header: ", DUMP_PREFIX_OFFSET, 16, 1, &msg->hdr, sizeof(msg->hdr), true); print_hex_dump(KERN_DEBUG, " front: ", DUMP_PREFIX_OFFSET, 16, 1, msg->front.iov_base, msg->front.iov_len, true); if (msg->middle) print_hex_dump(KERN_DEBUG, "middle: ", DUMP_PREFIX_OFFSET, 16, 1, msg->middle->vec.iov_base, msg->middle->vec.iov_len, true); print_hex_dump(KERN_DEBUG, "footer: ", DUMP_PREFIX_OFFSET, 16, 1, &msg->footer, sizeof(msg->footer), true); } EXPORT_SYMBOL(ceph_msg_dump);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1